Vajad kellegagi rääkida?
Küsi julgelt abi LasteAbi
Logi sisse
✍🏽 Avalikusta oma sahtlis olevad luuletused! Luuletus.ee Sulge

Matemaatilise analüüsi kaugõpe, 1 osa - sarnased materjalid

muutuja, graafik, piirväärtus, rahuldab, tasapinnal, eelnevast, väärtustele, sümmeetriline, põhifunktsioonid, astmel, trigonomeetrilised, liitfunktsioon, kellaosuti, määramispiirkond, eeskiri, geomeetriline, kirjutatakse, paaritud, nullpunkti, perioodiks, pikkuses, astmefunktsioon, potentseerimise, eksponentfunktsioon, logaritmfunktsioon
thumbnail
6
docx

Matemaatilise analüüsi (I) I osaeksami teooriaküsimused

1. Ratsionaalarvud, irratsionaalarvud, reaalarvud. Reaalarvu absoluutväärtus ehk moodul. Positiivseid ja negatiivseid täis- ning murdarve koos arvuga null nimetatakse ratsionaalarvudeks. Lõpmatute mitteperioodiliste kümnendmurdudena esitatavaid arve nimetatakse irratsionaalarvudeks. Kõik ratsionaal- ja irratsionaalarvud koos moodustavad reaalarvude hulga. x Reaalarvu absoluutväärtuseks ehk mooduliks x nimetatakse mittenegatiivset reaalarvu, mis rahuldab tingimusi x = x, kui x 0, x = -1, kui x < 0. x x. Kehtib seos 2. Muutuv suurus ehk muutuja, jääv suurus ehk konstant. Muutuva suuruse muutumispiirkond. Mõisted: vahemik, lõik, poollõik. Kasvav ja kahanev muutuv suurus, monotoonne suurus. Tõkestatud muutuv suurus. Suurust, mis omandab mitmesuguseid väärtusi, nimetatakse muutuvaks suuruseks ehk muutujaks. Tähised x, y, z, u, ...

Diskreetne matemaatika
73 allalaadimist
thumbnail
25
doc

MATEMAATILINE ANALÜÜS I TEOORIA KONTROLLTÖÖ Küsimused vastustega

arvulisi väärtusi, nimetatakse muutuvaks suuruseks ehk muutujaks. Suurust, mille arvuline väärtus ei muutu, nimetatakse jäävaks suuruseks. Suuruse muutumispiirkond- Muutuva suuruse kõigi võimalike väärtuste hulka nimetatakse selle suuruse muutumispiirkonnaks. Funktsiooni definitsioon- Olgu antud 2 muutuvat suurust x ja y. Funktsiooniks nimetatakse kujutist, mis seab suuruse x igale väärtusele tema muutumispiirkonnast vastavusse suuruse y ühe kindla väärtuse. Funktsiooni argument- muutuja x, sõltumatu. Sõltuv muutuja- muutuja y. Määramispiirkond- argumendi x muutumispiirkonda. Tähis X. y= f(x). Väärtuste hulk- Hulka Y = {f(x) || x kuulub X} Funktsiooni esitamine tabelina- Funktsiooni argumendi võimalikud väärtused esitatakse tabeli ühes reas (veerus) ja neil vastavad funktsiooni väärtused tabeli teises reas (veerus). On võimalik vaid siis, kui funktsiooni argumendil on lõplik arv väärtusi. Funktsiooni esitamine analüütiliselt- Funktsioon esitatakse valemi kujul

Matemaatiline analüüs 1
45 allalaadimist
thumbnail
22
docx

Matemaatiline analüüs (vähendatud programm)

> 0. Suuruse lõpmatus ümbruseks nimetatakse suvalist vahemikku (M, ∞), kus M > 0. Suuruse miinus lõpmatus ümbruseks nimetatakse suvalist vahemikku (−∞, −M), kus M > 0.  Reaalarvudest koosnevat hulka A nimetatakse tõkestatuks, kui leidub lõplik vahemik (a, b) nii, et A ⊂ (a, b). 2. Jääv ja muutuv suurus. Suuruse muutumispiirkond. Funktsiooni definitsioon. Funktsiooni argument, sõltuv muutuja, määramispiirkond ja väärtuste hulk. Funktsiooni esitamine tabelina ja analüütiliselt. Funktsiooni graafiku mõiste. Graafiku omadused.  Suurust, mis võib omandada erinevaid arvulisi väärtusi, nimetatakse muutuvaks suuruseks ehk muutujaks. Suurust, mille arvuline väärtus ei muutu, nimetatakse jäävaks suuruseks.  Muutuva suuruse kõigi võimalike väärtuste hulka nimetatakse selle suuruse muutumispiirkonnaks.

