Vajad kellegagi rääkida?
Küsi julgelt abi LasteAbi
Logi sisse
✍🏽 Avalikusta oma sahtlis olevad luuletused! Luuletus.ee Sulge

Põhivara 7. klass - sarnased materjalid

lahend, võrratus, graafik, 2400, jagatis, astendaja, sõltuvus, jagatise, astmete, astendajad, õuna, teljel, muutuja, reaalarvu, ratsionaalarvude, gigaandarvud, sulgude, nendest, lineaarvõrrand, lahendid, õunapuid, lahendame, mõõtkava, 30000, arvuline, graafikut, protsendiks, väljendamiseks, esmalt, istutada, puule, arvteljel, nullpunktist
thumbnail
40
doc

Keskkooli matemaatika raudvara

...........................................................................36 Kahe sirge lõikepunkti koordinaadid......................................................................................37 Kahe sirge vaheline nurk........................................................................................................ 38 Ringjoonevõrrand................................................................................................................... 38 Ruutfunktsiooni graafik, selle joonestamine.......................................................................... 39 Pöördvõrdelise sõltuvuse graafik............................................................................................39 4 I Reaalarvud ja avaldised Arvuhulgad Naturaalarvude hulk N N = {0; 1; 2; 3; 4; ...}

Matemaatika
1453 allalaadimist
thumbnail
28
docx

Põhikooli lõpueksam matemaatikast

kõigi üleviidavate liikmete märgid vastupidiseks 4. koondame sarnased liidetavad 5. leiame lahendi, jagades võrrandi mõlemat poolt tundmatu. Leitud lahendit tuleb osata vajadusel kontrollida. Näide 1. Lahendame võrrandi 2(2x - 5) = 20 - x Avame sulud 4x - 10 = 20 - x 4x + x = 20 + 10 5x = 30|: 5 x = 6. Selle võrrandi lahend on x = 6. 11. Kahe tundmatuga lineaarvõrrandi lahendamine (Graafiline, liitmisvõte, asendusvõte) 12. Tekstülesannete lahendamine lineaarvõrrandsüsteemi abil. 13. Defineerimine ja algmõisted. Definitsioon on mõiste lühike ja täpne seletus. Mõisted, mida ei saa seletada nimetatakse algmõisteteks. Algmõisteid ei defineerita, vaid neile antakse nii täpne kirjeldus, kui see võimalik on ja tuuakse selgituseks näiteid 14. Teoreem ja aksioom. Eeldus ja väide. Pöördteoreem.

Matemaatika
128 allalaadimist
thumbnail
63
doc

Põhikooli matemaatika kordamine

Vastus: x1 = 2 ja x2 = ­ 3 Ruutfunktsioon - Sissejuhatus ruutfunktsiooni Praeguseks momendiks peaksid tundma niisuguseid seosei muutujate x ja y vahel, nagu a võrdeline seos y = ax, pöördvõrdeline seos y ning lineaarseos ehk lineaarfunktsioon y = x ax + b. Kordame neid seoseid. Edasi vaatame ülesandeid. 1. Joonesta võrdelise seose y = 1,5x graafik ja leia selle abil muutuja y väärtused, kui x 2; 1; 0; 1; 2; 3 . Lahendus: Kõigepealt joonestame graafiku. Teame, et sirge joonestamiseks piisab kahest punktist. Võtame x = 0. Sel juhul on y = 1,5 . 0 = 0. Saime punkti (0; 0). Olgu nüüd x = 2, siis y = 1,5 . 2 = 3. Teine punkt on (2; 3). Kanname punktid koordinaatteljestikku ja ühendame. Vaatame ainult kahte punkti, kui x = ­2 ja x = 3. Ülejäänud punkid jäävad iseseisvaks tööks.

