Vajad kellegagi rääkida?
Küsi julgelt abi LasteAbi
Logi sisse
✍🏽 Avalikusta oma sahtlis olevad luuletused! Luuletus.ee Sulge

Masinamehhaanika kordamisküsimused 2010 - sarnased materjalid

ringjoon, mehhanism, hammast, joonestada, moodul, sidemeid, vänt, lülid, rotatsioon, väntmehhanism, vabadusaste, nurkkiirus, profiil, väntmehhanismi, ringjooned, normaal, translatsiooni, hammasülekande, energiad, dünaamiline, ülekandesuhe, ülekandearv, kinemaatiline, varbmehhanism, kasuteguri, mehhanismide, hammasülekanne, võimsused
thumbnail
58
doc

Masinamehaanika täielik loengukonspekt

Loengukonspekt õppeaines MASINAMEHAANIKA Koostanud prof. T.Pappel Mehhatroonikainstituut Tallinn 2006 2 SISUKORD SISSEJUHATUS 1. ptk. MEHHANISMIDE STRUKTUURITEOORIA 1.1. Kinemaatilised paarid, lülid, ahelad 1.1.1. Kinemaatilised paarid 1.1.2. Vabadusastmed ja seondid 1.1.3. Lülid, kinemaatilised ahelad 1.2. Kinemaatilise ahela vabadusaste. Liigseondid. Liigliikuvused 1.2.1. Vabadusaste 1.2.2. Liigseondid. Liigliikuvused. 1.3. Mehhanismide struktuuri sünteesimine 1.3.1. Struktuurigrupid 1.3.2. Kõrgpaaride arvestamine 1.3.3. Kinemaatiline skeem. Struktuuriskeem 2. ptk. MEHHANISMIDE KINEMAATILINE ANALÜÜS 2.1. Eesmärk. Algmõisted 2.2

Masinatehnika
509 allalaadimist
thumbnail
7
doc

Masinaelemendid lõpueksam

1.Masina ja mehhanismi omadused. 1)Funktsionaalsus.2)Suutlikkus.Kestvus.3)Tehnoloogilisus.Ergonomilisus.Maksu mus.Disain. 2.Mis on mehhanism ja mis on masin? Mehhanism- kehade süsteem,mis teisendab ühe( või mitme) keha etteantud liikumise teis(t)e keha(de) nõutavaks e soovitud liikumiseks.Masin-mehhanismist või mehhanismidest koosnev seade inimese füüsilise või vaimse töö kergendamiseks. 3.Mis on detail ja mis on masinaelement? Detail-toode(masinaelement),mis valmistatud ühest materjalist koosteoperatsioone kasutamataElement e masinaelement-kindlat f-ni täitev masina elementaarosa(nt veerelaager,detail). 4

Masinaelemendid
192 allalaadimist
thumbnail
9
doc

HAMMASÜLEKANNE

Hammasülekanne Hammasratta materjal C45E (ReH = 370 MPa, Rm = 600 MPa, -1 = 275 MPa, -1 = 165 MPa). Hammasratta pinna kõvadus 400 HB Hammasratta hamba laius b = 25 mm; d jaotus = 200 mm; hammasratta moodul m = 2,5 (vt. Tabel 1). Hamba profiili ümardusraadius rt = 0,6 mm. Ülekantav pöördemoment m = 310 Nm. Ülekandesuhe u=3; z1= 21; z2= 65; tegemist on suurema täpsusega hammasratastega.

Masinaelemendid ii
203 allalaadimist
thumbnail
252
doc

Rakendusmehaanika

Kontroll- ja juhtimismasinaid kasutatakse tootmise automatiseerimiseks ning kiiresti kulgevate ja pidevalt kontrollitavate tootmisprotsesside juhtimiseks. Masinate koostisosadeks on mehhanismid, mis muudavad üht liiki liikumist teiseks. Mehhanism – kehade (lülide) tehissüsteem, mis muundab ühe või mitme keha (vedava lüli) etteantud liikumise süsteemi teiste kehade (veetavate lülide) soovitavaks liikumiseks. Iga mehhanism või seadis koosneb detailidest, mis on ühendatud koostuks. Detail - toode (masinaelement), mis valmistatud ühest materjalist koosteoperatsioone kasutamata (kruvi, võll, valatud korpus jne.). Element - kindlat funktsiooni täitev masina elementaarosa (näit. veerelaager, aga ka enamus detaile). Koost ehk sõlm - tootvas tehases elementidest koostatud toode (koostamisüksus). Liiteid kasutatakse detailide omavaheliseks ühendamiseks. Masinates esinevad liited

