Vajad kellegagi rääkida?
Küsi julgelt abi LasteAbi
Logi sisse
✍🏽 Avalikusta oma sahtlis olevad luuletused! Luuletus.ee Sulge

Füüsika I teine kt - Jäiga keha pöörlemise dünaamika. - sarnased materjalid

gaas, inertsimoment, harmoonilistene, kulgliikumise, joonkiiruse, lahend, kaalust, ainepunkt, võnkeperiood, avaldis, võnkumised, lainevõrrand, orientatsiooni, põhivõrrand, aditiivne, summaga, pöörlemine, nimetame, teljest, nurkkiirus, üldkuju, impulss, pendel, ripub, võnkesagedus, kõrvalekalle, nurksagedus, kusjuures, pöördemoment
thumbnail
5
docx

Füüsika I konspekt

21. Keha liikumine tsentraalses jõuväljas. Keha liikumisel tsentraalses jõuväljas selle impulsimoment välja tsentri suhtes on ajas muutumatu, seega on niisugusel juhul keha trajektoor tasapinnaline kõver ning selle sektorkiirus jääv. Tsentraalseks nim. välja, mille vektorite pikendused lõikuvad ühes nn. tsentraalses punktis. Kehtib Kepleri II seadus: . 22. Jäiga keha pöörlemise kinemaatika. Jäiga keha pöörlemisel ümber liikumatu telje z, on ta impulsimoment , kus on keha inertsimoment z-telje suhtes. Jäiga keha pöörlemise dünaamika põhivõrrand: . 23. Inertsimoment. Inertsimoment (I) kirjeldab pöörleva keha massi jaotumist pöörlemistelje suhtes, . · silindriline ketas: · õõnes silinder: · kera: · varras: · 24. Pöörleva keha kineetiline energia. Välisjõudude töö pöörlemisel. · Kineetiline energia: , ja välisjõudude töö keha pöörlemisel ümber liikumatu telje z nurga võrra: · . · · II. Mehaanilised võnkumised ja lained

Füüsika
234 allalaadimist
thumbnail
24
pdf

Füüsika 1 eksam

liikumises. Hõõrdejõud on liikumapaneva jõuga vastassuunaline ning jaguneb seisuhõõrdejõuks, liugehõõrdejõuks ja veerehõõrdejõuks. Liugehõõrdejõu suurus on praktiliselt võrdne maksimaalse seisuhõõrdejõuga. Hõõrdetegur on hõõrdejõu ja pindu kokkusuruva normaaljõu suhe: Fh µ= Fn 19. Elastsusjõud Töö ja energia 20. Jõu töö: jõu töö üldvalem ja selle avaldis ristkoordinaadistikus, konstantse jõu töö, konstantse jõu töö keha sirgjoonelisel liikumisel, raskusjõu töö ülesvisatud keha liikumisel, elastsusjõu töö. Töö Töö on keha liikumisolekut kirjeldav suurus, mis on võrdne keha poolt läbitud tee pikkuse ja kehale mõjuva jõu liikumissuunalise komponendi korrutisega. Töö on protsessi, mitte olekut kirjeldav suurus. Kui jõu mõjul nihutatakse keha, siis see jõud teeb tööd. Nihke suhtes risti mõjuv jõud tööd ei tee.

Füüsika
193 allalaadimist
thumbnail
15
doc

Füüsika I eksami piletid

all samal vertikaalil viimasega. (joon.5) Pendli kallutamisel tasakaaluasendist nurga võrra tekib pöördemoment, mis toob pendli tasakaaluasendisse tagasi. See moment M=-mgl*sin , kus m on pendli mass, l- inertsikeskme kaugus kinnituspunktist. Väikeste hälvete korral sooritab füüs. pendel harmoonilisis võnkumisi, mille sagedus sõltub pendli massist, tema inertsimomendist pöörlemistelje suhtes ja pöörlemistelje ja inertsikeskme vahelisest kaugusest. Füüsikalise pendli võnkeperiood on T=2l/mgl. Matemaatilise pendli pikkus on lt= l / ml. Suurust lt nim. füüsikalise pendli taandatud pikkuseks. Seega on füüsikalise pendli taandatud pikkus võrdne niisuguse matem. pendli pikkusega, mille võnkeperiood on võrdne antud füüs. pendli võnkeperioodiga. MATEM. PENDEL- Matem. pendliks nim. idealiseeritud süs.-mi, mis koosneb kaalutust ja venimatust niidist, mille mass on koondunud ühte punkti. Matem. pendli küllalt heaks lähenduseks

Füüsika
1097 allalaadimist
thumbnail
9
doc

Füüsika I kordamiskonspekt

r s ds moodul erinevad vähe, seega- lim = lim = . t 0 t t 0 t dt Läbitud teepikkuse arvutamine s Eelnevast avaldisest järeldub, et v . Antud võrdus on seda täpsem mida väiksem on t. t N Kiirus on aja funktsioon v=v(t). Avaldis lim x 0 f ( x)x . Järelikult on punkt ajavahemikus t1 t2 kuni t2 läbinud tee, mille pikkus avaldub integraaliga s = v (t ) dt . t1 Ühtlane liikumine Liikumist, mille kiiruse suurus ei muutu, ehkki suund võib muutuda, nimetatakse ühtlaseks.

