Vajad kellegagi rääkida?
Küsi julgelt abi LasteAbi
Logi sisse

Soojusenergia olemus, muutumise viisid ja soojuslikud nähtused (0)

1 Hindamata
Punktid

Lõik failist

Soojusenergia olemus-muutumise viisid ja soojuslikud nähtused #1 Soojusenergia olemus-muutumise viisid ja soojuslikud nähtused #2 Soojusenergia olemus-muutumise viisid ja soojuslikud nähtused #3
Punktid 50 punkti Autor soovib selle materjali allalaadimise eest saada 50 punkti.
Leheküljed ~ 3 lehte Lehekülgede arv dokumendis
Aeg2015-12-08 Kuupäev, millal dokument üles laeti
Allalaadimisi 6 laadimist Kokku alla laetud
Kommentaarid 0 arvamust Teiste kasutajate poolt lisatud kommentaarid
Autor egert kuusk Õppematerjali autor
Soojusenergia on soojus, mida kasutatakse energeetilistel eesmärkidel.
Soojusenergiat on võimalik muundada elektrienergiaks, seda tehakse näiteks soojuselektrijaamas.
Soojusenergiat võib kasutada ka otse, näiteks ruumide kütmiseks

Kasutatud allikad

Sarnased õppematerjalid

thumbnail
49
pdf

Keskkonnafüüsika kordamisküsimuste vastused

Päikeseplekkide arv ja suurus iseloomustavad Päikese aktiivsuse taset. Termotuumareaktsioon - kergete tuumade ühinemisreaktsioon, mille käigus vabaneb energia Taastuvenergia on energia, mis toodetakse keskkonnasäästlikult. Peamisteks taastuvenergia allikateks on otsene päikeseenergia ning taastuvad energiaallikad: hüdroenergia, tuuleenergia, biomassi energia, orgaanilises aines (peamiselt puidus ning taimedes) sisalduv keemiline energia, ookeanide soojusenergia ning maa siseenergia. 1. Päike energiaallikana. Päikese optiline kiirgus on Maal toimuvate füüsikaliste, bioloogiliste, keemiliste ja paljude teiste protsesside peamine energiaallikas. Isegi õli on miljonite aastatega taimestikku ja loomastikku salvestunud päikeseenergia. Ka hüdroelektrijaama turbiine ringi ajav vesi teeb oma ringkäiku tänu Päikesele. Ainukeseks Päikesest sõltumatuks energiavormiks võib pidada aatomienergiat.

Keskkonnafüüsika
thumbnail
24
docx

Ehitusfüüsika I (konspekt)

Kondenseerumine toimub nii pluss- kui ka miinus-temperatuuril. Kastepunkti defitsiit - vahe tegeliku õhutemperatuuri ja kastepunkti vahel [tsat-t]. Küllastusvajak - antud temperatuuril õhku küllastava veeauru rõhu ja veeauru osarõhu vahe [psat – p]. Niiskusvajak e. niiskusdefitsiit - vahe küllastava absoluutse niiskuse ja tegeliku absoluutse niiskuse vahel [νsat – ν] 6. Vee olekud: vesi, jää, veeaur. Vee oleku muutumise protsessid: aurustumine, kondenseerumine, jäätumine, sulamine, sublimeerumine, soojenemine, jahtumine ning selleks vajaminev energia 7. Ehitusfüüsikalised koormused: temperatuur, niiskus (absoluutne niiskus, suhteline niiskus), päikesekiirgus (otsene-, hajuskiirgus, kogukiirgus), soojuskiirgus, tuule suund ja kiirus, õhurõhk ja õhuõhkude erinevus, sademed, niiskustootlus, ventilatsioon 8

Ehitusfüüsika
thumbnail
18
docx

Põhikooli Füüsika

Füüsika on loodusteadus, mis uurib loodust kõige üldisemas mõttes: kõigi mateeriavormide üldisi omadusi. Füüsikud uurivad aine ja jõudude vastasmõju. Optika on füüsika haru, mis kirjeldab valguse käitumist ja omadusi ning vastasmõju ainega. Optika seletab optikanähtusi. Tavaliselt kirjeldab optika nähtava, infrapunase ja ultravioletse valguse nähtusi. Et aga valgus on elektromagnetkiirgus, siis ilmnevad analoogilised nähtused ka röntgenikiirguse, mikrolainete, raadiolainete ning teiste elektromagnetkiirguse liikide korral. Valgusallikas on valgust kiirgav keha. Valgusallikaid liigitatakse soojuslikeks (kuumadeks) ja külmadeks. Valgus on elektromagnetkiirgus, mille lainepikkus on vahemikus 380...760 nanomeetrit. Valguskiirgus tekitab inimese silmas valgusaistingu. Erineva lainepikkusega valguskiirgust tajub inimene erineva värvusena. Inimene on

Füüsika
thumbnail
46
pdf

Biofüüsika eksami küsimused vastuse valikvariantidega

tuumale kukkuma, tegelikult seda ei juhtu, kuna elektron ei liigu mööda kindlat orbiiti. Tegelikkuses seda ei toimu, sest aatomid on stabiilsed ja tavaliselt ei kiirga energiat. 2) Sama elemendi aatomid on üksteisega eristamatult sarnased. Klassikaline mudel seda ei eelda. Elektron võiks tiirelda igasugustel kaugustel tuumast. Seega peaks ka igasuguse suurusega aatomeid olemas olema. 8. Mis ühendab tööd ja soojust, mis eristab? Töö ja soojus on mõlemad energia ülekande viisid, kuid töö on suunatud vektoriaalne suurus, aga soojus on osakeste kaootiline liikumine. 9. Vaakumis kehtib lainepikkuse λ ja sageduse ν vahel (milline) seos? Kuidas see valem muutub elektromagnetiline laine levib aines? 𝐶(𝑣𝑎𝑙𝑔𝑢𝑠𝑒𝑘𝑖𝑖𝑟𝑢𝑠 𝑣𝑎𝑎𝑘𝑢𝑚𝑖𝑠) 𝜆(𝑙𝑎𝑖𝑛𝑒𝑝𝑖𝑘𝑘𝑢𝑠) = .