Materjaliõpetus
142 allalaadimist
thumbnail
3
doc

Teooria küsimused ja vastused

Mainitud parameetriv jagunevad omakorda staatilisteks (konstantne jõud nt), Kahe paralleelse jõu resultant. vahelduvateks (perioodiliselt muutuv) ja dünaamilisteks (mitteperioodiliselt muutuv). Kui süsteemile mõjub kaks paralleelset jõudu, siis nende resultant on nendega paralleelne Välisjõud väljendab mõne teise keha mõju vaadeldavale kontruktsioonile; välisjõude nim ningselle moodul on kahe jõu aritmeetiline summa, kui jõud on ühesuunalised ning ka koormusteks. Oluline koormuste liigitamise tunnus on nende sõltuvus ajast. Ajas jõudude vahe, kui suunad on vastupidised. muutumatud koormust nim staatiliseks, suuruselt suunalt või asukohalt muutuvat ­

Masinatehnika
241 allalaadimist
thumbnail
22
doc

MASINATEHNIKA MHE0061

3) Lõikedeformatsioon. m 4) Väändedeformatsioon m F1 F2 5) Paindedeformatsioon 6. Kähe paralleelse jõu resultant. Kui süsteemile mõjub kaks paralleelset jõudu, siis nende resultant on nendega paralleelne ningselle moodul on kahe jõu aritmeetiline summa, kui jõud on ühesuunalised ning jõudude vahe, kui suunad on vastupidised. 7. Mis on jõupaar? Kahe võrdvastupidise parelleeljõu poolt moodustatud jõusüsteem 8. Jõupaari moment (skeem, arvutamine). Jõupaari moment on võrdne ühe jõu ja jõupaari õla korrutisega. M(F 1) = F1*l F1 F2

Masinatehnika
61 allalaadimist
thumbnail
54
doc

Valemid ja mõisted

MATEMAATIKA TÄIENDÕPE VALEMID JA MÕISTED KOOSTANUD LEA PALLAS 1 2 SAATEKS Käesolev trükis sisaldab koolimatemaatika valemeid, lauseid, reegleid ja muid seoseid, mille tundmine on vajalik kõrgema matemaatika ülesannete lahendamisel. Kogumikus on ka mõned kõrgema matemaatika õppimisel vajalikud mõisted, mida koolimatemaatika kursuses ei käsitletud.. 3 KREEKA TÄHESTIK - alfa - nüü - beeta - ksii - gamma - omikron - delta - pii - epsilon - roo - dzeeta - sigma - eeta - tau - teeta - üpsilon - ioota - fii - kapa - hii - lambda - psii - müü - oomega

Matemaatika
1099 allalaadimist
thumbnail
45
doc

Teooriaküsimused ja vastused

Kordamisküsimused Staatika, kinemaatika ja dünaamika 1. Mida nimetatakse jõuks? Jõud on vektoriaalne suurus, mis väljendab ühe materjaalse keha mehaanikalist toimet teisele kehale ja mille tulemuseks on kehade liikumise muutus või keha osakeste vastastikuse asendi muutus ehk deformatsioon. Jõu iseloomustamiseks peab tal olema rakenduspunkt, suund ja moodul. 2. Mis on jõu mõjusirge? Jõu mõjusirge on sirge, mille peal jõu vektor asetseb. 3. Mida nimetatakse absoluutselt jäigaks kehaks? Absoluutselt jäigaks kehaks nimetatakse sellist keha, mille mis tahes kahe punkti vaheline kaugus jääb alati muutumatuks. 4. Millal võib kahte jõusüsteemi nimetada ekvivalentseteks?' Kahte jõusüsteemi võib nimetada ekvivalentseks, kui ühe jõusüsteemi võib asendada teisega nii, et keha liikumises või paigalseisus midagi ei muutu. 5

Insenerimehaanika
358 allalaadimist
thumbnail
108
doc

MATEMAATIKA TÄIENDÕPE: Valemid

MATEMAATIKA TÄIENDÕPE VALEMID JA MÕISTED KOOSTANUD LEA PALLAS 1 2 SAATEKS Käesolev trükis sisaldab koolimatemaatika valemeid, lauseid, reegleid ja muid seoseid, mille tundmine on vajalik kõrgema matemaatika ülesannete lahendamisel. Kogumikus on ka mõned kõrgema matemaatika õppimisel vajalikud mõisted, mida koolimatemaatika kursuses ei käsitletud.. 3 KREEKA TÄHESTIK Α α  alfa Ν ν  nüü Β β  beeta Ξ ξ  ksii Γ γ  gamma Ο ο  omikron Δ δ  delta Π π  pii Ε ε  epsilon Ρ ρ  roo Ζ ζ  dzeeta Σ σ  sigma Η η  eeta Τ τ  tau Θ θ  teeta Υ υ  üpsilon Ι ι  ioota Φ φ  fii Κ κ  kap