Füüsika
423 allalaadimist
thumbnail
3
docx

Füüsika kt 2

pinge ja elastse deformatsiooni suhtena. Elastsusmoodul näitab, kui suur pinge tekib materjalis ühikulise suhtelise pikenemise korral.Elastsusmoodul iseloomustab materjali jäikust. Jäikus on keha võime avaldada välisjõu deformeerimisele vastupanu keha materjali elastsuspiiri ulatuses. Pöördliikumise dünaamika Pöördliikumise kineetiline energia ­ Wk= sum mivi2/2 = sum miw2ri2/2 = w2/2 sum miri2(v=wr); Wk=sum mivi2/2; Wk=Iw2/2 Inertsimoment ­ I=mr2 Inertsimoment on massiga analoogne suurus pöördliikumise puhul fikseeritud telje ümber. Inertsimoment iseloomustab jäiga keha inertsi pöörlemiskiiruse muutmise suhtes. Tema roll pöörlemise dünaamika kirjeldamisel on sama, mis tavalisel massil kulgliikumise dünaamika kirjeldamisel. Inertsimomendi arvutus ­ steineri lause: keha inertsimoment suvaliselt valitud telje suhtes võrdub summaga, mille üheks liidetavaks on inertsimoment I0 telje suhtes, mis on paralleelne

Füüsika
395 allalaadimist
thumbnail
66
docx

Füüsika I konspekt

vasakul pool mõjuvad jõud ja paremal pool võrdusmärki toetuspunktist paremal pool mõjuvad jõud. Seda nimetatakse kangi tasakaalu tingimuseks: kang on tasakaalus, kui kangile mõjuvate jõumomentide algebraline summa võrdub nulliga. Päripäeva moment loetakse positiivseks ja vastupäeva pöörav negatiivseks. 8 20. PÖÖRLEVA KEHA KINEETILINE ENERGIA. INERTSIMOMENT. STEINERI LAUSE. IMPULSIMOMENT Pöörleva keha kineetiline energia on võrdeline nurkiiruse ruuduga. Pöördliikumise kineetiline energia Ekp=Iω2/2 Inertsimoment on massiga analoogne suurus pöördliikumise puhul fikseeritud telje ümber. Inertsimoment iseloomustab jäiga keha inertsi pöörlemiskiiruse muutmise suhtes. Selle roll pöörlemise dünaamika kirjeldamisel on sama, mis tavalisel massil kulgliikumise dünaamika kirjeldamisel.

Füüsika
72 allalaadimist
thumbnail
10
docx

Staatika ja kinemaatika

kesknurgaga, mille siht määrab pöörlemistelje asendi ruumis ja mille suund antakse pikki pöörlemistelge vastavalt paremakäe kruvi keeramisele. Pöördnurka tähistatakse φ(fii) ja mõõtühikuks on rad(radiaan). l φ= r 6. Nurk- ja joonkiirus ühtlasel ringliikumisel. Nurkiirus- võrdsete ajavahemike jooksul läbitakse võrdsed pöörde nurgad. Joonkiirus on hetkekiirus, mille suund muutub iga traiektooripunktis, kuid moodulid on võrdsed e V= V1 . Joonkiiruse moodul on võrdne ajaühikus läbitud ringjoone kaarepikkusega e kaarepikkus jagada l 2 πr ajaga. V= t = T 7. Kogukiirendus ebaühtlasel ringliikumisel, millest on tingitud? On vektor summa kiirenduse normaal ja tangensiaalsest komponendist. Tang-komponent on suunatud piki puutujat, samuti nagu hetkkiirus, ning iseloomustab kiiruse suuruse muutust ajas. Rad(norm)- komponenton suunatud trajektoori kõveruskeskme poole, s.t. on risti tang-komp ja hetkkiiruse