Matemaatika
91 allalaadimist
thumbnail
15
doc

Mõisted matemaatikas

Hulknurgaks nimetatakse geomeetrilist kujundit, mis on piiratud kinnise murdjoonega (hulknurka nimetatakse korrapäraseks ja kumeraks) ja diagonaaliks nimetatakse lõiku, mis ühendab kaht tippu, mis ei kuulu ühele ja samale küljele. Hüperbooliks (nimetatakse tasandile kuuluvate punktide hulka, mille iga punkti kauguste vahe absoluutväärtus kahest antud punktist, mida nimetatakse fookusteks, on jääv suurus.) Hüperbool on pöördvõrdelise seose y=a/x graafikuks Jagatise põhiomadus - jagatis ei muutu, kui jagatav ja jagaja korrutada või jagada ühe ja sama nullist erineva arvuga. NT. a : b = (a · n) : (b · n) 6 : 3 = (6 · 100) : (3 · 100)= 600 : 300 = 2 a : b = (a : n) : (b : n) 360 : 60 = (360 : 10) : (60 : 10) = 36 : 6 = 6 Jagavuse tunnused - kui ühe naturaalarvu jagamisel teisega saadakse tulemuseks naturaalarv, siis öeldakse, et esimene arv jagub teisega. Järkarvudeks nimetatakse arve, mis kirjutatakse ainult ühe nullist erineva numbri ja sellele

Matemaatika
63 allalaadimist
thumbnail
100
pdf

MATEMAATIKA TÄIENDUSÕPE

21 1197 ⋅100 57 6) 1,197: = = . 100 1000 ⋅ 21 10 57 Vastus. . 10 7 Näide 3. Leida x, kui 4 3 15 3 − 1 = 5,625. (5,5 + x) : 21 7 3 8 Lahendus. Esimese tehtega arvutame tundmatut x sisaldava murru väärtuse. Teises tehtes leiame selle murru nimetaja väärtuse. Nimetajas on jagatis, mille jagatava 5,5+x väärtuse arvutame kolmanda tehtega. Neljanda tehtega saame tundmatu x väärtuse. 4 3 15 3 3 5 1) = 1 + 5, 625 = 1 + 5 = 7; (5,5 + x) : 21 37 8 8 8 4 49 7 2) (5,5 + x ) : 21 73 = 3 : 7 = = ; 15 15 ⋅ 7 15 3 7 150 ⋅ 7

Matemaatika
75 allalaadimist
thumbnail
8
docx

Lineaarvõrrandid- ja võrratused

<, >, ≤ , ≥ . 2a + 4 < 16 + 5a Arvvõrratus on võrratus, mille mõlemal pool on arvavaldised. 45 - 3∙6 > 2 + 8 Arvvõrratus on kas tõene või väär. -4 < 2 (tõene), 9 > 0 (väär) Võrratus võib sisaldada ka tundmatuid. 2x - 3,4 > 6 + 5x Tundmatu seda väärtust, mille korral saame antud võrratusest tõese lause, nimetatakse võrratuse lahendiks. 2x > 9; x > 4,5; x = 5 on võrratuse lahend Võrratuse kõik lahendid moodustavad võrratuse lahendihulga. x > 4,5 on lahendihulk Kaks võrratust on samaväärsed, kui nende lahendihulgad ühtivad. 4y -16 < 8 ja 4y < 24 on samaväärsed Võrratuse põhiomadused Võrratusmärk ei muutu, kui võrratuse mõlema poolega liita või lahutada sama arv. 2x + 4 < 5x – 9 → 2x + 4 – 4 < 5x – 9 – 4 → 2x < 5x – 13

Matemaatika
33 allalaadimist
thumbnail
4
docx

Võrdeline- ja pöördvõrdeline seos, lineaarfunktisoon.

Raudvara VÕRDELINE JA PÖÖRDVÕRDELINE SEOS. LINEAARFUNKTSIOON 4.1 MIS ON FUNKTSIOON? Teise väärtuse üks kindel väärtus on finktsioon. Funktsioon (y) Muutujat, mille väärtuse järgi leitakse teise muutuja vastavaid väärtusi, nimetatakse argumendiks. Argument (x) Argumendi väärtuste järgi leitud teise muutuja vastavat väärtust nimetatakse finktsiooni väärtuseks. 4.2 VÕRDELINE SEOS. Kui vastavate väärtuste (muutujate) jagatis on jääv suurus, siis kaks muutujat on seoses ehk y = ax, a on väiksem kui null (a = 0), see tähendab et muutuja y on võrdeline muutujaga x (võrdeline seos). A on antud arv ehk võrdeline tegur. A on suurem kui null (a > 0). Ühe muutuja väärtuse suurenemisel (vähenemisel) mingi arv korda suureneb (väheneb) ka teise muutuja väärtus sama arv korda. 4.3 VÕRDELISE SEOSE GRAAFIK. Võrdelise seose graafik läbib alguspunkti 0 punkti.

