Vajad kellegagi rääkida?
Küsi julgelt abi LasteAbi
Logi sisse

Funktsioonide õpetamisest põhikooli matemaatikakursuses (0)

5 VÄGA HEA
Punktid

Esitatud küsimused

  • Kui suur on ühe jaotise väärtus kummalgi teljel?
Vasakule Paremale
Funktsioonide õpetamisest põhikooli matemaatikakursuses #1 Funktsioonide õpetamisest põhikooli matemaatikakursuses #2 Funktsioonide õpetamisest põhikooli matemaatikakursuses #3 Funktsioonide õpetamisest põhikooli matemaatikakursuses #4 Funktsioonide õpetamisest põhikooli matemaatikakursuses #5 Funktsioonide õpetamisest põhikooli matemaatikakursuses #6 Funktsioonide õpetamisest põhikooli matemaatikakursuses #7 Funktsioonide õpetamisest põhikooli matemaatikakursuses #8 Funktsioonide õpetamisest põhikooli matemaatikakursuses #9 Funktsioonide õpetamisest põhikooli matemaatikakursuses #10 Funktsioonide õpetamisest põhikooli matemaatikakursuses #11 Funktsioonide õpetamisest põhikooli matemaatikakursuses #12 Funktsioonide õpetamisest põhikooli matemaatikakursuses #13 Funktsioonide õpetamisest põhikooli matemaatikakursuses #14
Punktid 50 punkti Autor soovib selle materjali allalaadimise eest saada 50 punkti.
Leheküljed ~ 14 lehte Lehekülgede arv dokumendis
Aeg2013-10-31 Kuupäev, millal dokument üles laeti
Allalaadimisi 21 laadimist Kokku alla laetud
Kommentaarid 0 arvamust Teiste kasutajate poolt lisatud kommentaarid
Autor 211947 Õppematerjali autor

Kasutatud allikad

Sarnased õppematerjalid

thumbnail
63
doc

Põhikooli matemaatika kordamine

Ruutfunktsioon Sissejuhatav kordamine 1. Teosta tehted. Vastustes vabane negatiivsetest astendajatest. 3 1 2 3 1 a) 2 a b c 3 Lahendus: ; 1 4 2 s 3 t b) 4 5 3 4 s t Lahendus: . 2. Lihtsusta avaldis. a) xy(x + 3y) + (x + y)(x2 ­ 2xy ­ y2) Lahendus: xy(x + 3y) + (x + y)(x2 ­ 2xy ­ y2) = = x2y + 3xy2 + x3 ­ 2x2y ­ xy2 + x2y ­ 2xy2 ­ y3 = = x 3 ­ y3 = = (x ­ y)(x2 + xy + y2) b) (3a ­ 2)2 + (2 + 3a)(2 ­ 3a) Lahendus: (3a ­ 2)2 + (2 + 3a)(2 ­ 3a) = 9a2 ­ 12a + 4 + 4 ­ 9a2 = = 8 ­ 12a 3. Lahenda võrrand. a) 24x2 + 5x ­ 1 ­ (24x2 ­ 6x ­ 12x + 3) = 111 Lahendus: 24x2 + 5x ­ 1 ­ (24x2 ­ 6x ­ 12x + 3) = 111; 24x2 + 5x ­ 1 ­ 24x2 + 6x

Matemaatika
thumbnail
43
pdf

Keskkooli lõpueksam (2008)

Funktsiooni nullkohtade arvutamiseks lõigul 0; 2 on vaja lahendada võrrand vastavalt kas 2 sin x 0 ( I ) või 0,5 cos x 0 (II). Funktsiooni muutumispiirkonna leidmiseks arvestame, et nii y sin x kui ka y cos x muutumispiirkond on Y 1 ; 1 . Järelikult y 2 sin x ja y 0,5 cos x muutumispiirkonna leidmiseks tuleb y min ja y max väärtused korrutada y 2 sin x korral teguriga 2 ja y 0,5 cos x korral teguriga 0,5. I , II 2) Funktsioonide y 2 sin x (I) ja y 0,5 cos x (II) graafiku joonestamiseks võib kasutada üksikuid punkte, vajadusel võib koostada valitud punktide koordinaatidest veel ka tabeli. 12 13

Algebra ja analüütiline geomeetria
thumbnail
12
doc

Funktsioonide lahendamine

miinimumpunkt ning kasvamis- ja kahanemisvahemikud. 3. Joonisel on antud ruutfunktsiooni y = f(x) ja funktsiooni y = ex graafikud. Leidke a) Ruutfunktsiooni y = f(x) määrav valem; b) Punkti A koordinaadid; c) Funktsiooni y = f(x) nullkohad ja haripunkti koordinaadid; d) Funktsiooni y = ex väärtus kohal, mis vastab funktsiooni y = f(x) absoluutväärtuselt vähimale nullkohale; e) Antud funktsioonide ühine positiivsuspiirkond. 4. (1998) Heinakuhja telglõige on piiratud joonega y = 1 ­ x2 ja sirgega y = 0. Kuhjale toetub koonusekujuline katus, mille telglõike tipunurk on täisnurk. Leidke kuhja tipu ning katuse tipu vaheline kaugus. 5. (1998) Leidke funktsiooni y = x3 -4x2 ­ 3x -2 kasvamis- ja kahanemisvahemikud, maksimum- ja miinimumkoht. 6. (1998) On antud funktsioon f(x) = x2 ­ 2 ln x + 3. 1 1) Leidke f e 2 .