Füüsika
13 allalaadimist
thumbnail
34
docx

Füüsika eksami konspekt

liikumisest teiste kehade suhtes. Seda tähistatakse enamasti E k. Energia mõõtühik SI-süsteemis on džaul (J). Klassikalises mehaanikas näidatakse, et kui keha massiga m liigub kulgevalt kiirusega v, siis tal on kineetilist energiat Ek=mv2/2 See võrdub tööga, mida selline keha on suuteline seismajäämiseni sooritama (energia ongi töö varu). Sarnase valemiga saab arvutada ka fikseeritud telje ümber pöörleva keha kineetilise energia: Ek=Iw2/2 kus I on keha inertsimoment nimetatud telje suhtes ning w on nurkkiirus. 13, Pöördliikumise dünaamika põhiseadus. ⃗ M = ⃗r x ⃗ F , I= ∑ mi r2i Newtoni II seadusega analoogiline seadus pöördliikumisel. Seadus: Impulsimomendi muutus on võrdeline jõumomendiga ja toimub jõumomendi ⃗ M =I ⃗ε suunas. ⃗ ⃗

Füüsika
44 allalaadimist
thumbnail
26
odt

Füüsika eksam dünaamika

3)    Kulgliikumise dünaamika põhimõisted •Mass (+ mõõtühik) Mass m on kehade inertsusemõõt. Mass  on skalaarne suurus [m]SI =1kg •Inerts (+ inertsus) Inertsus on keha omadus säilitada oma liikumisolekut •Inertsiaalne taustsüsteem Samal ajal kõik inertsiaalsed taustsüsteemid on absoluutselt ekvivalentsed ja ükski mehaaniline katse (antud taustsüsteemi raames) ei võimalda kindlaks teha, kas süsteem liigub ütlaselt sirgjooneliselt või on  paigal. Inertsiseaduse kontroll  võimaldabki kindlaks teha, kas taustsüsteem liigub ühtlaselt sirgjooneliselt (või on paigal) või  mitte. •Jõud (+ mõõtühik) Jõud on ühe keha mõju teisele, mille tulemusena muutub kehade  liikumisolek või nad deformeeruvad. Jõud on alati vektorsuurus. (F)SI=1N •Newtoni 3 seadust (+ valemid ja joonised) Iga keh

Dünaamika
45 allalaadimist
thumbnail
30
docx

Füüsika eksam vastustega: liikumine

f-i abil). x = A sin(ωt+ϕ0), kus x-hälve tasakaaluasendist, A-võnkeamplituud, ωt- võnkumise faas, φ0-algfaas. Siinusfunktsiooni periood on 2π. 16.Pendlid. Vedrupendel Vedrupendli periood T sõltub pendlikeha massist m ja vedru jäikusest k. Mat. pendel – idealiseeritud süsteem, kus kaalutu ja venimatu niidi otsa on riputatud ainepunkt(pendli võnkeamplituudi muutmisel jääb pendli võnkeperiood samaks) Matemaatilise pendli periood ei sõltu pendlikeha massist, vaid ainult pendli pikkusest l ja raskuskiirendusest g. Füüsikaline pendel - suvalist keha, mis võib võnkuda mingi raskuskeset mitteläbiva telje ümber(pendli võnkeamplituudi muutmisel jääb pendli võnkeperiood samaks). Kõik looduses eksisteerivad võnkuvad kehad on füüsikalised pendlid I on siin keha inertsimoment pöörlemistelje

Füüsika
45 allalaadimist
thumbnail
13
doc

Mehaanika ja soojus

Süsteemis, mille sisejõud on konservatiivsed, on välisjõudude puudumisel mehaaniline koguenergia jääv. Mittekonservatiivsed jõud ­ jõud, mille toimimise käigus mehaaniline energia hajub, muutudes teisteks energialiikideks. Süsteemi mehaanilise energia muut võrdub välisjõudude tehtud töö ning kõigi protsessis osalevate mittekonservatiivsete jõudude poolt tehtava töö vahega 10. Keha pöörlemise põhivõrrand, jõu- ja inertsimoment a) lühidalt: Pöördliikumise dünaamika põhivõrrand on Newtoni II seadus pöördliikumise kohta. Ta väidab, et impulsimomendi tuletis aja järgi võrdub jõumomendiga: dI / dt = M . Ehk teisiti - jõumoment on see põhjus, mis muudab keha impulsimomenti pikemalt: Pöördliikumise dünaamika põhivõrrand Jõumomendi M mõjul hakkab ketas pöörlema kiirenevalt. Saab tõestada, et kehtib valem, mis on analoogne Newtoni 2. seadusele (f = ma):

Füüsika
95 allalaadimist
thumbnail
4
doc

Gravitatsiooniseadus ja võnkumine

Atmosfäärirõhk mingil kõrgusel h on tingitud nende kehade massidega ning pöördvõrdeline erineb vähe(<<). Pulsseeriva amplituudiga l n n  seal asuvate gaasikihtide kaalust. Tähistame 2 n 2