Matemaatika
107 allalaadimist
thumbnail
18
pdf

8. klassi raudvara: PTK 6

1) sest 4 =16 5) võrdub nulliga; arvu ruudu pöördtehe; 2) 6) üldiselt =|a|, |a|=a, kui a 0 või |a|=a, kui 3) 7) a<0 4) 8) NB ruutjuurt negatiivsest arvust ei ole olemas, aga ruutjuur negatiivse arvu ruudust võrdub selle vastandarvuga 3.Ratsionaalarvud - kahe täisarvu jagatis vaata kujul (q 0); tähis Q; Q=täisarvud+ Ül.1279,1289 Esitada kahe täisarvu jagatisena. positiivsed ja negatiivsed murdarvud; -8=-8:1 0,0082=82:10 000 osahulgad: naturaalarvude hulk ja - =- täisarvude hulk; siia kuuluvad murdarvud on kas lõplikud või lõpmatud perioodilised kümnendmurrud; iga ratsionaalarv avaldub Leida, kumb on suurem. lõpmatu perioodilise kümnendmurruna < + LOE

Matemaatika
64 allalaadimist
thumbnail
72
pptx

Avaldiste teisendusi. Lineaarvõrrand

koondada. ÜLESANNE 1 KOONDA SARNASED LIIDETAVAD 1) 5a-6a+7b+b= 2) 4a-24a+15b= 3) 4(25+15a)= 4) 4(-1-5a)+30a-15b= ÜLESANNE 1: VASTUSED 1) VASTUS: 5a-6a+7b+b=-1a+8b 2) VASTUS: 4a-24a+15b=-20a+15b 3) VASTUS: 4(25+15a)=100+60a 4) VASTUS: 4(-1-5a)+30a-15b=-4+10a-15b 3.4 VÕRRANDITE SAMAVÄÄRSUS Võrrand – tundmatut sisaldav võrdus 2x – 5 = 3 ühe tundmatuga lineaarvõrrand Võrrandi lahend – arv, millega tundmatut asendades saadakse võrrandist tõene võrdus Võrrandi lahendamine – võrrandi lahendi leidmine Võrrandi lahendamisel tuleb tihti võrrandit mitmel moel teisendada (sulgude avamine, sarnaste liidetavate koondamine jm). Seejuures ei tohi võrrandi lahend muutuda. Iga uus võrrand, mis teisendamisel saadakse, peab olema antud võrrandiga samaväärne. Kahte sama tundmatuga võrrandit, millel kõik lahendid on samad, nimetatakse samaväärseteks võrranditeks

Matemaatika
23 allalaadimist
thumbnail
2
pdf

Võrre. Võrdeline jaotamine. Funktsioonid.

Kui pöördvõrdelise seose valemis a > 0, siis asuvad Võrdelise seose puhul on muutujad x ja y seotud nii, et nende vastavate y hüperbooli harud I ja III veerandis, kui a < 0, siis II väärtuse jagatis on jääv = a. x ja IV veerandis. Võrdelise seose graafikuks on sirge: Punktis (0;0) on pöördvõrdelise seose graafikul nn. Võrdelise seose graafik läbib alati

Matemaatika
38 allalaadimist
thumbnail
246
pdf

Funktsiooni graafik I õpik

1 10. klass Viljandi Täiskasvanute Gümnaasium KORDAMINE: FUNKTSIOONI GRAAFIK I Joonistel on kuue funktsiooni graafikud. Tee kindlaks, missuguste funktsioonidega on tegemist. 1 2 3 © Allar Veelmaa 2014 2 10. klass Viljandi Täiskasvanute Gümnaasium KORDAMINE: FUNKTSIOONI GRAAFIK II © Allar Veelmaa 2014 3

Matemaatika
79 allalaadimist
thumbnail
12
pdf

8. klassi raudvara: PTK 4

sarnaseid liikmeid sisaldava võrrandi 6x-15y=-8 normaalkuju puhul: korrutada pooli murdude ühise nimetajaga, sulgudest vabanemisel kasutada korrutamise jaotuvuse seadust a(b+c)=ab+ac; viia tundmatuid sisaldavad liikmed võrrandi vasakule ning vabaliikmed paremale poolele; koondada ja kirjutada saadud liikmed nõutud järjekorras NB vaja kasutada kahe tundmatuga lineaarvõrrandisüsteemi lahendamisel: enne ei hakka lahendama, kui süsteem on normaalkujul 3.Kahe tundmatuga võrrandi lahend - Ül.909 järjestatud arvupaar; lõpmatu hulk Võrrand 4u+0,5v=2 lahendeid; võrrandi ax+by=c lahend Antud u {1;-0,5;-3,5} kirjutatakse kujul: Leida võrrandi lahendid x=p y=q või need kaks võrdust üksteise alla ja ette loogeline sulg või (p;q) 1)kui u=1, siis 4 1+0,5v=2; 0,5v=2-4; 0,5v=-2; v=-4; lahend on (1;-4)