Matemaatiline analüüs i
18 allalaadimist
thumbnail
6
docx

Matemaatiline analüüs I KT konspekt vähendatud programm

Matemaatiline analüüs I Vähendatud programm I KT Kindlasti peab teadma : 7. Muutuva suuruse piirväärtuse definitsioon - Olgu x järjestatud muutuv suurus. Arvu a nimetatakse muutuva suuruse x piirväärtuseks, kui iga kuitahes väikese positiivse arvu korral saab näidata sellist suuruse x väärtust, millest alates kõik järgnevad muutuva suuruse väärtused kuuluvad arvu a ümbrusesse (a - , a + ), st rahuldavad võrratust |x - a| < . Kui arv a on suuruse x piirväärtus, siis öeldakse, et suurus x läheneb arvule a ehk koondub arvuks a ja kirjutatakse x a või lim x = a . Muutuva suuruse ühepoolsete piirprotsesside definitsioonid ­ · Muutuv suurus x läheneb vasakult arvule a, kui iga kuitahes väikese positiivse arvu korral saab näidata sellist suuruse x väärtust, millest alates kõik järgnevad muutuva suuruse väärtused kuuluvad poollõiku (a - , a]. Sellisel juhul kirjutatakse x a-.

Matemaatiline analüüs
144 allalaadimist
thumbnail
13
doc

Matemaatiline analüüs I 1 kt teooria

suuremale argumendi väärtusele vastab suurem funktsiooni väärtus. Def. Funktsiooni f nimetatakse kahanevaks ehk rangelt kahanevaks piirkonnas X, kui selles piirkonnas suuremale argumendi väärtusele vastab väiksem funktsiooni väärtus. Def. Astmefunktsioon on funktsioon kujul y= , kus a on nullist erinev konstantse astendaja. Selle funktsiooni määramispiirkond, väärtuste hulk ja graafik sõltuvad oluliselt astmest a. Def. Eksponentfunktsioon on funktsioon kujul y= , kus astme alus a on konstantne ja a>0 ja a1. Määramispiirkond X= ja väärtuste hulk Y=(0,). Def.Trigonomeetrilised funktsioonid on funktsioonid kujul y=sinx,y=cosx,y=tanx ja y=cotx radiaanides antud argumendiga x. Määramispiirkonnad ja väärtuste hulgad on järgmised: 4. Def. Eeldame, et argument x on funktsiooni väärtuse f(x) kaudu üheselt määratud, st, et iga y Y

Matemaatiline analüüs 2
104 allalaadimist
thumbnail
13
doc

Matemaatiline analüüs I 1. kt teooria

suuremale argumendi väärtusele vastab suurem funktsiooni väärtus. Def. Funktsiooni f nimetatakse kahanevaks ehk rangelt kahanevaks piirkonnas X, kui selles piirkonnas suuremale argumendi väärtusele vastab väiksem funktsiooni väärtus. Def. Astmefunktsioon on funktsioon kujul y= , kus a on nullist erinev konstantse astendaja. Selle funktsiooni määramispiirkond, väärtuste hulk ja graafik sõltuvad oluliselt astmest a. Def. Eksponentfunktsioon on funktsioon kujul y= , kus astme alus a on konstantne ja a>0 ja a1. Määramispiirkond X= ja väärtuste hulk Y=(0,). Def.Trigonomeetrilised funktsioonid on funktsioonid kujul y=sinx,y=cosx,y=tanx ja y=cotx radiaanides antud argumendiga x. Määramispiirkonnad ja väärtuste hulgad on järgmised: 4. Def. Eeldame, et argument x on funktsiooni väärtuse f(x) kaudu üheselt määratud, st, et iga y Y

Matemaatika analüüs I
300 allalaadimist
thumbnail
11
docx

Kordamisküsimusi 1. teema kohta - Teooriatöö I

(lk 3) Suurust, mis võib omandada erinevaid arvulisi väärtusi, nimetatakse muutuvaks suuruseks ehk muutujaks. Suurust, mille arvuline väärtus ei muutu, nimetatakse jäävaks suuruseks. Näiteks ühtlase liikumise korral on kiirus jääv suurus ja läbitud teepikkus muutuv suurus. Muutuva suuruse kõigi võimalike väärtuste hulka nimetatakse selle suuruse muutumispiirkonnaks 5. Defineerida ühene funktsioon, ühese funktsiooni argument, sõltuv muutuja, määramispiirkond ja väärtuste hulk. (lk 3 - 4) Ühene funktsioon on funktsioon vaid ühe muutujaga ehk y=f(x), puuduvad liitfunktsiooni omadused. Argument ehk muutuja on x ja sõltuv muutuja on y (sellel on oma kindel väärtus, mis sõltub x-st). Muutuva suuruse ehk x-i kõigi võimalike väärtuste hulka nimetatakse selle suuruse muutumispiirkonnaks 6. Millist funktsiooni nimetatakse mitmeseks? (lk 4)

Matemaatika analüüs i
10 allalaadimist
thumbnail
13
docx

Matemaatiline analüüs I KT

Kui funktsiooni f võrratuse märk ei muutu, st f() < (), siis on f kasvav hulgas D. Kui aga funktsiooni f rakendamisel argumentidele võrratuse märk muutub vastupidiseks, st f() > (), siis on f kahanev hulgas D. Kasvamispiirkonnas funktsioonigraafik tõuseb, kahanemispiirkonnas langeb. Astmefunktsioon ­ y = , kus a on nullist erinev konstantne astendaja. Määramispiirkond: Eksponentfunktsioon ­ y = , kus astmealus a on konstantne ja rahuldab võrratust a>0. Lisaks sellele eeldame veel, a 1, sest muidu oleks see konstantne funktsioon. X=R, Y = (0,). Graafik on juhtudel a > 1 (kasvav) ja 0 < a < 1 (kahanev). Trigonomeetrilised funktsioonid: y = sinx, X = R, Y = (-1,1), graafik perioodiline perioodiga 2, paaritu funktsioon y = cosx, X = R, Y = (-1,1), graafik perioodiline perioodiga 2, paarisfunktsioon y = tanx, X = R / || k Z, Y = R, graafik periood on , paaritu funktsioon