Algebra I
61 allalaadimist
thumbnail
24
pdf

Füüsika 1 eksam

Sissejuhatus Erinevad ühikud rad rad 1 2 = 1Hz 1 = Hz s s 2 Vektorid r F - vektor r F ja F - vektori moodul Fx - vektori projektsioon mingile suunale, võib olla pos / neg. r Fx = F cos Vektor ristkoordinaadistikus Ükskõik millist vektorit võib esitada tema projektsioonide summana: r r r r F = Fx i + Fy j + Fz k , millest vektori moodul: F = Fx2 + Fy2 + Fz2 Kinemaatika Kiirus Keskmine kiirus Kiirus on raadiusvektori esimene tuletis aja t2 järgi. s v dt s v = - võimalik leida ühtlase liikumise kiirust vk = = t1 t t t

Füüsika
193 allalaadimist
thumbnail
104
pdf

Konspekt

I. Determinandid 1 Determinandi m~ oiste 1.1 Idee selgitus Algul defineerime esimest j¨ arku determinandi, siis esimest j¨arku determinandi abil teist j¨ arku determinandi, seej¨arel teist j¨arku determinandi abil kolmandat j¨ arku detereminandi jne, n-j¨arku determinandi defineerime (n - 1)-j¨arku determinandi kaudu. Sel- list defineerimisviisi nimetatakse induktiivseks ja vastavat objekti induktiivseks konstruktsiooniks. Eelnevalt on soovitatav tutvuda maatriksi m~oistega (II.1.1). Kooloniga v~ordus A := B t¨ahendab j¨argnevas, et A on defineeri- tud B kaudu. Seda v~ordust kasutame ka samav¨ a¨arsete t¨ ahistuste sissetoomiseks. 1.2 Esimest j¨ arku determinant Arvu a R determinandi |a| ehk esimest j¨ arku determinandi de- fineerime valemiga |a| := det a := a. 1.3 N¨ aide | - 5| = -5

Lineaaralgebra
511 allalaadimist
thumbnail
11
docx

Mehaanika eksam

millel on ühine mõjusirge. 5. Jäigastamise aksioom. . Deformeeruva keha tasakaal ei muutu, kui lugeda ta deformeerunud olekus absoluutselt jäigaks 6. Jõu projektsioonid tasandil: Fx ja Fy on jõuprojektsioonid - skaalarid. Fx =Fcos a Fy =Fcos b Jõu ristkomponendid on vektorid: Fi =Fx i ja Fj =Fy j, kus i ja j on telgede ühikvektorid, Fx2 + Fy2 Ristkomponentide kaudu jõud avaldub kujul: F= Fi+Fj = Fxi+Fyj ja jõu moodul F= 7. Jõu komponendid ja projektsioonid ruumis Fx =Fcos a Fy =Fcos b Fz =Fcos g Jõu ristkomponendid: Fi =Fx i, Fj =Fy j, Fk =Fz k. Siin i, j, k on telgede ühikvektorid. Fx2 + Fy2 + Fz2 Jõud avaldub kujul: F= Fi+Fj+ Fk = Fxi+Fyj+ Fzk ja jõu moodul F= 8. Koonduvaks nimetatakse jõusüsteemi, mille jõudude mõjusirged lõikuvad ühes punktis Teoreem: resultandi projektsioon koordinaatteljel võrdub liidetavate vektorite projektsioonide algebralise

Füüsika ii
76 allalaadimist
thumbnail
15
doc

Füüsika I eksami piletid

§5.Vektorid ja skalaarid ning tehted nendega. Vektoriks nim. sellest liiki suurust nagu nihe, s. o. suurus, mida iseloomustab arvväärtus ja suund ning mille liitmist teostatakse (joon.1)näidatud reegli järgi. Vektorite hulka kuuluvad kiirus, jõud ning mitmed teised suurused. Vektori määrab ära suurus a, suund a ja rakenduspunkt a. Skalaarideks nim. suurusi, mille määramiseks piisab ainult arvväär-tusest (temp., mass, tihedus). Siia hulka kuuluvad tee, aeg ja mass jne. Vektori moodul on alati positiivne skalaar. Vektori kirjeldamine: vektoreid , mis on suunatud mööda paralleelseid sirgeid (samas või vastupidises ), nim. kollineaarseteks. Vektoreid, mis on paralleelsed ühe ja sama tasapinnaga, nim. komplanaarseteks. Samasuunalisi võrdsete moodulitega kollineaarseid vektoreid nim. võrdseteks. Vektorite liitmine. Olgu antud kaks vektorit A ja B(joon.2). Resul-tantvektori C saamiseks viime vektori B