Füüsika
10 allalaadimist
thumbnail
20
pdf

Füüsika eksam

bussi kiirendusega. Newtoni I seadus: keha liigub ühtlaselt sirgjooneliselt või seisab paigal, kui talle ei mõju mingeid jõude. F=ma Newtoni II seadus: kehale mõjuv resultantjõud on võrdne keha massi ja kiirenduse korrutisega. ⃗ ⃗ Newtoni III seadus: kaks keha mõjutavad teineteist jõududega, mis on suuruselt võrdsed ja suunalt vastupidised. ⃗⃗⃗⃗⃗⃗⃗ ⃗⃗⃗⃗⃗⃗⃗ 6. Impulss ja impulsi jäävuse seadus. Avaldis kui ka see, et ta on jääv, tuletamine peaks olema tehtud vihikusse, dp/dt=F(vektorid) Impulss ehk liikumishulk on füüsikaline suurus, mis võrdub keha massi(m) ja kiiruse(v) korrutisega. Süsteemi impulss võrdub kõigi süsteemiosade impulsside summaga ⃗⃗ ∑ ⃗⃗⃗⃗ (kg*m/s) Impulsi jäävuse seadus Kui piirata süsteemi teda isoleerides välisjõududest, siis süsteemi kuuluvate impulsside summa ei muutu ajas. Kehtib sõltumatuna energia jäävuse seadusest.

Füüsika
91 allalaadimist
thumbnail
38
docx

Mehaanika spikker

Energia - nimetatakse füüsikalist suurust , mis iseloomustab keha võimet tõõd teha. Energia ühikuks on dzaul (J ). Potensiaalne energia. Maapinnast kõrgusel h asuva keha , mille mass on m , potensiaalne energia Ep= mgh . Kineetiline energia ( Ek) võrdub tööga,mida tuleb teha,et panna keha massiga (m) liikuma kiirusega (v). A = ʃmvdv = mv2/2 = Ek 3.2.Pöördliikumise dünaamika Jõu F momendiks antud punkti O suhtes nimetatakse vektorilist suurust M , mille määrab avaldis M = r F , kus r on punktist O jõu rakenduspunkti tõmmatud raadiusvektor. Punkt O , jõud F ja r on ühes tasapinnas. Vektor M on risti selle tasapinnaga. Vektor M on aksiaalvektor. Jõupaariks nimetatakse kahte suuruselt võrdset ning suunalt vastupidist jõudu , mille mõjusirged ei ühti. Jõupaarimoment on risti jõudude mõjusirgetega määratud tasapinnaga ning arvuliselt võrdne jõu mooduli ja jõupaari õla korrutisega. M=Fl

Füüsika
18 allalaadimist
thumbnail
11
doc

Füüsika eksam

10. Mitteühtlane liikumine, nende iseloomulikud parameetrid kiirus muutub 11. Ühtlane liikumine a=0 V=const Keha sirgjooneline liikumine, mille puhul keha massikese või masspunkt läbib liikumise kestel ajavahemike jooksul võrdsed teepikkused. 12.Nurkkiirus näitab, millise pöördenurga sooritab keha ajaühikus. []=[rad]/[sek] = /t ­ raadiuse pöördenurk t ­ selle moodustamiseks kujunud ajavahemik Joonkiirus näitab, kui pika tee läbib keha ajaühikus mööda ringjoont. Joonkiiruse suund on alati puutuja sihiline. Jääva nurkkiiruse korral on joonkiirus on seda suurem, mida suurem on trajektoori (ringjoone) raadius: v= R=l/t Võrdlus: ringjoone kaare pikkus s=R s=R |:t s/t =R /t >>> v= R 13.Nurkkiirendus: = ( - 0) / t näitab, kui palju muutub keha nurkkiirus ajaühikus. Kesktõmbekiirendus: an = v2/R = 2R 14. Newtoni seadused Newtoni esimene seadus ehk inertsiseadus: Keha liigub ühtlaselt sirgjooneliselt või seisab paigal, kui talle

Füüsika
393 allalaadimist
thumbnail
49
pdf

Füüsika I kordamisküsimuste vastused

19. Elimineerige alljärgnevatest võrranditest aeg ja ilmutage ilma ajata kinemaatilisi suurusi siduv valemitest 20. On antud Galilei teisendused. Joonistage nendele teisendustele vastavad taustsüsteemid ja leidke seos kiiruste vahel. Asja mõte on see, et kõik inertsiaalsed taustsüsteemid onnendes kulgevate mehaanikaprotsesside kirjeldamisel samaväärsed. 21. Kujutage joonisel, kus on kujutatud ringjooneline trajektoor järgmised suurused: kohavektor(r), joonkiiruse vektor(v) , pöördenurk(), pöördenurga vektor, nurkkiiruse vektor(). 22. Andke nurkkiiruse ja nurkkiirenduse definitsioonvõrrandid. Milline on kiireneva pöördliikumise liikumisvõrrand. Kasutage kiireneva kulgliikumise liikumisvõrrandit eeskujuna. 23. Lähtudes seosest pöördliikumist iseloomustavate suuruste vahel, tuletage seos kiiruste vahel. d(f) - lõpmata väike suurus/protsess, mille käigus võib leida üha väiksemaid suurusi 24