Matemaatika
139 allalaadimist
thumbnail
17
docx

VÕRRANDID (mõisted)

Lahendus. Teeme vajalikud teisendused: 2 x  3 7  3x 1   12 6 4 12  2 2 x  3  3 7  3x  12  4 x  6  21  9 x  4 x  9 x  21  12  6 5 x  15 :5 x  3. Kontroll. x  3 , 23 3 1  1  1,5  0,5 v 6 7  33 7  9 p   0,5 4 4 v  p. Vastus. Võrrandi lahend x  3. Näide 9 Lahendada võrrand 3 x  2   5  3 x  1. Lahendus. Avame sulud: 3 x  2   5  3x  1 3x  6  5  3x  1 3 x  3 x  1  6  5 0  x  0. Vastus. Võrrandi lahenditeks on kõik reaalarvud. Näide 10 4x  1  1  2 x  4   5 . Lahendada võrrand 2 Lahendus. Teeme vajalikud teisendused: 4x  1  1  2 x  4   5 2 2

Matemaatika
14 allalaadimist
thumbnail
6
doc

Reaalarvud. Võrrandid

Järjestatav, vähim arv 1, lõpmatu Liitmine, korrutamine Jäägiga jagamine, algarv, SÜT, VÜK Nat. arvude vastandarvud Täisarvud Z Järjestatav, lõpmatu, punktihulk arvteljel Liitmine, korrutamine, lahutamine Murdarvud Ratsionaalarvud Q Kahe täisarvu jagatis Järjestatav, lõpmatu, tihe Liitmine, korrutamine, lahutamine, jagamine (v.a. nulliga) Irratsionaalarvud Reaalarvud R Lõpmatud kümnendmurrud, sh mitteperioodilised Järjestatud, lõpmatu, pidev +; ­; korrutamine, jagamine, juurimine Kompleksarvud 2.2 Reaalarvude piirkonnad arvteljel

Matemaatika
297 allalaadimist
thumbnail
8
doc

Matemaatika praktikumi töö

teisele poole ning seejärel tõstetakse mõlemad pooled ruutu. Näide: Ruututõstmist võib kasutada mitu korda, kui seda on juurtest lahtisaamiseks vaja. Edasi lahendatakse võrrandit nagu tavalist ruutvõrrandit. Antud näites -> Viime võrrandi ruutvõrrandi tavakujule, kust saame lahenditeks x1 = 3 ja x2 = 6, kuid kontrolli käigus selgub, et 6 ei ole sobiv lahend, seega on juurvõrrand lahendiks 3. JUURVÕRRANDIT TULEB ALATI KONTROLLIDA! Absoluutväärtus Absoluutväärtusega võrrandites on muutuja absoluutväärtuste vahel. Neid võrrandeid saab lahendada mitut moodi vastavalt sellele, kas absoluutväärtuseid on üks või mitu. 1) Kui absoluutväärtusi on võrrandis üks: Kõige lihtsam on sel juhul võrrandit lahendada, kasutades absoluutväärtuse

Matemaatika
23 allalaadimist
thumbnail
33
doc

Matemaatika riigieksam

1) 2) 3) 4) 3 4 5 2 3 1- log 3 6 - log 4 0 ,125 3. Arvuta avaldise 27 -4 väärtus. 1) 0 2) 7,875 3) ­ 7,875 4) ­ 3,875 4. On antud perioodilise funktsiooni y = f ( x ) graafik, on teada, et funktsiooni periood T = 4, leia f (10) . 1) 0 2) 1 3) 2 4) 3 5. Leia kõigi täisarvude summa, mis jäävad lõigule [-5;7] ja kuuluvad funktsiooni y = 2 - log 2 ( 2 + 4 x - x 2 ) määramispiirkonda. 1) 7 2) 4 3) 5 4) 13 6. Leia funktsiooni suurima ja vähima väärtuse korrutis. 1) -2,25 2) 2,25 3) -2,125 4) 2,125 y = f ( x)