Füüsika
1097 allalaadimist
thumbnail
414
pdf

TTÜ üldfüüsika konspekt

2 z0 t= . (1.22) g Saadud aja t asendame süsteemi (1.21) esimese paari esimesse võrrandisse, saame maksimaalse lennukauguse 2z0 x = v0 . (1.23) g Kiiruse mooduli v arvutamiseks lähtume valemist v = v x2 + v z2 . (1.24) Kiirusvektori komponendid saame süsteemist (1.21). Kiiruse moodul suvalisel ajahetkel on seega v = v02 + g 2 t 2 . (1.25) Et arvutada kiiruse moodulit maapinnale langemise hetkel, asendame valemisse (1.25) veel lennuaja valemist (1.22): 6 v = v02 + 2 z 0 g . (1.26) 1.4b Kaldu horisondiga visatud keha liikumine.

Füüsika
178 allalaadimist
thumbnail
22
doc

Staatika, kinemaatika ja dünaamika

Saadud jõud ei ole resultantjõud. 30. Mis on jõuhulknurk ja kuidas see konstrueeritakse? Jõuhulknurga puhul kujutab mitme jõu geomeetrilist summat ehk peavektorit nendest jõududest koostatud hulknurga sulgeja. Vektorhulknurka ehitades tuleb silmas pidada, et kõigi liidetavate vektorite nooled peavad suunduma ühele poole (mööda hulknurga äärejoont), peavektori nool aga vastassuunas. Jõuvektorite liitmise järjekorrast peavektori moodul ega suund ei sõltu. 31. Mida nimetatakse koonduvaks jõusüsteemiks? Koonduvaks jõusüsteemiks nim sellist jõusüsteemi, mille kõikide jõudude mõjusirged lõikuvad ühes ja samas punktis. 32. Kuidas liita kahte jõudu, mille mõjusirged ei lõiku? Kas tulemus on resultant? Üks jõuvektor liigutada teise jõuvektori algpunkti ja siis nad rööpküliku põhimõttel liita. Tulemus ei ole resultant. 33. Kas koonduval jõusüsteemil on alati olemas resultant?

Insenerigraafika
69 allalaadimist
thumbnail
22
doc

Eksamiküsimused

Saadud jõud ei ole resultantjõud. 30. Mis on jõuhulknurk ja kuidas see konstrueeritakse? Jõuhulknurga puhul kujutab mitme jõu geomeetrilist summat ehk peavektorit nendest jõududest koostatud hulknurga sulgeja. Vektorhulknurka ehitades tuleb silmas pidada, et kõigi liidetavate vektorite nooled peavad suunduma ühele poole (mööda hulknurga äärejoont), peavektori nool aga vastassuunas. Jõuvektorite liitmise järjekorrast peavektori moodul ega suund ei sõltu. 31. Mida nimetatakse koonduvaks jõusüsteemiks? Koonduvaks jõusüsteemiks nim sellist jõusüsteemi, mille kõikide jõudude mõjusirged lõikuvad ühes ja samas punktis. 32. Kuidas liita kahte jõudu, mille mõjusirged ei lõiku? Kas tulemus on resultant? Üks jõuvektor liigutada teise jõuvektori algpunkti ja siis nad rööpküliku põhimõttel liita. Tulemus ei ole resultant. 33. Kas koonduval jõusüsteemil on alati olemas resultant?

Insenerimehaanika
216 allalaadimist
thumbnail
53
doc

LAEVA ABIMEHHANISMID

LAEVA ABIMEHHANISMID SISSEJUHATUS: Abimehhanismide , laevaseadmete ja süsteemide tähtsus ja liigitamine . Laeva energeetikaseade koosneb: 1. Peamasin (ad). 2. Laeva abimehhanismid (AM). Peamasinad peavad kindlustama laeva käigu , abiseadmed kindlustavad peajõuseadmete ekspluateerimise ja muud laevasisesed vajadused. Seadmete tarbimisvõimsuste kasvuga , uute võimsate jõuseadmete ja juhtimisseadmete kasutuselevõtuga on abimehhanismide osatähtsus tunduvalt kasvanud - energeetikaseadmete jagamine pea ja abiseadmeteks on tinglik. Näiteks veemagestusseadmed ,mida varem kasutati aurukatla toitevee saamiseks , võis lugeda peaenergeetikaseadmete hulka , kasutatakse edukalt pikematel reisidel majandus ja joogivee saamisel. Seega võib abimehhanismid tinglikult liigitada . a. Peamasinat teenindavad abimehhanismid ( jahutusseadmed, õlitusseadmed , pumbad , kompressorid jne. ). b. Üldotstarbelised ( rooliseade, kuivendussüsteemid , ventiltsiooni- õhukonditsoneeri, küttesüsteem