Füüsika
79 allalaadimist
thumbnail
4
pdf

Füüsika põhimõisted

G G G Potentsiaalse energia gradient grad = i+ j+ k ja selle seos jõuga x y z G F = -grad . 2 Mehaaniline koguenergia E = K + . Juhul kui kehale mõjuvad ainult konservatiivsed jõud siis keha mehaaniline energia on jääv. Pöördliikumise dünaamika. Punktmassi inertsimoment telje suhtes I = mr 2 , kus r on punktmassi kaugus teljest. Punktmasside süsteemi inertsimoment telje suhtes. n I = miri ., mis keha korral läheb integraaliks I = r 2dm . Silindri inertsimoment 2 i =1 v põhjadega risti oleva sümmeetriatelje suhtes Ic = mR 2 2 . Kera inertsimoment ta massikeset läbiva telje suhtes Ic = 2mR 2 5 . Steineri lause I = Ic + ma2 kus a on

Füüsika
100 allalaadimist
thumbnail
52
docx

2017 füüsika eksami teemad-vastused

m. Mitteelastne tsentraalpõrge Antud juhul olgu kuulikesed niivõrd plastilised, et nad jääksid pärast põrget kokku (Joon. 19). Siis on süsteem mittekonservatiivne ja mehaanilise energia jäävuse seadust rakendada ei saa. Osa sellest kulub kuulikeste jäävaks deformeerimiseks. Kuid seda pole tarviski, sest üheainsa lõppkiiruse määramiseks piisab impulsi jäävuse seadusest 2. Pöördliikumise dünaamika a. Jõumoment ja impulsimoment b. Inertsimoment c. Pöördliikumise dünaamika põhiseadus d. Impulsimomendi jäävuse seadus e. Pöörleva keha kineetiline energia A) Jõumoment ja impulsimoment B) Inertsimoment Keha e punktmasside süsteemi inertsimoment: Ühe punktmassi inertsimoment seega ilma summamärgita. Raadiuse ristkomponendi algus on pöörlemisteljel, mass on punktmassi oma. C) Pöördliikumise dünaamika põhiseadus D) Impulsimomendi jäävuse seadus e. Pöörleva keha kineetiline energia

Füüsika
29 allalaadimist
thumbnail
4
pdf

Küsimused YFR0011 kordamiseks ja eksamiks

12. Kuidas konstrueeritakse ühikvektor ja miks see on vajalik? On sageli vajaminev tegevus, et valmistada Koos annavad need kohavektori muutumisvõrrandi ehk liikumisvõrrandi, mis on kinemaatika põhivõrrand. keha, absoluutselt jäik keha, ainepunkt, ainepunktide süsteem jne). hetkel vajaliku suunaga vektorit. | | 18. Lähtudes kiirenduse ja kiiruse definitsioonist, tuletage liikumisvõrrand

Füüsika
140 allalaadimist
thumbnail
18
pdf

Füüsika 1 Eksamiküsimuste vastused

distuseks. Vana teooria on seega uue teooria piirjuhtum. Nii on omavahel seotud erinevad valdkonnad. 3. Mis on mudel füüsikas? Tooge kaks näidet kursusest. Mudel on keha või nähtuse kirjeldamise lihtsustatud vahend, mis on varustatud matemaatiliste võrranditega. Mudel või- maldab kirjeldada füüsikalise objekti antud hetkel vajalikke omadusi tõsiteaduslikult. Näiteks absoluutselt elastne keha, ab- soluutselt mitteelastne keha, ainepunkt, punktmass. 4. Mis on mateeria ja millised on tema osad? Mateeria on kogu meid ümbritsev loodus. Mateeria võib esineda ainena või väljana. 5. Mis on ruum ja aeg? Ruum ja aeg on mateeria ning selle liikumise eksisteerimise ja iseloomustamise keskkond. 6. Mida tähendab aja ja ruumi homogeensus? Aja homogeensus ­ vabade objektide (kehade) jaoks on kõik ajahetked samaväärsed. Ruumi puhul tähendab see seda, et iga punkt ruumis on füüsikaliselt samaväärne