Matemaatiline analüüs
140 allalaadimist
thumbnail
4
pdf

Matemaatiline analüüs 1, teooria, spikker, kontrolltöö 1, matan

1.Arvtelje mõiste. Reaalarvu absoluutväärtus. Loetleda 4.Üksühese funktsiooni ja pöördfunktsiooni definitsioonid. Vaatleme funktsiooni y=f(x). Toome lisaks muutujale x ± absoluutväärtuse Seosed funktsiooni ja tema pöördfunktsiooni ja y sisse ka kolmanda muutuja t. x= (t). Siis saab ka Funktsioonil f on piirväärtus kohal a, kui suvalises piirprotsessis xa, mis omadused. Reaalarvude ja lõpmatuste ümbrused. määramispiirkondade ja väärtuste hulkade vahel, vastastikune muutuja y avaldada parameetri t kaudu. y = (t). rahuldab tingimust xa, funktsiooni väärtus f(x) läheneb lõpmatusele

Algebra ja analüütiline...
81 allalaadimist
thumbnail
23
doc

Matemaatiline analüüs KT1 vastused

nimetatakse muutuvaks suuruseks ehk muutujaks. Suurust, mille arvuline väärtus ei muutu, nimetatakse jäävaks suuruseks. Suuruse muutumispiirkond- Muutuva suuruse kõigi võimalike väärtuste hulka nimetatakse selle suuruse muutumispiirkonnaks. Funktsiooni definitsioon- Olgu antud 2 muutuvat suurust x ja y. Funktsiooniks nimetatakse kujutist, mis seab suuruse x igale väärtusele tema muutumispiirkonnast vastavusse suuruse y ühe kindla väärtuse. Funktsiooni argument- muutuja x, sõltumatu. Sõltuv muutuja- muutuja y. Määramispiirkond- argumendi x muutumispiirkonda. Tähis X. y= f(x). Väärtuste hulk- Hulka Y = {f(x) || x kuulub X} Funktsiooni esitamine tabelina- Funktsiooni argumendi võimalikud väärtused esitatakse tabeli ühes reas (veerus) ja neil vastavad funktsiooni väärtused tabeli teises reas (veerus). On võimalik vaid siis, kui funktsiooni argumendil on lõplik arv väärtusi. Funktsiooni esitamine analüütiliselt- Funktsioon esitatakse valemi kujul

Matemaatiline analüüs I
110 allalaadimist
thumbnail
10
doc

Matemaatiline analüüs I

vahemik (a, b) nii, et A (a, b). Jääv suurus ­ suurus, mille arvuline väärtus ei muutu. Muutuv suurus ­ suurus, mis võib omandada erinevaid arvulisi väärtusi. Suuruse muutumispiirkond ­ muutuva suuruse kõigi võimalike väärtuste hulk. Funktsioon ­ Olgu antud 2 muutuvat suurust x ja y. Funktsiooniks nimetatakse kujutist, mis seab suuruse x igale väärtusele tema muutumispiirkonnast vastavusse suuruse y ühe kindla väärtuse. Funktsiooni argument ­ Muutuja x Sõltuv muutuja ­ Muutuja y Määramispiirkond ­ argumendi x muutumispiirkond Väärtuste hulk - Y={ f(x) || x X } Funktsiooni esitamine tabelina ­ Funktsiooni argumendi võimalikud väärtused esitatakse tabeli ühes reas ja neile vastavad funktsiooni väärtused tabeli teises reas. Võimalik vaid siis, kui funktsiooni argumendil on lõplik arv väärtusi. Funktsiooni analüütiline esitusviis ­ valemi kujul. Funktsiooni graafiline esitusviis ­ esitatakse graafikuna tasandi ristkoordinaadistikus.

Matemaatiline analüüs 1
56 allalaadimist
thumbnail
3
doc

Matemaatiline analüüs 1

Reaalarvu a parempoolseks ümbruseks, kus > 0, nimetatakse hulka [a; a + ) = {xIax+a} Suuruse + M-ümbruseks, kus M > 0, nimetatakse vahemikku (M;+). Kui M > 0, siis M-ümbruseks nim ühendit (-;-M) ja(M) Muutuvat suurust nimetatakse tõkestatuks, kui leidub niisugune konstant M0, et kõik muutuva suuruse väärtused, alates mingist x M väärtusest, täidavad tingimust - M x M , s.t. . FUNKTSIOON:. . Kui muutuja x igale väärtusele piirkonnas X vastab muutuja y kindel väärtus, siis öeldakse, et y on muutuja x funktsioon piirkonnas X. Esitusviisid: Tabel, Analüütilisel kujul esitatud funktsiooni määramispiirkonnaks nimetatakse argumendi kõigi väärtuste hulka, mille korral see valem on määratud.; F.gaafikuks nim punktihulka Kui hulga X igale elemendile x on vastavusse seatud element y hulgast Y, siis öeldakse, et hulgal X on määratud ühe muutuja