Abimehanismid
65 allalaadimist
thumbnail
50
docx

Füüsika eksamiks kordamine

1. Vektorite liitmine ja lahutamine (graafiline meetod ja vektori moodulite kaudu). Kuidas leida vektorite skalaar- ja vektorkorrutis? Graafiline liitmine: Kolmnurga reegel – eelmise vektori lõpp-punkti pannakse uue vektori algpunkt. Vektorite liitmisel tuleb aevestada suundasid. Saab kuitahes palju vektoreid kokku liita. Rööpküliku reegel – vektorite alguspunkt paigutatakse nii, et nende alguspunktid ühtivad. Saab ainult kahte vektorit kokku liita. ax – x-telje projektsioon ay – y-telje projektsioon az – z-telje projektsioon i, j, k – vektori komponendid ⃗a + b⃗ =i⃗ ( a x + bx ) + ⃗j ( a y +b y ) + ⃗k (a z +b z ) Skalaarkorrutis: ⃗a ∙ ⃗b=|⃗a||b⃗| cosα=a x b x +a j b j +a z b z Kui suudame ära näidata, et vektorid on risti, siis võime öelda, et skalaarkorrutis on 0. ⃗ ⃗ Vektorkorrutis: |a⃗ × b|=¿ ⃗a∨∙∨b∨sinα Vektorid on võrdsed, kui suund ja siht on sama. Samasihilised võivad olla eri

Füüsika
77 allalaadimist
thumbnail
156
pdf

Kõrgem matemaatika

MTMM.00.340 Kõrgem matemaatika 1 2016 KÄRBITUD loengukonspekt Marek Kolk ii Sisukord 0 Tähistused. Reaalarvud 1 0.1 Tähistused . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 0.2 Kreeka tähestik . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 0.3 Reaalarvud . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 0.4 Summa sümbol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1 Maatriksid ja determinandid 7 1.1 Maatriksi mõiste . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 1.2 Tehted maatriksitega . . . . . . . . . . . . . . . . . . .

Kõrgem matemaatika
94 allalaadimist
thumbnail
52
pdf

Füüsika eksamiks kordamine

Iga vektori võib asendada vähemalt kahe vektoriga, millede summa annab esialgse vektori. 11) Mis on vektori projektsioon teljel ja miks seda on vaja? Vektori projektsioon teljel on skalaar. Teades nurka vektori ja telje vahel ning projektsiooni pikkust, saame arvutada vektori tõelise pikkuse koosinusfunktsiooni kaudu. 12) Kuidas konstrueeritakse ühikvektor ja miks see on vajalik? Ühikvektor saadakse, kui võetakse vektoriga ühtiva suunaga vektor, mille moodul on võrdne ühega. Ühikvektori konstrueerimine on tihti vajalik tegevus, et valmistada hetkel vaja mineva suunaga vektorit. 13) Mis on vektorite skalaarkorrutis? Tooge kursusest kaks näidet.     a b  c a  b  cos  c Näiteks : A=F*s*cosα N =F*v*cosα 14) Mis on vektorite vektorkorrutis? Joonis ja kaks näidet kursusest.    c  a  b  sin a b  c 15) Mis on taustsüsteem

Füüsika
18 allalaadimist
thumbnail
9
doc

Füüsika I kordamiskonspekt

Kiirus Puntki asukoha ruumis määrab raadiusvektor r. Aja ja raadiusvektori juurdekasvu abil saame r moodustada suhte . Antud juhul sõltuvad vektori moodul ja suund ajavahemiku t t suurusest.. Kui seda vähendada, siis väheneb ka r. St et t nullile lähenemisel nullile läheneb antud suhe teatud piirväärtusele, mida nimetatakse liikumise kiiruseks- r dr v = lim . Kiirust võib määrata ka raadiusvektori tuletisena aja järgi- v = . Kiirus on t 0 t dt