Füüsika
302 allalaadimist
thumbnail
1
doc

Füüskia 1 spikker

Hääle valjus L=10logI/I 0[dB]. tööga,mida tuleb teha,et pana keha massiga (m) liikuma 22.Rõhk seisvas vedelikus ja üleslükkejõud:Rõhk (p) kiirusega (v).Ek=mv2/2. on skalaarne suurus,mis näitab pinnaühikule mõjuva 9.Jõumoment:Jõu F momendiks antud punkti O suhtes pinnaga risti oleva jõu suurust.p=F/S.Rõhu ühikuks on nimetatakse vektorilist suurust M,mille määrab avaldis paskal (Pa).1Pa=!N/m2 1Mpa=10atmVedelikud annavad M=[rF],kus r on punktist O jõu rakendus punkti rõhku edasi igas suunas ühteviisi.Vedelikku asetatud tõmmatud raadiusvektor.Punkt O,jõud F ja r on ühes kehale mõjuv üleslükkejõud on võrdne keha poolt välja tasapinnas.Vektor M on risti selle tasapinnaga.Vektor M tõrjutud vedeliku kaaluga p=p0+gh; gh- on aksiaalvektor.Jõupaariks nimetatakse kahte suuruselt

Füüsika
261 allalaadimist
thumbnail
69
docx

FÜÜSIKA 1 eksami vastused

tekitada suuri purustusi oma suure kiiruse tõttu. Nii laeval kui ka kuulil on suur impulss, ühel oma suure massi ja teisel suure kiiruse tõttu, ning need võivad teisi kehi suure jõuga mõjutada. Impulsi muutumise kiirus on võrdne seda muutust põhjustava jõuga, st et impulss on kehale mõjuva jõuga otseselt seotud. Et massi ja kiiruse korrutis kujutab endast keha impulssi, siis avaldis pole midagi muud kui impulsi muut. Seega võime kirjutada, et 11. Impulsi jäävuse seadus (sh selle rakendamine erinevatel juhtudel) Iga keha liikumisolek on muutumatu (keha kas on paigal või liigub ühtlaselt ja sirgjooneliselt) seni kuni kehale ei mõju mingit jõudu või kehale mõjuv resultantjõud on null. 9

Füüsika
108 allalaadimist
thumbnail
31
doc

Füüsika eksam.

valemiga defineeritud kiirendust nimetatakse ka kesktõmbekiirenduseks ehk normaalkiirenduseks ja tähistatakse an-iga 4. Mitteühtlane pöördliikumine. Nurkkiirendus. Pöörleva keha nurkkiirenduseks nimetatakse nurkkiiruse tuletist aja järgi: , ühikuks on 1rad/sek2. 1. teepikkusele sirgjoonelisel liikumisel vastab pöördenurk kõverjoonelisel liikumisel, 2. kiirusele vastab nurkkiirus, 3. kiirendusele vastab nurkkiirendus Nurkiirenduse avaldis: ,cet jäiga keha pöörlemisel punkti kaugus pöörlemisteljest ei muutu siis r=const ja me võime kirjutad: . Nurkkiirendus on on joonkiiruse mooduli ajaline tuletis jagatud kaugusega pöörlemisteljest, mis annab pöörleva keha punkti tangentsiaal ehk puutujakiirenduse,tähis on at. Järelikult jäiga keha mitteühtlasel pöördliikumisel on selle keha punkti summaarne kiirendusvektor a (vektor) normaal- ja tangentsiaalkiirenduse vektoriaalne summa.

Füüsika
845 allalaadimist
thumbnail
16
odt

Füüsika kordamisküsimused ja vastused

SI süsteemi 7 põhiühikut ja nende definitsioonid (+ etalonid) Meeter - (m) pikkus sekund - (s) aeg kilogramm - (kg) mass amper - (A) elektrivoolu tugevus kelvin - (K) termodünaamiline temperatuur mool - (mol) ainehulk kandela - (cd) valgustugevus Ainepunkt (punktmass) Ainepunktiks nimetatakse keha, mille mõõtmed ja kuju võib jätta arvestamata tema liikumise kirjeldamisel. Punktmass on füüsikalise keha mudel, mille puhul keha mass loetakse koondatuks ühte ruumipunkti. Taustsüsteem Taustsüsteem on targalt valitud keha, mille suhtes on otsustatud määrata keha asendit ruumis, ja millega on seotud koordinaadistik, ja ajamõõtmise viis. Kohavektor

Füüsika
40 allalaadimist
thumbnail
16
doc

Võnkumised

1) süsteemi väljaviimisel tasakaaluasendist peab talle hakkama mõjuma tasakaaluasendisse suunatud jõud, mis on võrdeline hälbega, 2) süsteem peab olema inertne, 3) süsteemis ei tohi esineda dissipatiivseid jõude. Nende tingimuste rahuldatuse korral saame süsteemi liikumisvõrrandi kujul k x(t ) = - x (t ) . (7.20) m See oleks eelmises alapunktis esitatud võrrand juhul = 0 . Näitame, et lahend esitub kujul k x(t ) = A cos m t + 0 = A cos(0 t + 0 ) . (7.21) 6 x x(t ) = A cos( 0 t + 0 ) A t -A