Matemaatiline analüüs
119 allalaadimist
thumbnail
15
docx

Matemaatiline analüüs I kontrolltöö

d.v. Suuruse miinus lõpmatuks ümbruseks nim suvalist vahemikku (-M;-), kus M>0. Arv x kuulub minus lõpmatuse ümbrusesse kui x<-M. e. Tõkestatud hulga definitsioon Reaalarvudest koosnevat hulka A nim tõkestatuks, kui leidub lõplik vahemik (a,b) nii, et A(a,b) 2. Jääv ja muutuv suurus. Suuruse muutumispiirkond. Funktsiooni definitsioon. Funktsiooni argument, sõltuv muutuja, määramispiirkond ja väärtuste hulk. Funktsiooni esitamine tabelina ja analüütiliselt. Funktsiooni graafiku mõiste. Graafiku omadused. a. Jääv ja muutuv suurus a.i. Muutujaks ehk muutuvaks suuruseks nim suurust, mis võib omandada erinevaid arvulisi väärtusi. a.ii. Jäävaks suuruseks nim suurust, mille arvuline väärtus ei muutu. b. Suuruse muutumispiirkond

Matemaatiline analüüs
56 allalaadimist
thumbnail
11
doc

Matmaatiline analüüs I 1. teooriatöö konspekt

muutumispiirkonnaks. On antud 2 muutuvat suurust x ja y. Funktsiooniks (ehk üheseks funktsiooniks) nimetatakse kujutist, mis seab suuruse x igale väärtusele tema muutumispiirkonnast vastavusse suuruse y ühe kindla väärtuse. Muutujat x nimetatakse seejuures sõltumatuks muutujaks ehk argumendiks ja muutujat y sõltuvaks muutujaks. Olgu antud funktsioon f, mille argumendiks on x ja sõltuvaks muutujaks y. Muutuja y väärtust, milleks funktsioon f kujutab argumendi x, nimetatakse funktsiooni f väärtuseks kohal x ja tähistatakse sümboliga f(x). Seega võimekirjutada seose y = f(x) mis väljendab muutuja y "seotust" argumendiga x funktsiooni f kaudu. Seost nimetatakse funktsiooni võrrandiks. Funktsiooni esitusviisid: 1)tabel 2)analüütiline 3)graafiline G = {P = (x, f(x)) || x X} Vaatleme joont G, mis

Matemaatiline analüüs
249 allalaadimist
thumbnail
9
pdf

Vähendatud programmi (A) ESIMENE teooriatöö

MATEMAATILINE ANALÜÜS I Suuruse miinus lõpmatus ümbruseks nimetatakse suvalist vahemikku -, - , kus > 0. Arv kuulub miinus lõpmatuse ümbrusesse -, - siis ja ainult siis, kui < - . Reaalarvudest koosnevat hulka nimetatakse tõkestatuks, kui leidub lõplik vahemik , nii, et , . 2) Jääv ja muutuv suurus. Suuruse muutumispiirkond. Funktsiooni definitsioon. Funktsiooni argument, sõltuv muutuja, määramispiirkond ja väärtuste hulk. Funktsiooni esitamine tabelina ja analüütiliselt. Funktsiooni graafiku mõiste. Graafiku omadused. Suurust, mis võib omandada erinevaid arvulisi väärtusi, nimetatakse muutuvaks suuruseks ehk muutujaks. Suurust, mille arvuline väärtus ei muutu, nimetatakse jäävaks suuruseks. Muutuva suuruse kõigi võimalike väärtuste hulka nimetatakse selle suuruse muutumispiirkonnaks. Olgu antud 2 muutuvat suurust ja

Matemaatika analüüs I
95 allalaadimist
thumbnail
10
docx

Matemaatiline analüüs I 1. teooria KT

ühes reas (veerus) ja neil vastavad funktsiooni väärtused tabeli teises reas (veerus). On võimalik vaid siis, kui funktsiooni argumendil on lõplik arv väärtusi. Analüütiline esitusviis. Funktsioon esitatakse valemi kujul. Kui vaja, lisatakse ka määramispiirkonna kirjeldus. Graafiline esitusviis. Funktsioon esitatakse graafikuna tasandil ristkoordinaadistikus. Olgu antud funktsioon f, mille argument on x, sõltuv muutuja y ja määramispiirkond X. Kanname tasandile ristuvad x- ja y-teljed. Vaatleme selles teljestikus joont G, mis koosneb kõikvõimalikest punk- tidest P = (x,f(x)), kusjuures P esimene koordinaat x jookseb läbi kogu määramispiirkonna X. Seda joont nimetataksegi funtsiooni f graafikuks. Seega, lühidalt kirjutades on funktsiooni f graafiku definitsioon järgmine: G = {P = (x,f(x))||x X}.