Füüsika
423 allalaadimist
thumbnail
40
docx

ElektriIised laevajuhtimisseadmed eksamiküsimuste vastused 2017

41 42 ELJ II eksamiküsimused ja vastused 1. Vaba vurr ja tema omadused Vurri, mille riputuspunkt ühtib raskuskeskmega ja telgedel puuduvad hõõrdejõud, nimetatakse vabaks vurriks. Vabal vurril on kolm omadust: 1) vaba vurr püüab säilitada muutumatuna oma peatelje suunda liikumatu taustsüsteemi suhtes. Kui vaba vurri peatelg suunata mingi tähe peale, siis sõltumata aluse liikumisest, millele vaba vurr on paigutatud, näitab vurri peatelg muutumatult suunda tähele. 2) Välise jõu rakendamisel vaba vurri teljele, mis ei ole peatelg, ei liigu peatelg mitte rakendatud jõu suunas, vaid ristsuunas sellele. Seda vaba vurri omadust nimetatakse pretsessiooniks. 3) Lühiajaline välisjõu mõju –näiteks löök- peateljele ei muuda tema suunda, küll aga põhjustab tema kiire võnkumise tasakaaluasendi ümber. Neid võnkumisi nimetatakse nutatsiooniks. 2. Vurri kineetil

Laevandus
13 allalaadimist
thumbnail
52
doc

D’Alembert’i printsiip

Tallinna Tehnikaülikool Mehhatroonikainstituut Jüri Kirs, Kalju Kenk Kodutöö D-2 D'Alembert'i printsiip Tallinn 2007 Kodutöö D-2 D'Alembert'i printsiip Leida mehaanikalise süsteemi sidemereaktsioonid kasutades d'Alembert'i printsiipi ja kinetostaatika meetodit. Kõik vajalikud arvulised andmed on toodud vastava variandi juures. Seda, millised sidemereaktsioonid süsteemi antud asendis tuleb leida, on samuti täpsustatud iga variandi juures. Variantide järel on lahendatud ka rida näiteülesandeid koos põhjalike seletustega. Näiteülesandeid d'Alembert'i printsiibi kohta võib lugeda ka E. Topnik' u õpikus ,,Insenerimehaanika ülesannetest IV. Analüütiline mehaanika", Tallinn 1999, näited 14-17, leheküljed 39-49. Kõikides variantides xy-tasapind on horisontaalne, xz- ja yz-tasapinnad aga on vertikaalsed. Andmetes toodud suurused 0 ja 0 on vastavalt pöördenurga ja

Dünaamika
71 allalaadimist
thumbnail
55
pdf

Matemaatiline analüüs II loengukonspekt

MATEMAATLINE ANALÜÜS II 1. KORDSED INTEGRAALID Kordame kõigepealt mõningaid teemasid Matemaatlise analüüsi I osast. 1.1 Kahe muutuja funktsioonid Kui Tasndi R 2 mingi piirkonna D igale punktile x, y D seatakse ühesel viisil vastavusse arv z, siis öeldakse, et piirkonnas D on määratud kahe muutuja funktsioon z f x, y . Piirkoda D nimetataksefunktsiooni f määramispiirkonnaks. See on mingi piirkond xy-tasandil. Näide 1. Poolsfääri z 1 x2 y 2 määramispiirkonnaks on ring x 2 y2 1. Funktsiooni z ln x y määramispiirkonnaks on pooltasand y x (sirgest y x ülespoole jääv tasandi osa: vaata joonist). Kahe muutja funktsioon ise esitab pinda xyz-ruumis (ruumis R 3 ). Näide 2. Funktsiooni z x2 y 2 graafikuks on pöördparaboloid (vaata allpool olevat joonist) Kahe muutuja funktsiooni f nivoojoonteks nimetatakse jooni f x, y c Näide 3. Tüüpiline näide nivoojoo

Matemaatiline analüüs II
69 allalaadimist
thumbnail
76
pdf

Soojusõpetuse konspekt

kus F on kehale mõjuv jõud,  l on keha deformatsioon ning k on keha jäikus. Samas, mehaanikast on teada ka asjaolu, et keha jäikus sõltub keha pikkusest lo, keha ristlõikepindalast S ning elastsusmoodulist ehk Youngi moodulist E: E⋅S k= . (1.21) l0 Kui keha pikkus ja ristlõikepindala (mõõdetud mõjuva jõuga risti) iseloomustavad füüsikalisi mõõtmeid, siis Youngi moodul iseloomustab vaid keha materjali. Arvestades nüüd võrdusi (1.17), (1.20), (1.21), võime kirjutada l F =k  l =E⋅S⋅ =E⋅S⋅  T . (1.22) l0 Seega oleme saanud järgmise tulemuse: keha soojuspaisumisest tingitud pikenemine avaldab teda ümbritsetavatele kehadele jõudu, mille saame leida seose (1.17) abil. 1.7. Ideaalse gaasi olekuvõrrand