Matemaatika
526 allalaadimist
thumbnail
3
doc

Ruutvõrrand

· Kui D > 0, siis ruutvõrrandil on 2 erinevat lahendit. · Kui D = 0, siis on ruutvõrrandil 2 võrdset lahendit. · Kui D < 0, siis ruutvõrrandil reaalarvulised lahendid puuduvad. Kui ruutliikme kordaja on negatiivne arv, siis enne võrrandi lahendamist korrutame mõlemaid pooli arvuga (­1) ja saame ruutliikme kordajaks positiivse arvu. Ruutvõrrandi lahendite õigsust tuleb kontrollida, asendades lahendid algvõrrandis. Tekstülesande korral peab lahend sobima ka ülesande sisuga. Näiteks ei saa pikkus olla negatiivne, inimeste arv saab olla ainult naturaalarv jne. Näide 14. Lahendame ruutvõrrandi 3x2 + 5x ­2 = 0. Lahendus. Siin a = 3; b = 5 ja c = ­2. - 5 ± 5 2 - 4 3 ( -2) - 5 ± 49 - 5 ± 7 x= = = 23 6 6 -5 -7 -5 +7 2 1

Matemaatika
168 allalaadimist
thumbnail
4
doc

Lineaarvõrrandid

Võrrandite lahendamine Lineaarvõrrandid Lineearvõrrandeid saab alati esitada kujul ax + b = 0. Sellel võrrandil võib olla · täpselt üks lahend · lahendid võivad puududa · lõpmata palju lahendeid Näide 1. Lahendame võrrandi 3(2x + 5) = 7­x. Avame sulud 6x + 15 = 7 ­ x, millest 6x + x = 7 ­ 15 ehk 7x = ­8. 8 - Selle võrrandi lahend on x = 7. Näide 2. Lahendame võrrandi 3(2x ­ 1) = 6x ­ 3. Avame sulud, saame 6x ­ 3 = 6x ­ 3 (*), ehk

Matemaatika
25 allalaadimist
thumbnail
14
pdf

Võrratused

vastavate elementaarvõrratuste väljaselgitamist. Võrratuse (süsteemi) lahendamisel asendatakse see järkjärgult lihtsamate võrratustega (süsteemidega), kuni jõutakse elementaarvõrratusteni. Sellises asendamisprotsessis võib kasutada vaid esialgse võrratusega (süsteemiga) samaväärseid võrratusi (süsteeme). Kaht võrratust nimetatakse samaväärseiks , kui neil on kõik lahendid ühised, st kui esimese võrratuse iga lahend rahuldab teist võrratust ja vastupidi. Meenutame tähtsamaid reegleid, mida kasutame võrratuste lahendamisel. 1) Võrratuse pooltele võib liita ja neist võib lahutada ühesuguseid avaldisi. Siit järeldub, et võrratuses võib liikmeid viia teisele poole võrratuse märki, muutes liikme märgi vastupidiseks. 2) Võrratuse korrutamisel positiivse suurusega säilib võrratus; võrratuse korrutamisel negatiivse suurusega muutub võrratus vastupidiseks.

Matemaatika
138 allalaadimist
thumbnail
43
pdf

Keskkooli lõpueksam (2008)

3) Vahemiku võib esitada kujul a; b või a; b . 11 12 4. ÜLESANNE (10 punkti) Ülesannete tekstid I Antud on funktsioon y 2 sin x lõigul 0;2 . 1) Leidke funktsiooni nullkohad ja muutumispiirkond. 2) Joonistage funktsiooni graafik. 3) Kasutades saadud graafikut, leidke a) funktsiooni positiivsus- ja negatiivsuspiirkond; b) argumendi x väärtused, mille korral y 1. II Antud on funktsioon y 0,5 cos x lõigul 0;2 . 1) Leidke funktsiooni nullkohad ja muutumispiirkond. 2) Joonistage funktsiooni graafik. 3) Kasutades saadud graafikut, leidke a) funktsiooni positiivsus- ja negatiivsuspiirkond;