Füüsika
120 allalaadimist
thumbnail
29
doc

Füüsika

Külgliikumisel otsustab liikumise mass, pöördliikumisel otsustab liikumise jõumoment(inertsmoment) 1.2.7. Pöörleva keha kineetiline energia: Ümber fikseeritud telje OO' pöörleva keha Wk arvutamiseks tuleb keha jälle jagada punktmassidena vaadeldavateks väikesteks osadeks ja liita nende punktmasside kineetilised energiad. Tulemusena 1 2 saame: Wk = I O , kus IO on keha inertsimoment telje OO' 2 suhtes ja on keha pöörlemise nurkkiirus. Pöördkeha veeremisel 1 2 1 2 saame Königi teoreemi abil: Wk = I C C + mvC . Siin indeks C 2 2 tähistab pöördkeha puhul alati pöörlemisteljel asuvat massikeset, ühtlasi siis ka pöörlemistelge ennast. 1.3. Töö ja energia 1.3.1. (ja 1.3

Füüsika
354 allalaadimist
thumbnail
29
doc

Füüsika kokkuvõttev konspekt

Tangensiaalpinge ­ ühe täisvõnke, nimetatakse võnkumise Nihkemoodul- G perioodiks, mille tähiseks on T ja ühikuks sekund [s]. =f(-all)/S Tavaliselt mõõdetakse ära aeg t, mille kestel sooritab võnkesüsteem N võnget ja arvutatakse G=/y=/tan võnkeperiood järgmisest valemist: T= t/N Võnkesagedus on ajaühikus sooritatud täisvõngete arv. Sagedust tähistatakse tähega f ja mõõtühikuks on herts [Hz]. Võnkesageduse 1.4.3.Vääne ja väändemoodul(f) arvutamiseks kasutatakse järgmist valemit: f=1/T=N/t

Füüsika
405 allalaadimist
thumbnail
22
docx

Füüsikalised suurused ja nende etalonid

1 võimsusega ⁄683 W ruuminurka 1 sr 12 Ainehulk mool 1mol Aatomite arv 12 grammis süsinikus C Klassikaline mehaanika 2) Kulgliikumise kinemaatika põhimõisteid o Ainepunkt (punktmass) – nimetatakse keha mille mõõtmed ja kuju võib jätta arvestamata tema liikumise kirjeldamisel o Taustsüsteem (+ joonis) – Targalt valitud keha , mille sutes on otsustatud määrata kea asendit ruumis ja millega on seotud koordinaadistik ja ajamõõtmise viis. (JOONIS ON X;Y;Z TELJESTIK) o Kohavektor (+ joonis)- nimetatakse sellist vektorit, mis on tõmmatud koordinaatide alguspunktist O

Füüsika
37 allalaadimist
thumbnail
414
pdf

TTÜ üldfüüsika konspekt

1b Masskeskme liikumise teoreem 5.1c Reaktiivliikumine (iseseisvalt) 5.2 Töö, võimsus, kasutegur 5.3 Energia, selle liigid 5.3 Energia jäävuse seadus 5.4 Konservatiivsed jõud. Potentsiaalse energia gradient 5.5 Põrge 5.5a Absoluutselt mitteelastne põrge 5.5b Absoluutselt elastne põrge 6. PÖÖRDLIIKUMISE DÜNAAMIKA 6.1 Jõumoment 6.1a Newtoni III seaduse analoog pöördliikumisel. 6.2 Impulsimoment 6.3 Impulsimomendi jäävuse seadus. 6.4 Inertsimoment 6.5 Pöördliikumise dünaamika põhivõrrand 6.6 Steineri lause 6.7 Mõningate lihtsamate kehade inertsimomentide arvutamine 6.7a Homogeense varda inertsimoment varda keskpunkti suhtes. 6.7b Ketta inertsimoment tema sümmeetriatelje suhtes 6.8 Pöörleva keha kineetiline energia. 7. VÕNKUMISED 7.1 Tasakaalu liigid 7.2 Sumbuvvõnkumine 7.2 Harmooniline võnkumine. 7.2a Matemaatiline pendel 7.2b Füüsikaline pendel 7.3 Harmoonilise võnkumise energia. 7