Füüsika
31 allalaadimist
thumbnail
31
doc

ELEKTRIAJAMITE ÜLESANDED

kompressoritelt ja hüdropumpadelt. Elektriajam koosneb elektrimootorist ja juhtimissüsteemist, mõnikord on vajalik veel muundur ja ülekanne. Elektriajamite kursuse põhieesmärk on valida võimsuse poolest otstarbekas elektrimootor, arvestades ka kiiruse reguleerimise vajadust ja võimalikult head kasutegurit. Järgnevad ülesanded käsitlevad selle valikuprotsessi erinevaid külgi. 6.1. Rööpergutusmootori mehaaniliste tunnusjoonte arvutus Ülesanne 6.1 Arvutada ja joonestada rööpergutusmootorile loomulik ja reostaattunnusjoon. Mootori nimivõimsus Pn = 20 kW, nimipinge Un = 220 V, ankruvool Ia = 105 A, nimi- pöörlemissagedus nn = 1000 min-1, ankruahela takistus (ankru- ja lisapooluste mähised) Ra = 0,2 ja ankruahelasse on lülitatud lisatakisti takistusega Rl = 1,8 . Rööpergutusmootori tunnusjoonte arvutamiseks on otstarbekas leida elektromotoor- jõutegur, mis konstantse magnetvoo korral on püsiva väärtusega U n - I n Ra

Elektriajamid
53 allalaadimist
thumbnail
151
pdf

PM Loengud

Purunenud sidemed ei taastu, või õigemini võtab taastumine nii palju aega, et tavalises ehitustegevuses ei saa sellega arvestada. Pinnaseosakesi seovad ka osakeste, neid ümbritseva veekile ja vees leiduvate kolloidide vahel mõjuvad molekulaarsed jõud. Nende jõudude suurus sõltub peamiselt teradevahelisest kaugusest, suurenedes selle kahanemisega. Suure survega tihendatud savipinnastes võivad nad anda pinnasele kaljupinnase tugevuse. Neid sidemeid ei teki puhastes liivades. Juhul kui aga liiv sisaldab väheselgi hulgal saueosakesi, võivad viimased kleepudes liivaterade pinnale põhjustada omakorda liivaterade kleepumise. Vesi- molekulaarsidemed on plastse iseloomuga. Pärast sidemete purustamist osakeste ümberpaigutuse tõttu taastub nende tugevus suhteliselt kiiresti. Pinnase tugevus tervikuna taastub muidugi juhul kui tema tihedus jääb pärast segamist endiseks või suureneb.

Pinnasemehaanika, geotehnika
200 allalaadimist
thumbnail
60
doc

Kineetilise energia teoreem

Tallinna Tehnikaülikool Mehhatroonikainstituut Jüri Kirs, Kalju Kenk Kodutöö D-3 Kineetilise energia teoreem Tallinn 2009 Kodutöö D-3 Kineetilise energia teoreem Leida mehaanikalise süsteemi mingi keha kiirus ja kiirendus, või mingi ploki nurkkiirus ja nurk- kiirendus vaadeldaval ajahetkel, kasutades kineetilise energia muutumise teoreemi. Mõningates variantides tuleb leida ainult mingi keha kiiruse. See, millise suuruse tuleb variandis leida, on täpsustatud iga variandi juures. Kõik süsteemid on alghetkel paigal. Kõik vajalikud arvulised andmed on toodud vastava variandi juures. Kõik rattad veerevad ilma libisemata. Kõik kehad on absoluutselt jäigad, niidid on venimatud ning kaalutud. Niidid plokkide suhtes kunagi ei libise. Kõik rattad ja plokid on ühtlased ümmargused kettad, kui variandis ei ole spetsiaalselt teisiti mä

Dünaamika
75 allalaadimist
thumbnail
15
docx

Masinatehnika eksam 2010/2011

Kahe samasuunalise paralleeljõu süsteemi resultant on nende jõududega parallelne ning selle moodul võrdne liidetavate jõudude moodulite summaga. Resultandi mõjusirge jaotab liidetavate jõudude rakenduspunktide vahelise kauguse seesmiselt osadeks , mis on pöördvõrdelised nende jõudude moodulitega R = F1 + F2 AC F2 AC BC AB = ; = = BC F1 F2 F1 R Kahe erineva mooduliga vastassuunalisel paralleeljõul on resultant, mis on nende jõududega paralleelne , kusjuures selle moodul võrduv liidetavate moodulite vahega. Resultandi mõjusirge jaotab liidetavate jõudude rakenduspunktide vahelise kauguse väliselt osadeks, mis on pöördvõrdelised nende jõudude moodulitega. 1 R = F1 - F2 AC F2 AC BC AB = ; = = BC F1 F2 F1 R 6. Mis on jõupaar? Jõupaari moodustavad 2 võrdse mooduliga, praleelsest ja vastasuunalist jõudu, mis asuvad teineteisest kaugusel l. F1 = - F2 F1 IIF2