Matemaatiline analüüs 1
114 allalaadimist
thumbnail
8
docx

Matemaatiline analüüs II teooria töö

On võimalik vaid siis, kui funktsiooni argumendil on lõplik arv väärtusi. 2. Analüütiline ­ Funktsioon esitatakse valemi kujul. Kui vaja, lisatakse ka määramispiirkonna kirjeldus. 3.Graafiline ­ Funktsioon esitatakse graafikuna tasandil ristkoordinaadistikus. Funktsiooni f graafiku definitsioon on järgmine: G = {P = (x, f(x)) || x X} . · Graafiku omadused: o Kui f(x) > 0, siis graafik paikneb ülalpool xtelge. o Kui aga f(x) < 0, siis graafik jääb xteljest allapoole. o Kui suvaline yteljega paralleelne sirge saab funktsiooni graafikut lõigata maksimaalselt ühes punktis, siis funktsioon on ühene. o Juhul, kui eksisteerib vähemalt üks yteljega paralleleelne sirge lõikab funktsiooni graafikut mitmes punktis, vaadeldav funktsioon on mitmene. 3.

Matemaatiline analüüs 2
96 allalaadimist
thumbnail
8
docx

Matemaatiline analüüs I - I teooria töö

On võimalik vaid siis, kui funktsiooni argumendil on lõplik arv väärtusi. 2. Analüütiline ­ Funktsioon esitatakse valemi kujul. Kui vaja, lisatakse ka määramispiirkonna kirjeldus. 3.Graafiline ­ Funktsioon esitatakse graafikuna tasandil ristkoordinaadistikus. Funktsiooni f graafiku definitsioon on järgmine: G = {P = (x, f(x)) || x X} . · Graafiku omadused: o Kui f(x) > 0, siis graafik paikneb ülalpool xtelge. o Kui aga f(x) < 0, siis graafik jääb xteljest allapoole. o Kui suvaline yteljega paralleelne sirge saab funktsiooni graafikut lõigata maksimaalselt ühes punktis, siis funktsioon on ühene. o Juhul, kui eksisteerib vähemalt üks yteljega paralleleelne sirge lõikab funktsiooni graafikut mitmes punktis, vaadeldav funktsioon on mitmene. 3.

Matemaatika analüüs I
493 allalaadimist
thumbnail
16
doc

Matemaatiline analüüs

Tõkestatud hulga definitsioon: reaalarvudest koosnevat hulka A nimetatakse tõkestatuks, kui leidub lõplik vahemik ( a, b ) nii, et A ( a, b ). Tõkestatud hulgad on näiteks kõik lõplikud vahemikud ( a, b ), lõigud [a, b] ja poollõigud [a, b), (a, b]. Tõkestamata hulgad on aga näiteks lõpmatud vahemikud (-, a), (a, ) ja lõpmatud poollõigud (-, a], [a, ). 2. Jääv ja muutuv suurus. Suuruse muutumispiirkond. Funktsiooni definitsioon. Funktsiooni argument, sõltuv muutuja, määramispiirkond ja väärtuste hulk. Funktsiooni esitamine tabelina ja analüütiliselt. Funktsiooni graafiku mõiste. Graafiku omadused. V: Jääv ja muutuv suurus: Suurust, mis võib omandada erinevaid arvulisi väärtusi, nimetatakse muutuvaks suuruseks ehk muutujaks. Suurust, mille arvuline väärtus ei muutu, nimetatakse jäävaks suuruseks. Näiteks ühtlase liikumise korral on kiirus jääv suurus ja läbitud teepikkus muutuv suurus. Samas mitte ühtlase liikumise korral on ka kiirus

Matemaatiline analüüs
232 allalaadimist
thumbnail
4
docx

Kollokvium I

[(x, y) I xX ja y=f(x)] DEF 3. Kui hulga X igale elemendile on vastavusse seatud vähemalt üks hulga Y element ja vähemalt ühele hulga X elemendile on vastavusse seatud mitu elementi hulgast Y, siis öeldakse, et hulgal X on määratud mitmene funktsioon f. DEF 4. Funktsioonide y=f(x) (xX) ja z=g(y) (yY ja f(X) c Y) liitfunktsiooniks ehk superpositsiooniks nimetatakse funktsiooni z=g(f(x)). DEF 5. Funktsiooni f, mille määramispiirkond X on sümmeetriline nullpunkti suhtes nim. paarisfunktsiooniks, kui f(-x)=f(x) DEF 6. Funktsiooni f, mille määramispiirkond X on sümmeetriline nullpunkti suhtes nim. paarituks funktsiooniks, kui f(-x)=-f(x) DEF 7. Funktsiooni nim. perioodiliseks, kui leidub selline arv T0, et iga xX korral ka x+- TX ja f(x+T)= f(x). Vähimat pos.arvu T mille korral f(x+T)=f(x) nim. funktsiooni perioodiks. DEF 8. Funktsiooni f nim. kasvavaks ehk rangelt kasvavaks piirkonnas X, kui iga x1X ja