Algebra ja Analüütiline...
780 allalaadimist
thumbnail
6
doc

Ruutvõrrandid

läbi jagada. Nii saame võrrandi x + 2 = 2x + 1, millest x = 1. Kui aga lahendame esialgse võrrandi teisiti, näiteks avame kõigepealt sulud ja seejärel lahendame tekkinud võrrandi, siis saame hoopis rohkem lahendeid: (x + 2)(x + 3) = (2x + 1)(x + 3), x2 + 5x + 6 = 2x2 + 7x + 3, millest x2 ­ 2x ­ 3 = 0. Selle võrrandi lahendid on 1 ja (­3). Kumb lahendus on siis õige? Kuhu kadus esimese lahenduse korral lahend (­3)? Esimene lahendus on vale, sest seal jagati võrduse pooled tundmatut sisaldava avaldisega, seda aga ei tohi teha. Sellise jagamise tulemusena kaovadki lahendid. Leia ise, mis on võrrandi (x +1)(x­2)(x­3)(x­4) = (x­2)(x­3)(x­4) lahendid. Ülesandeid · Lahendada võrrandid: x2 5 x 1) = 20 2) = 3) x2 ­ 7x = 0 4) 5x2 = 4,2x 5 x 45

Matemaatika
29 allalaadimist
thumbnail
3
doc

Ruutvõrrandi lahendamine

Ruutvõrrandi lahendamine - b ± b 2 - 4ac Ruutvõrrandi ax2 + bx + c = 0 lahendivalem on x = . 2a Võrrandi lahendamiseks asendame lahendivalemisse a, b ja c väärtused. Näide 1. Lahendame ruutvõrrandi 5x2 + 6x + 1 = 0. Selles võrrandis a = 5, b = 6 ja c = 1. Asendame need arvud lahendivalemisse, saame - 6 ± 6 2 - 4 5 1 - 6 ± 36 - 20 - 6 ± 16 - 6 ± 4 x= = = = . 2 5 10 10 10 -6+4 -2 - 6 - 4 - 10 Siit x1 = = = -0,2 ja x2 = = = -1. 10 10 10 10 Näide 2. Lahendame ruutvõrrandi 2x2 + x - 15 = 0.

Matemaatika
117 allalaadimist
thumbnail
14
doc

Funktsioonide õpetamisest põhikooli matemaatikakursuses

Funktsioonide õpetamisest põhikooli matemaatikakursuses Allar Veelmaa, Loo Keskkool Funktsioon on üldtähenduses eesmärgipärane omadus, ülesanne, otstarve. Mõiste ,,funktsioon" ei ole kasutusel ainult matemaatikas, vaid ka loodusteadustes (nt organismi funktsioonid), muusikas (funktsioon on muusikas harmoonia mõiste, millega iseloomustatakse helirea astmete vahelisi suhteid. Funktsioone sisaldavat harmooniat nimetatakse funktsionaalharmooniaks), psühholoogias, arvutiteaduses (täpsemalt programmeerimises), filosoofias jms. 1. Funktsiooni mõiste avamine 7. klassi matemaatikakursuses Funktsiooni mõiste juurde jõudmiseks on otstarbekas eelnevalt käsitleda järgmisi teemasid: a) jäävad ja muutuvad suurused; b) võrdelised suurused ja nende omadused; c) pöördvõrdelised suurused; d) graafikute lugemine. 1.1

Matemaatika
17 allalaadimist
thumbnail
6
docx

Ruutvõrratused

2.4 RUUTVÕRRATUS Ühe muutujaga ruutvõrratuse üldkuju on ax2 + bx + c > 0, kus a 0. Märgi > asemel võib võrratuses olla ka üks märkidest <, , . Ruutvõrratuse lahendamiseks 1) lahendame ruutvõrrandi ax2 + bx + c = 0; 2) skitseerime parabooli y = ax2 + bx + c; 3) leiame jooniselt, kus funktsiooni väärtused positiivsed, kus negatiivsed. Ruutfunktsiooni y = ax2 + bx + c graafik on parabool. Kui a > 0, siis avaneb parabool ülespoole. Kui a < 0, siis avaneb parabool allapoole. Kui lahendame ruutvõrrandi ax2 + bx + c = 0, siis on kolm erinevat võimalust: A) Diskriminant D = b2 ­ 4ac > 0. Parabool lõikab sel juhul x ­ telge kahes erinevas punktis. ax2 + bx + c > 0 L = (­ ;x1) (x2; ) ax2 + bx + c >0 L = (x1; x2) 1

Matemaatika
90 allalaadimist
thumbnail
4
doc

Võrrandid ja võrrandisüsteemid

m m m a 4 4 2( 3 y + 2a ) z - 2a 2 z 2 - 13a 2 44) - = 45) = 3- 2 y+a a- y y2 - a2 z + 3a z - 9a 2 46)Millise parameetri korral on võrrandil positiivne lahend 4 5 = 3 x - a ax - 2 47) Võrrandit lahendamata leia võrrandi x 2 - 5 x + 3 = 0 lahendite ruutude summa. (19 ) 48)Millise k korral on võrrandi x 2 - 4 x - k = 0 üheks lahendiks -3 ? ( k = 21) 49) Millise k väärtuse korral on võrrandi x 2 - kx + 4 = 0 üheks lahendiks 0,5 ? (k = 8,5) 50) Võrrandi lahendid on x1 jax 2 . Võrrandit lahendamata leia ( x1 - x 2 ) .Võrrand on