Matemaatika
thumbnail
11
docx

Kordamisküsimusi 1. teema kohta - Teooriatöö I

tingimusi a ei võrdu 1 ja a > 0. Erijuhul, kui a = e = 2,71828182845904523536028747135... (e on nn. Euleri arv), nimetatakse funktsiooni y = ex eksponentfunktsiooniks. NB! Kui 0 < a < 1, siis funktsioon on y = a x on kahanev hulgal R ja kui a > 1, siis funktsioon y = a x on kasvav hulgal R. Eksponentfunktsiooni määramispiirkond ja väärtuste hulk on järgmised: X = R ja Y = (0, ∞) 14. Esitada trigonomeetriliste funktsioonide y = sin x ja y = cos x määramispiirkonnad, väärtuste hulgad ja graafikud. (lk 8, 15) y = sin x : X = R, Y = [−1, 1] , y = cos x : X = R, Y = [−1, 1] , 15. Esitada trigonomeetriliste funktsioonide y = tan x ja y = cot x määramispiirkonnad, väärtuste hulgad ja graafikud. (lk 8, 16) y = tan x : X = R (2k + 1)/2 π || k ∈ Z, Y = R , y = cot x : X = R {kπ || k ∈ Z}, Y = R . 16. Defineerida üksühene funktsioon ja üksühese funktsiooni pöördfunktsioon. (lk 8 – 9)

Matemaatika analüüs i
thumbnail
246
pdf

Funktsiooni graafik I õpik

hüpotenuusi suhet. m n cos   , cos   p p Teravnurga tangensiks nimetatakse vastaskaateti ja lähiskaateti suhet. n m tan   , tan   m n Teravnurga kootangensiks nimetatakse lähiskaateti ja vastaskaateti suhet. m n cot   , cot   n m Trigonomeetriliste funktsioonide vahelised seosed, neid valemeid nimetatakse ka trigonomeetrilisteks põhiseosteks sin  1 sin2   cos2   1 tan   1  tan2   cos  cos2  cos  1

Matemaatika
thumbnail
37
docx

Matemaatiline analüüs l.

Eksponentfunktsioon on funktsioon järgmisel kujul: y = ax , kus astme alus a on konstantne ja rahuldab võrratust a > 0. Lisaks sellele võrratusele eeldame veel, et a = 1 Eksponentfunktsiooni korral X = R ja Y = (0,). Funktsioon y = ax on kasvav kogu oma määramispiirkonnas, kui a > 1 ja kahanev kogu oma määramispiirkonnas, kui 0 < a < 1. Trigonomeetrilised funktsioonid y = sin x, y = cos x, y = tan x ja y = cot x radiaanides antud argumendiga x. Trigonometriliste funktsioonide määramispiirkonnad ja väärtuste hulgad: y = sin x : X = R, Y = [-1, 1] , y = cos x : X = R, Y = [-1, 1] , y = tan x : X = R {(2k + 1)/2 * || k Z},Y = R, y = cot x : X = R {k || k Z}, Y = R. Graafikud. Funktsioonid y = sin x ja y = cos x on perioodilised perioodiga 2 ning y = tan x ja y = cot x perioodiga . Funktsioonid y = sin x, y = tan x ja y = cot x on paaritud ning y = cos x paaris. 4. Üksühese funktsiooni ja pöördfunktsiooni definitsioonid

Matemaatiline analüüs
thumbnail
1
doc

Parabooli skitseerimine uus

Ruutfunktsioon avaldub kujul y = ax2 + bx + c, kus a, b ja c on mistahes arvud ja ruutliikme kordaja a 0. Ruutfunktsiooni y = ax2 + bx + c graafikuks on parabool. Kui a > 0, siis parabooli harud avanevad üles, kui a < 0, siis alla. Parabooli sümmeetriatelge nimetatakse parabooli teljeks ja punkti, kus parabool lõikub oma teljega nimetatakse parabooli haripunktiks. Parabooli skitseerimiseks tuleb leida nullkohad ( võrrandi ax2 + bx + c = 0 lahendid) ja x + x2 haripunkt ( haripunkti abstsissi leiame kas nullkohtade aritmeetilise keskmisena 1 2 b või valemist x h = - ; ordinaadi leidmiseks paneme abstsissi väärtuse funktsiooni 2a 4ac - b 2 avaldisse ning leiame y väärtuse või kasutame valemit y = ).

Geomeetria
thumbnail
16
doc

Matemaatiline analüüs

väärtuste hulgad ja graafikud: Eksponentfunktsioon on funktsioon järgmisel kujul: y = ax , kus astme alus a on konstantne ja rahuldab võrratust a > 0. Lisaks sellele võrratusele eeldame veel, et a = 1, sest a = 1 korral saame konstantse funktsiooni y = 1x = 1. Eksponentfunktsiooni korral X = R ja Y = (0,). Trigonomeetrilised funktsioonid: y = sin x, y = cos x, y = tan x ja y =cot x radiaanides antud argumendiga x. Trigonometriliste funktsioonide määramispiirkonnad ja väärtuste hulgad on järgmised: 4. Üksühese funktsiooni ja pöördfunktsiooni definitsioonid: Kui iga y korral hulgast Y leidub ainult üks x nii, et valitud y on selle x-i kujutiseks. Kui see on nii, siis öeldakse, et funktsioon f on üksühene. Üksühese funktsiooni korral on võrrand y = f(x) muutuja x suhtes üheselt lahenduv. Näiteks kuupfunktsioon y = x3 on üksühene. Iga y korral leidub ainult üks x nii, et valitud y on selle x-i kuup

Matemaatiline analüüs




Meedia

Kommentaarid (0)

Kommentaarid sellele materjalile puuduvad. Ole esimene ja kommenteeri



Sellel veebilehel kasutatakse küpsiseid. Kasutamist jätkates nõustute küpsiste ja veebilehe üldtingimustega Nõustun