Matemaatiline analüüs
139 allalaadimist
thumbnail
3
doc

Matemaatilised mõisted ja definitsioonid

nii et | f(x) | <= k iga x A korral. 5. Perioodiline funktsioon- funktsiooni f(x) nim. perioodiliseks, kui leidub selline nullist erinev reaalarv , nii et f( x + ) = f (x) iga x X korral. Vähimat positiivset väärtust, mille korral see võrdus kehtib, nim. funktsiooni y = f(x) perioodiks. (kõik trigonomeetrilised funktsioonid) 6. Paaris funktsioon- funktsiooni y = f(x) nim. paaris funktsiooniks kui f(-x) = f(x). Paarisfunktsiooni graafik on sümmeetriline y-telje suhtes ( cos ) 7. Paaritu funktsioon- funktsiooni y = f(x) nim. paarituks funktsiooniks kui f(-x) = - f(x). Paaritu funktsiooni graafiks on sümmeetriline 0-punkti suhtes. ( sin, tan, cot ) 8. Liitfunktsioon- olgu funktsiooni f määramispiirkonnaks X ja muutumispiirkonnaks Y. Funktsiooni g määramispiirkond Yg sisaldugu piirkonnas Y ning tema muutumispiirkond olgu Z. Siis saab moodustada uue funktsiooni F, mis hulga X igale elemendile seab vastavusse elemendi hulgast Z

Matemaatiline analüüs
254 allalaadimist
thumbnail
32
doc

Matemaatika I küsimused ja mõisted vastustega

............ 6 3. Muutuvad ja jäävad suurused, tuua näiteid. .................................................................................6 4. Funktsiooni mõiste, funktsiooni esitusviisid. .............................................................................. 6 5. Funktsioonide liigitus (paaris- ja paaritud funktsioonid, perioodilised funktsioonid, monotoonsed funktsioonid, tõkestatud funktsioonid). Tuua näiteid. .............................................. 7 6. Elementaarsed põhifunktsioonid, nende määramispiirkonnad, põhiomadused ja graafikud. .....7 7. Liitfunktsiooni mõiste, liitfunktsiooni määramispiirkond. Tuua näiteid. ....................................7 8. Pöördfunktsiooni mõiste; pöördfunktsiooni määramis- ja muutumispiirkond. Tuua näiteid. .....7 9. Muutuva suuruse piirväärtus, tõkestamatult kasvav ja tõkestamatult kahanev suurus. ...............8 10. Funktsiooni piirväärtus. Funktsiooni vasak- ja parempoolne piirväärtus. ...........................

Matemaatika
125 allalaadimist
thumbnail
23
docx

MATEMAATILINE ANALÜÜS TÖÖ VASTUSED

vastavad funktsiooni väärtused teises reas. On võimalik ainlult siis, kui funktsioonil on arvuline väärtus. 2. Analüütiline esitlusviis ­ Funktsioon esitatakse valemi kujul, vajadusel lisatakse määramispiirkonna kirjeldus 3. Graafiline esitlusviis ­ Funktsioon esitatakse graafikuna tasandil ristkordinaadistikus. · Funktsiooni f graafiku definitsioon Kui f(x)>0 siis on graafik ülalpool x-telge, kui x<0 siis on graafik allpool x-telge · Funktsioon on ühene, kui suvaline y teljega paralleelne sirge läbib graafikut ainult ühest punktist. · Funktsioon on mitmene, kui suvaline y teljega paralleelne sirge läbib graafikut vähemalt kahest punktist. 3. · Paarisfunktsioon ­ kui iga korral kehtib võrdus · Paaritufunkstioon ­ kui iga korral kehtib võrdus · Perioodiliseks nimetame funktsiooni, kui leidub konstant nii, et iga korral kehtib võrdus

Matemaatika analüüs I
106 allalaadimist
thumbnail
1
docx

Matemaatiline analüüs I teooria

1. Tõkestatud hulga mõiste. Ülalt/alt tõkestatud hulga mõiste. Tuua näide. 10,12Jada piirväärtus. Arvu a nimetatakse reaalarvude jada x 1, x2, x3, ... Tõkestatud hulga definitsioon ­ Reaalarvudest koosnevat hulka A piirväärtuseks, kui iga kuitahes vaikese positiivse arvu korral saab näidata nimetatakse tõkestatuks, kui leidub lõplik vahemik (a,b) nii, et A(a,b). sellist jada elementi xn , millest alates kõik järgnevad jada elemendid kuuluvad Tõkestamata hulgad on lõpmatud vahemikud

Matemaatiline analüüs
11 allalaadimist
thumbnail
12
odt

Matemaatiline analüüs I 1. kollokvium

Kasvavad ja kahanevad funktsioonid. Funktsioon - Kui hulga X igale elemendile x on vastavusse seatud element y hulgast Y, siis öeldakse, et hulgal X on määratud ( ühene) funktsioon f ja seda vastavust tähistatakse y = f(x) (x ∈ X). Määramispiirkond ja muutumispiirkond - Hulka X nimetatakse funktsiooni f määramispiirkonnaks ja hulka f(X) = {y| x ∈ X ∧ y = f(x)} ⊂ Y funktsiooni f muutumispiirkonnaks. Paaris funktsioon - Funktsiooni f, mille määramispiirkond X on sümmeetriline nullpunkti suhtes, nimetatakse paarisfunktsiooniks, kui ∀x ∈ X : f(−x) = f(x). Paaritu funktsioon - Funktsiooni f, mille määramispiirkond X on sümmeetriline nullpunkti suhtes, nimetatakse paarituks funktsiooniks, kui ∀x ∈ X : f(−x) = −f(x). Perioodiline funktsioon - Funktsiooni f nimetatakse perioodiliseks, kui leidub selline arv T ≠ 0, et iga x ∈ X korral ka x ± T ∈ X ja f(x + T) = f(x).