Matemaatika
36 allalaadimist
thumbnail
78
pdf

Majandusmatemaatika

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 Matemaatilise mudeli struktuur ja sisu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2. FUNKTSIOONID JA NENDE ALGEBRA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Arvud ja nende hulgad . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Funktsionaalne sõltuvus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 Astendamine. Polünoomid. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 Kulu-, tulu- ja kasumifunktsioon. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Kasumifunktsioon lineaarse nõudlus- ja kulufunktsiooni korral. . . . . . . . . . . . . . . . . . . . . . 15

Raamatupidamise alused
399 allalaadimist
thumbnail
8
pdf

Determinandid gümnaasiumiõpikus

vabaliikmetega. Neid determinante tähistatakse lühidalt tähtedega Dx ja Dy. a 2 ab b 2 a b u v u v u 3 v 3 a1 x + b1 y = c1 477. Lahenda võrrandisüsteemid determinantide abil. Seega võrrandisüsteemi lahend esitub kujul a 2 x + b 2 y = c 2 ¦ x 3y 4 ¦5 x 6 y 11 ¦3x 4 y 0 a) § b) § c) § x Dx ja y Dy , kus D 0

Matemaatika
39 allalaadimist
thumbnail
22
docx

Matemaatika eksami kordamine KEVAD 2015

 ; 1   2;   2.Funktsiooni uurimine tuletise abil a) Leidke funktsiooni y = x3 - 4x2 -3x -2 kasvamis- ja kahenemisvahemikud, maksimum- ja miinimumkoht. Vastus: Kasvab x<-1/3, x>3 ; kahaneb -1/3 < x <3 max .koht - 1/3 ; min. koht 3. b) Antud on funktsiooni y = x3 -5x2 +3x - 11 1) Leidke selle funktsiooni kasvamis- ja kahanemisvahemikud 2) Leidke selle funktsiooni vähim väärtus lõigul [ 0 ; 5 ] 3) Skitseeri funktsiooni graafik lõigul [ 0 ; 5 ] . Vastus:1) kasvab, x< 1/3 või x>3 ; kahaneb, kui 1/3< x <3 2) y =-20 c) On antud funktsioon f ( x) = xln6 - xlnx 1) leidke funktsiooni f ( x) a) määramispiirkond b) graafiku ja x - telje lõikepunkt c) maksimumpunkti abstsiss 2) Koostage joone y = f ( x) puutuja võrrand punktis, kus joon lõikab x - telge. Vastus:1) a) ( 0 ;  ) b) ( 6 ; 0 ) c ) 6/e 2) y = -x +6

Matemaatika
179 allalaadimist
thumbnail
11
pdf

Üks-ja hulkliikmed

leida siinus nurgast, mille suurus radiaanides on x; 2) leida muutuja x väärtuse ruut ja korrutada see viiega jne. 4) 32 - lihtsaimaks matemaatiliseks avaldiseks on konstant (arv). algusesse eelmine slaid järgmine slaid esitluse lõpp Algebraline avaldis Matemaatilist avaldist, milles on vaid lõplik arv kordi kasutatud aritmeetikatehteid ning astendamist ja/või juurimist, kus astendajad ja juurijad on täisarvud, nimetatakse algebraliseks avaldiseks. Näiteks : algebralised avaldised on: 1) 4ax 2 5bx 6 ; 2) 3 2a 2 3 y ; 7x2 2 3) 4x 5 Algebralised avaldised ei ole: 1) 2 sin x cos2 x (avaldis sisaldab trigonomeetrilisi funktsioone); 2) 2 2 (avaldises esineb astendamine irratsionaalarvuga).