Bioloogiline füüsika
thumbnail
83
doc

Kordamisküsimused: Elektriväli ja magnetväli.

ehk vektorkujul mis ongi Lorentz'i jõud. Nagu vektorkorrutisest järeldub, on temagi risti kiirusega. Seega ei muuda ta osakese liikumise kiirust, vaid ainult liikumise suunda. Lorentzi jõud ja osakese trajektoor noolereegliga antud väljas · Induktsiooni elektromotoorjõud: suurus ja suund. Juhtme liikumise tõttu magnetväljas või mingil muul põhjusel kontuuri läbiva magnetvoo muutumine kutsub esile elektromotoorjõu, mille suurus on võrdeline magnetvoo muutumise kiirusega. Põhjuseks on Lorentz'i jõud. Kui liigutame magnetväljas juhti, milles on vabu laenguid, sunnib see laetud osakesi liikuma vastavalt juhtme liikumise suunale. Kui juht (juhe) on seejuures liikumissuunaga risti, kogunevad positiivsed laengud juhtme ühte, negatiivsed aga teise otsa. Juhtmes tekib elekriväli, mille suund on vastupidine Lorentzi jõu suunale. Kui siis laengute liikumine lõpeb - laetud osakesele mõjuvad jõud on tasakaalus. Võib

Füüsika
thumbnail
83
doc

Füüsika eksami küsimuste vastused

ehk vektorkujul mis ongi Lorentz'i jõud. Nagu vektorkorrutisest järeldub, on temagi risti kiirusega. Seega ei muuda ta osakese liikumise kiirust, vaid ainult liikumise suunda. Lorentzi jõud ja osakese trajektoor noolereegliga antud väljas · Induktsiooni elektromotoorjõud: suurus ja suund. Juhtme liikumise tõttu magnetväljas või mingil muul põhjusel kontuuri läbiva magnetvoo muutumine kutsub esile elektromotoorjõu, mille suurus on võrdeline magnetvoo muutumise kiirusega. Põhjuseks on Lorentz'i jõud. Kui liigutame magnetväljas juhti, milles on vabu laenguid, sunnib see laetud osakesi liikuma vastavalt juhtme liikumise suunale. Kui juht (juhe) on seejuures liikumissuunaga risti, kogunevad positiivsed laengud juhtme ühte, negatiivsed aga teise otsa. Juhtmes tekib elekriväli, mille suund on vastupidine Lorentzi jõu suunale. Kui siis laengute liikumine lõpeb - laetud osakesele mõjuvad jõud on tasakaalus. Võib

Füüsika
thumbnail
109
doc

Füüsikaline maailmapilt

.............................................................................. 105 13. Kosmoloogia..........................................................................................................107 Sissejuhatus Järgnev ülevaade füüsikalistest nähtustest ja nende seletusest erineb oluliselt traditsioonilisest käsitlusest, kus käsitlus on liigendatud nähtuste järgi ja on jaotatud valdkondadesse nagu Mehaanika, Molekulaarfüüsika, Elekter ja magnetism, Optika jne. Meie oleme nähtused liigendanud mateeriavormide liikumisviiside järgi. Liikumisviise on meie liigituses neli: kulgemine, tiirlemine ja pöörlemine, võnkumine ning lainetamine. Eraldi käsitleme paigalseisu kui liikumise erijuhtu ning mikromaalimas esinevaid liikumisi, kus pole selget vahet eeltoodud liikumiste vahel. Ülevaadet alustame nelja vastastikmõju kirjeldamisega. Siis anname ülevaate jäävusseadustest ja printsiipidest, mis on edasiste seletuste aluseks. Seejärel tutvume

Füüsikaline maailmapilt
thumbnail
29
doc

Põhivara füüsikas

nõrka mõju uikonid (weak ­ nõrk) ja gravitatsioonilist mõju gravitonid (seni katseliselt avastamata). Seni avastamata on ka viies hüpoteetiline algboson - Higgsi boson ehk hiion. Hiion vahendab hüpoteetilist viiendat vastastikmõju (nn Higgsi mõju). See mõju genereerib algosakestele inertse massi niisamuti nagu gravitatsiooniline mõju genereerib raske massi. Massi olemus on siiani üks ebaselgemaid asju füüsikas (eelkõige on vastuseta küsimus: miks inertne mass ja raske mass on nii hästi võrdelised, kui nad kirjeldavad looduse kaht põhimõtteliselt erinevat oma- dust?). Selgust võiks tuua gravitoni ja hiioni katseline avastamine ning nende omaduste uurimine. Ruum on vaatleja kujutlus, mis tekib kehade omavahelisel võrdlemisel. Ruumi ja aega objektiivselt olemas ei ole

Füüsika




Kommentaarid (0)

Kommentaarid sellele materjalile puuduvad. Ole esimene ja kommenteeri



Sellel veebilehel kasutatakse küpsiseid. Kasutamist jätkates nõustute küpsiste ja veebilehe üldtingimustega Nõustun