Matemaatiline analüüs 1
82 allalaadimist
thumbnail
37
docx

Matemaatiline analüüs l.

neil vastavad funktsiooni väärtused tabeli teises reas (veerus). On võimalik vaid siis, kui funktsiooni argumendil on lõplik arv väärtusi. 2. Anaüüutiline esitusviis. Funktsioon esitatakse valemi kujul. Kui vaja, lisatakse ka määramispiirkonna kirjeldus. 3.Graafiline esitusviis. Funktsioon esitatakse graafikuna tasandil ristkoordinaadistikus. Funktsiooni f graafiku definitsioon on järgmine: G = {P = (x, f(x)) || x X} . Kui f(x) > 0, siis graafik paikneb ülalpool x-telge. Kui aga f(x) < 0, siis graafik jääb x-teljest allapoole. Kui suvaline y-teljega paralleelne sirge saab funktsiooni graafikut lõigata maksimaalselt ühes punktis, siis funktsioon on ühene. Juhul, kui eksisteerib vähemalt üks y-teljega paralleleelne sirge lõikab funktsiooni graafikut mitmes punktis, vaadeldav funktsioon on mitmene. 3. Paaris- ja paaritud funktsioonid. Perioodilised funktsioonid. Kasvavad ja kahanevad funktsioonid. Astmefunktsioon

Matemaatiline analüüs
484 allalaadimist
thumbnail
5
docx

Kordamisküsimused aines "Matemaatiline analüüs I"

Kordamisküsimused aines "Matemaatiline analüüs I" Funktsioon Funktsioon. Kui muutuja x igale väärtusele piirkonnas X vastab muutuja y kindel väärtus, siis öeldakse, et y on muutuja x funktsioon piirkonnas X. Funktsiooni y argumendiks e sõltumatuks muutujaks nimetatakse muutujat x Sõltuvaks muutujaks nimetatakse funktsiooni y. Funktsiooni määramispiirkond. Funktsiooni y määramispiirkonnaks nimetatakse argumendi x muutumispiirkonda. Funktsiooni y muutumispiirkonnaks Y nimetatakse funktsiooni väärtuseid, mis vastavad kõigile argumendi väärtustele piirkonnas X. Funktsioonide liigid.

Matemaatiline analüüs I
27 allalaadimist
thumbnail
24
pdf

MATEMAATILINE ANALÜÜS I. KORDAMISKÜSIMUSED

• Argumentide x hulka X nimetatakse määramispiirkonnaks. • Suuruse y muutumispiirkonda Y nimetatakse muutumispiirkonnaks. Funktsioon on antud, kui on teada: a) F-ni määramispiirkond X b) Eeskiri, mis seab argumendi x igale väärtusele piirkonnas X vastavusse funktsiooni y väärtuse. 3. Ilmutamata ja ilmutatud kujul funktsioon. Näited. Ilmutatud funktsiooniks nimetatakse niisugust funktsiooni, kus funktsiooni esitava võrduse vasakul pool on ainult sõltuv muutuja y ja paremal pool muutujast x sõltuv avaldis. Ilmutamata funktsiooniks nimetatakse niisugust funktsiooni, mille väärtused leitakse x ja y siduvast võrrandist (üldjuhul f(x; y) = 0). N: ilmutatud f-nid: y = 2x+1, ilmutamata kujul: x2 + y2 = 1 4. Funktsiooni graafik (definitsioon, piltlik esitus). Funktsiooni y = f(x) graafikuks nimetatakse kõigi niisuguste punktide (x, f(x)) hulka, kus x ∈ X. Lühidalt, Funktsiooni graafik = { (X, f(x)) : x ∈ X } 5

Matemaatiline analüüs 1
29 allalaadimist
thumbnail
13
docx

Matemaatiline analüüs I KT (lihtsam variant)

kehtib võrdus  f(−x) = −f(x). Perioodilised funktsioonid. Funktsiooni f nimetatakse perioodiliseks, kui leidub konstant C > 0 nii, et iga x ∈ X korral kehtib võrdus f(x + C) = f(x). Väikseimat sellist konstanti C nimetatakse funktsiooni f perioodiks. Kasvavad ja kahanevad funktsioonid. Astmefunktsioon. Astmefunktsioon on funktsioon kujul y = xa, kus a on nullist erinev konstantne astendaja. Selle funktsiooni määramispiirkond, väärtuste hulk ja graafik sõltuvad oluliselt astmest a. Eksponent- ja trigonomeetrilised funktsioonid, nende määramispiirkonnad, väärtuste hulgad ja graafikud. Trigonomeetrilised funktsioonid y = sin x, y = cos x, y = tan x ja y = cot x radiaanides antud argumendiga x 4. Üksühese funktsiooni ja pöördfunktsiooni definitsioonid. Üksühene funktsioon – kujutis, mis seab igale argumendi x väärtusele oma määramispiirkonnast vastavusse ühe y väärtuse.