Matemaatika
20 allalaadimist
thumbnail
7
doc

Riigieksami lahendused II

y´(x) = 2x. k = f ( x0 ) = 2 2 x0 2 x0 = 1 x0 = 0,5 y0 = 0,52 = 0, 25 Puutepunkt on (0,5; 0,25). Puutuja võrrand on seega y ­ 0,25 = 1 . (x ­ 0,5); y = x ­ 0,5 + 0,25; y = x ­ 0,25. Saime sirge, mis lõikab y-telge punktis C(0; -0,25) Vastus: Paja põhja kaugus koonuse tipust on 0,25. 9. (20p) On antud funktsioon f ( x ) = sin x - cos x . 1) Lihtsustage avaldist f ( x ) f ( - x ) 2) Lahendage võrrand f (x) = 1. 3) Lahendage võrratus f (x) > 0 lõigus [0; ] . 4) Leidke funktsiooni f (x) miinimumkoht vahemikus ( 0; 2) ja arvutage funktsiooni väärtus sellel kohal. Lahendus: 1) Lihtsustame avaldist f ( x ) f ( - x ) . f ( x ) f ( - x ) = ( sin x - cos x ) ( sin ( - x ) - cos ( - x ) ) = ( sin x - cos x ) ( - sin x - cos x ) = = - ( sin x - cos x ) ( sin x + cos x ) = - ( sin 2 x - cos 2 x ) = - sin 2 x + cos 2 x = cos 2 x 2) Lahendame võrrandi f(x) = 1. sin x - cos x = 1

Matemaatika
369 allalaadimist
thumbnail
57
rtf

Maatriksid

1. MAATRIKSID 1.1. Üldmõisted Definitsioon 1. Maatriksiks nimetatakse riskülikujulist arvuliste elementidega tabelit, mis sisaldab n rida ja m veergu : Lühidalt maatriksit võib tähistada erinevate sulgudega (või kahekordsete püstjoontega): [ ] a = aij A = (aij ) = ij , (1.1) kus i = 1,...,n on rea number, j = 1,...,m on veeru number. Arve aij nimetatakse maatriksi elementideks. Nii et esimene alumine indeks näitab, mitmendas reas asub element , ja teine alumine indeks - mitmendas veerus asub element. Maatriksi suurust saab väljendada valemiga: ridade arv x veergude arv. Antud maatriks (1.1) on suurusega n x m ja seda saab kirjutada järgmiselt : An x m või dim A = n x m (dimensioon ­ suurus). 3 -

Matemaatika
283 allalaadimist
thumbnail
54
doc

Valemid ja mõisted

2. ALGEBRA 2.1 Astmed Astmeks a n nimetatakse korrutist, mille kõik tegurid on võrdsed arvuga a (astme alus) ja tegurite arv on n (astendaja): a n = a14 a2K43 a n , 1, n tegurit kus 1 on naturaalarvude hulk alates arvust 1: 1 = { 1; 2; 3; 4; ...} . Astendaja 0 defineeritakse võrdusega a 0 = 1 , milles a 0 . Negatiivse astendaja korral sisaldab astendamine ka jagamise: 1 a - n = n , kui a 0 ja n või kui a > 0 ja n , a kus on täisarvude hulk ja on ratsionaalarvude hulk: a = { ±1; ± 2; ± 3; ...} , = , kus a , b ja b 0 .

Matemaatika
1099 allalaadimist
thumbnail
28
doc

Ruutvõrrandi abil lahenduvaid ülesandeid

Ülesannete lahendused pärinevad õpikust "Matemaatika IX klassile"(koost. Tõnu Tõnso ,Tln., 1998), lk-74-78 (ül.269-391) ja kogumikust "Matemaatika kirjaliku eksami ülesanded IX klassile"* (koost. Enn Nurk ja Valvo Paat, Tln., 1996). * ülesanded tähistatud E-tähega. Paljude tekstülesannete lahendamisel jõuame ruutvõrrandini, millel on tavaliselt 2 lahendit. Olenevalt ülesande sisust võib aga ülesande vastuseks sobida ainult üks lahend. Tekstülesannete puhul tuleb võrrandi lahendeid kontrollida ülesande teksti, mitte koostatud võrrandi järgi. Tekstülesande lahendamine võrrandi abil koosneb kolmest etapist: 1. võrrandi koostamine teksti järgi; 2. koostatud võrrandi lahendamine; 3. võrrandi lahendite kontroll teksti järgi, lõplik lahendite leidmine ja vastuse kirjutamine. Mõningaid näpunäiteid võrrandi koostamiseks. Põhinõue - loe teksti ülima tähelepanuga, sest tekstis on kogu ülesande sisu

Algebra I
13 allalaadimist


Sellel veebilehel kasutatakse küpsiseid. Kasutamist jätkates nõustute küpsiste ja veebilehe üldtingimustega Nõustun