Füüsika
177 allalaadimist
thumbnail
24
docx

MEHAANIKA JA MOLEKULAARFÜÜSIKA

Jõumomendi ühikuks SI-süsteemis on njuuton korda meeter (1 N . m). Jõumoment kui vektor on esitatav jõu rakenduspunkti kohavektori r ja jõuvektori F vektorkorrutisena M = r * F ning on suunatud kruvireegli kohaselt piki pöörlemistelge. Inertsimoment I näitab pöörleva keha osade massi jaotust pöörlemistelje suhtes. Keha element (pisike osa) massiga m , asudes kaugusel r pöörlemisteljest, omab inertsimomenti I = m r2. Keha kui terviku inertsimoment leitakse keha osade inertsimomentide liitmise (integreerimise) teel. Inertsimomendi ühikuks SI-süsteemis on üks kilogramm korda meeter ruudus (1 kg . m2). Impulsimoment L näitab pöörleva keha osade impulsside mõju pöörlemisele. Kui pöörleva keha osa massiga m liigub joonkiirusega v piki ringjoont kaugusel r pöörlemisteljest, siis tema impulsimoment on kauguse r ja impulsi p = m v korrutis: L = m v r .

Aineehitus
6 allalaadimist
thumbnail
12
doc

MEHAANIKA JA MOLEKULAARFÜÜSIKA, PÕHIMÕISTED NING SEADUSED

Jõumomendi ühikuks SI-süsteemis on njuuton korda meeter (1 N . m). Jõumoment kui vektor on esitatav jõu rakenduspunkti kohavektori r ja jõuvektori F vektorkorrutisena M = r * F ning on suunatud kruvireegli kohaselt piki pöörlemistelge. Inertsimoment I näitab pöörleva keha osade massi jaotust pöörlemistelje suhtes. Keha element (pisike osa) massiga m , asudes kaugusel r pöörlemisteljest, omab inertsimomenti I = m r2. Keha kui terviku inertsimoment leitakse keha osade inertsimomentide liitmise (integreerimise) teel. Inertsimomendi ühikuks SI-süsteemis on üks kilogramm korda meeter ruudus (1 kg . m2). Impulsimoment L näitab pöörleva keha osade impulsside mõju pöörlemisele. Kui pöörleva keha osa massiga m liigub joonkiirusega v piki ringjoont kaugusel r pöörlemisteljest, siis tema impulsimoment on kauguse r ja impulsi p = m v korrutis: L = m v r .

Füüsika
152 allalaadimist
thumbnail
2
doc

Füüsika kontroltöö 3-6 variant

x=A*sin(fi); x-hälve kujundid. tasakaaluasendist;A-max hälve(võnkumise amplituud);fii-vnkumise faas(fii= 4.Isotermiline protsess- on protsess kus konstantsel temperatuuril(t 0) on antud ωt);wnurkkiirus gaasihulga ruumala(V) pöördvõrdeline rõhuga(p) 5.Ideaalse gaasi oleku võrrand- on gaas ,mille molekulide vahel vastastikuse Võnkumiseks nim protsesse,milledel on iseloomulik teatud korduvus .Siinuseliselt v mõjutuse jõud puuduvad. Clayperoni võrrand e ideaalse gaasi oleku võrrand : koosinuseliselt toimuvaid füüsikalisi suurusemuutusi ajas nim harm võnk.H v pV=m/μ·RT (R-univ gaasi konst 8,31·103J/kmol·K) m-mass V-ruumala T- amplituudiks nim keha max hälvet tasakaaluasendist

Füüsika
12 allalaadimist
thumbnail
1
doc

Füüsika I eksami "mikrokonspekt"

Koherentseks nim ühesuguse sagedusega laineid, millede faaside vahe ei muutu aja jooksul. näitab ,kui suure osa algruumalast temp 0 0 suureneb ruumala ,kui keha soojendada 1 0 võrra Difraktsiooniks nim laine paindumist oma teel seisva tõkke taha. (1+t) joonpaisumis binoom (1+t) ruumapsiumis binoom 4.Bernoulli võrrand- Statsionaarsel voolamisel ideaalses vedelikus tihedusega() on staatiline rõhk(p), vedelikusamba kaalust tingitud hüdrostaatilise rõhu(gh) ja dünaamilise rõhu(v2/2)summa jääv suurus. p1+gh1+v12/2= p2+gh2+v22/2; v-kiirus 5.Isokooriline protsess on protsess,kus temperatuuri tõusmisel 1°C võrra suureneb iga gaashulga rõhk 1/273 võrra selle gaasihulga rõhust temperatuuril 0°C. Variant2 1.Newtoni seadused- Kulgliikumise dünaamika-Dünaamika puhul lisandub liikumisele kaks põhisuurust: jõud ja mass .Jõud on iga põhjus ,mis kutsub esile keha kiireneva v aeglustuva liikumise

Füüsika
324 allalaadimist


Sellel veebilehel kasutatakse küpsiseid. Kasutamist jätkates nõustute küpsiste ja veebilehe üldtingimustega Nõustun