Kõrgem matemaatika
14 allalaadimist
thumbnail
7
docx

MATEMAATIKA ANALÜÜS 1 KT 1 vastused

leidub lõplik vahemik (a; b) nii, et A C (a; b).Tõkkestatud hulgad on näiteks: vahemik (a,b), lõik ,poollõik . 2. Jääv ja muutuv suurus. Muutuv suurus on suurus mis võib omandada erinevaid arvulisi väärtusi (aeg).Suuruse milline väärtus ei muutu nimetatakse jäävaks suuruseks (kiirus). Suuruse muutumispiirkond. Muutuva suuruse kõigi võimalike väärtuste hulka nimetatakse selle suuruse muutumispiirkonnaks. Funktsiooni definitsioon. Funktsiooni argument, sõltuv muutuja, määramispiirkond ja väärtuste hulk. Funktsiooni esitamine tabelina ja analüütiliselt. Funktsiooni graafiku mõiste. Graafiku omadused. 3. Paaris- ja paaritud funktsioonid. Funktsioon on paaris kui iga korral kehtib võrdsus kui aga korral kehtib võrdsus siis funktsioon nimetatkse paaritu. Perioodilised funktsioonid. Funktsiooni f nimetatakse perioodiliseks kui leidub konstant C>0

Matemaatika analüüs I
234 allalaadimist
thumbnail
28
pdf

Kõrgema matemaatika üldkursus

3 7 1 7 - 3 1 = - 39 + 49 - 10 18 - 21 + 4 - 6 + 7 - 1 = = 0 1 0 . 2 8 3 - 10 4 - 1 - 26 + 56 - 30 12 - 24 - 3 - 4 + 8 - 3 0 0 1 Pöhiomadused: 1. ( A-1 )-1 = A. 2. ( AB )-1 = B-1A-1. 3. ( AT )-1 = ( A-1)T. 1 4. DA-1 = . DA 5. Funktsiooni mõiste, tema esitusviise Eeskirja, mis seab sõltumatu muutuja igale väärtusele vastavusse sõltuva muutuja mingi ühe kindla väärtuse, nimetatakse funktsiooniks. Sõltumatut muutujat nimetatakse funktsiooni argumendiks. Argumendi väärtuste järgi leitud sõltuva muutuja vastavaid väärtusi nimetatakse funktsiooni väärtusteks. Funktsiooni väärtuste leidmine argumendi väärtuste järgi võib toimuda mitmeti: arvutamise, jooniselt mõõtmise, sellekohasest tabelist leidmise või vajaliku katse korraldamise teel.

Kõrgem matemaatika
330 allalaadimist
thumbnail
9
doc

Matemaatiline analüüs - konspekt I

Funktsiooni mõiste. Olgu antud 2 muutuvat suurust x ja y. Funktsiooniks (ehk üheseks funktsiooniks) nimetatakse kujutist mis seab suuruse x igale väärtusele tema muutumispiirkonnast vastavusse suuruse y ühe kindla väärtuse. Muutujat x nimetatakse seejuures sõltumatuks muutujaks ehk argumendiks ja muutujat y sõltuvaks muutujaks. Funktsioone tähistatakse tavaliselt tähtedega f; g; u; v; ; jne. Olgu antud funktsioon f mille argumendiks on x ja s~oltuvaks muutujaks y. Muutuja y väärtust milleks funktsioon f kujutab argumendi x nimetatakse funktsiooni f väärtuseks kohal x ja tähistatakse sümboliga f(x). Seega, me võime kirjutada seose y = f(x) ; (1.1) mis väljendab muutuja y "seotust" argumendiga x funktsiooni f kaudu. Mõnikord kasutatakse funktsiooni ja sõltuva muutuja tähistamiseks ühte ja sama sümbolit. Sellisel juhul seos (1.1) omab kuju y = y(x).

Matemaatiline analüüs
602 allalaadimist
thumbnail
4
odt

Matemaatiline Analüüs I kollokvium spikker

Kui hulga X c R igale elemendile x on vastavusse seatud element y hulgast Y, siis öeldakse, et muudu ∆x suhte piirväärtust, kui argumendi muut laheneb nullile. hulgal X on määratud ühene funktsioon f. Kui funktsioon f omab punktis a loplikku tuletist, siis õeldakse et ta on selles punktis diferentseeruv. Funktsiooni f, mille määramispiirkond X on sümmeetriline nullpunkti suhtes, nimetatakse Tahistame f ∈ C^1(a) voi f ∈ D(a). Tuletise arvutamist nimetatakse diferentseerimiseks. paarisfunktsiooniks, kui ∀x ∈ X : f(−x) = f(x). Funktsiooni y = f(x) vasakpoolseks tuletiseks kohal x nimetatakse suurust

Matemaatiline analüüs
77 allalaadimist


Sellel veebilehel kasutatakse küpsiseid. Kasutamist jätkates nõustute küpsiste ja veebilehe üldtingimustega Nõustun