Masinatehnika
225 allalaadimist
thumbnail
69
docx

FÜÜSIKA 1 eksami vastused

Kahe vektori lahutamise tehte saab asendada lahutatava vektori vastandvektori liitmisega, ehk b asemel tuleb -b. Vektori a komponendid ax ja ay same leida valemitega Vektori pikkuse ehk mooduli saab Pikkuse-nurga saab avaldada teades, et Kahe vektori vektorkorrutis on vektor , mille moodul on võrdne vektorite moodulite ja nendevahelise nurga siinuse korrutisega , siht on risti tasandiga , milles asuvad korrutatavad vektorid ja suund on määratud parema käe kruvi reegliga . [v1 v2]= v1 × v2 = v1 v2 sin kusjuures [v1v2=­[v2v1] 3 SI ühikud SI põhiühikud: Suurus Ühiku nimetus Tähis Pikkus Meeter M

Füüsika
108 allalaadimist
thumbnail
65
pdf

Mõõtmestamine ja tolereerimine

MÕÕTMESTAMINE JA TOLEREERIMINE 2 ×16 tundi Teema Kestvus h 1. Sissejuhatus. Seosed teiste aladega 2 Mõisted ja terminiloogia. GPS standardite maatriksmudel 2. Geometrilised omadused. Mõõtmestamise 2 üldprintsiibid. Ümbrikunõue, maksimaalse materjali tingimus 3. ISO istude süsteem. Tolerantsiväljad 2 4. Istud. Võlli ja avasüsteem 2 5. Soovitatavad istud. Istude rahvuslikud süsteemid 2 6. Istude kujundamise põhimõtted 2 Istude analüüs ja süntees 7. Liistliidete tolerantsid. 2 Üldtolerantsid 8. Geomeetrilised hälbed. Kujuhälbed. 2 Suunahälbed 9. Viskumise hälbed. Asetsemise hälbed. Lähted 2 Nurkade ja koonuste hälbed ja tolerantsid 10. Pinnahälb

Mõõtmestamineja...
235 allalaadimist
thumbnail
8
doc

Kordamisküsimused: Staatika ja Kinemaatika

kohta? Jõupaaril pole resultanti ega ole kunagi tasakaalus, kuna see paneb keha pöörlema ümber mingi telje kiirendusega. · Defineerida jõupaari moment. Kirjutada ka valem. Kas see on skalaarne või vektoriaalne suurus? Jõupaari momendiks nimetatakse jõupaari üksikjõu ja jõupaari õla korrutist. See on vektoriaalne suurus. M=F*d · Mis on jõupaari momentvektor? Kuhu on see suunatud ja milline on selle moodul? Kirjutada ka selle vektorvalem. Jõupaari momentvektor on vabavektor, mille võib vabalt paralleelselt iseendaga üle kanda suvalisse punkti. See on suunatud risti jõupaari mõjutasapinnaga sinna, kuspoolt vaadates jõupaari moment liigub vastupäeva. · Kuidas asetsevad teineteise suhtes tasapinnalise jõusüsteemi peavektor ja peamoment? Omavahel risti, kusjuures peamoment on risti tasapinnaga.

Staatika kinemaatika
281 allalaadimist
thumbnail
65
doc

AM kordamiskusimused lopueksamiks ( vastused)

Küsimus 1. 1. Pumpade kasutusalad Pümba tööd iseloomustavad järgmised parameetrid: M ­ manomeeter näitab rõhku selles paigas, kus ta ise on (sest manomeetri toru on vett täis) Rõhk pumba survetorus p = M+ zm , kus zm on kõrgusvahest põhjustatud rõhk. V ­ vaakum ehk rõhk imitoru selles punktis kuhu vaakummeeter on ühendatud. Pumpade tööparameetrid. Pumba tööd iseloomustavad järgmised parameetrid: 1. Imemiskõrgus hi (m), 2. Kavitatsioon ja kavitatsioonivaru h (m) - ingliskeelses kirjanduses NPSH - net positive suction head ehk lubatav vaakum pumba Tööpiirkonnas, H lub/vac(m), 3. Tõstekõrgus e. surve ( H - m veesammast ), 4. Tootlikkus (jõudlus , vooluhulk) 5. Tarbitav võimsus P (kW), 6. Kasutegur ( absoluutarv või % ), 7. Tööorgani liikumissagedus n ( pöörlemis-või käigusagedus p /min või käiku/minutis ). 1 Küsimus 2. Pumba imemiskõrgus ja selle avaldamine Bernoulli võrra

Abimehanismid
121 allalaadimist


Sellel veebilehel kasutatakse küpsiseid. Kasutamist jätkates nõustute küpsiste ja veebilehe üldtingimustega Nõustun