Andmeanalüüs Kordamisteemad 1) Uurimistsükkel: millised etapid eelnevad ja järgnevad andmeanalüüsile. Tuleb püstitada uurimisküsimused: mida ja kelle käest tahan teada saada; millistele küsimustele tahan vastuseid. Andmete kogumine. Enne kogumist kontrollida, ehk on andmed juba olemas ja arvestada aja- ning raharessursiga. Vaatlus: otsevaatlus, varjatud vaatlus, osalusvaatlus Eksperiment Intervjuu: struktureeritud, poolstruktureeritud või struktureerimata Küsitlus Kas uurida valimit või üldkogumit? Üldkogum ehk populatsioon. Valim on üldkogumist uurimiseks eraldatud osa, mille põhjal tehakse statistilisi järeldusi üldkogumi kohta. Valimi moodustamine: a)tõenäosuslik: 1. Lihtne juhu- nimekiri 2. Süstemaatiline juhu- nimekiri, millest iga 10. 3. Kiht- valin grupid, keda küsitlen 4. Klaster- valin kellegi grupist b) mittetõ
Andmeanalüüs Kordamisteemad 1) Uurimistsükkel: millised etapid eelnevad ja järgnevad andmeanalüüsile. Uurimisprobleem, kust probleem tuleb, teooria, praktiline probleem, varasemad uurimused Konkreetsed uurimisküsimused: mida teada tahan, millistele küssadele tahan vastust, hüpoteeside sõnastamine. Uurimismeetodid: Millised meetodid aitavad lahendada. Kvantitatiivsed meetodid- kui palju midagi esineb, arvuline, suhteliselt palju uuritavad. Kvalitatiivsed meetodid- Kuidas midagi kirjaldatakse, sõnaline, vähem uuritavad. Kombineeritud meetodid- kasut koos. Andmed.kas olemas või vaja koguda. Keda uurida: kas valim või üldkogum. Kuidas andmeid koguda: küsitlus, intervjuu, Vaatlus Andmete sisestamine ja analüüs, tulemuste esitamine ja järelduste tegemine 2) Ankeedi koostamine: mida tuleks silmas pidada hea ankeedi koostamisel; küsimuste tüübid, vastuste tüübid. Ankeedi struktuur · Sissejuhatus: miks uurimust tehakse, anonüümsus, võimalik tasu, tulemuste esi
Kvant met 40% EKSAM 25% KT 25% 10% Kirjandus: SAMM, Tooding L-M jne Uurimisprobleemi püstitamine (sots)teaduses: Probleemi leidmine ja teema sõnastamine Probleemipüstituse põhjendus Kuidas ma saan aru, et see on selline probleem, mida tasub uurida? Selle praktiline tähtsus, seos teiste valdkondadega, takistavad tegurid selle uurimisel Täpsustamine Millist osa ma sellest probleemist uurida tahan? Alamülesanded v teemad Kas ja mida varasemast teada on? Teooriad, varasemad uurimused Operatsionaliseerimine Kuidas defineerida Kuidas mõõta, uurida Analüüsimeetodi valik Sotsiaalsete probleemide konstrueerimine Sots.teaduses on uurija oma uurimisobjekti (ühiskonna) osa ja mõjutab seda enda tegevusega Statistika kui relv (sots)poliitikas Numbrilised väited sots elu kohta (n-ö objektiivsed) Sots probleemide tõlgendus, põhjendus Sots probleem: kas see on olemas v on see kellegi poolt konstruee
MAINORI KÕRGKOOL Juhtimise instituut Annika Krutto ANDMEANALÜÜS SOTSIAALTEADUSTES Loengukonspekt Tartu 2009 SISUKORD SISSEJUHATUS...........................................................................................................................3 1. ANDMEANALÜÜSI põhimõisted ......................................................................................... 3 1.1 Üldkogum ja valim............................................................................................................... 3 1.2. Valimi valikumeetodid.........................................................................................................4 1.3. Mõõtmismeetod ja mõõtmisvahend ....................................................................................5 1.4. Andmetabel..........................................................................................................................7 2. Val
1. MÕÕTMINE Mõõtmine on objektide võrdlemine - Korraga saab võrrelda ainult kaht objekti omavahel. Kui objekte palju, valitakse välja üks (etalon) ning teisi võrreldakse sellega. Otsene mõõtmine ja kaudne mõõtmine – otseste mõõtmiste kaudu Nimi- ehk nominaalskaala – objektide eristamiseks – sugu, rahvus, huvid, kaubakood, ettevõtte registrinumber Järjestusskaala – võimaldab objekte järjestada mingi tunnuse alusel – nt ettevõtted: väikesed, keskmised, suured – küsitlus: "poolt", pigem poolt kui vastu", "pigem vastu kui poolt", "vastu" – intervallid skaalajaotuste vahel pole võrdsed Intervallskaala – skaalajaotuste intervallid on võrdsed Vahemikskaala – nullpunkti asukoht kokkuleppeline – ajaskaala, Celsiuse skaala temperatuuri mõõtmiseks – võib leida vahesid, ei tohi leida suhteid Suhteskaala – nullpunkt fikseeritud absoluutselt – objekti pikkus, kaal, töötajate arv, käive, m
Andemanalüüsi konspekt: Mõisteid küsitakse eksamis: näidete toomise, selgitamise, võrdlemise ja analüüsimise tasandil. Binaarne tunnus- sugu; jah/ei Järjestustunnus- kooli tüüp, 1-väga hea, 2- hea jne(NB!- Õpilaste hinnang koolile), kui suured on klaassid- väga suured, suured jne, milline kooli maine- väga hea, hea jne, millisesse vahemikku jääb arv (0-200, 201-301 jne) oluline oleks, et Display frequence ees oleks linnuke, siis saab teha sagedustabeli Intervalltunnus- 1-väga hea, 2-hea jne (NB!_- Kooli hoolekogu hinnang eelmise õppeaasta tulemustele?/ Kooli hoolekogu hinnang eelmise aasta juhtimisele?) , hulk (n: minu klassi avatakse), vanus (keskmine vanus), kui kaugel asub kool millestki- km-tes, Nimitunnus- millegi nimi, huviringude nimed, kooli nimi jne, kas koolis töötab nõustaja- ei tööta, töötab, mõlemad jne, Kiire ü
Ökonomeetria mõisted 1. Autokorrelatsioon ja heteroskedastatiivsus võivad mudelis olla kahel põhjusel: 1) mudeli spetsifikatsioon on vale. Mudelist on välja jäetud mõned olulised muutujad ja/või mudeli funktsionaalne kuju on vale. Mudel tuleb ümber vaadata. 2) Tavalise vähimruutude meetodi rakendamise protseduur võib anda standardhälvete nihkega hinnangud. Tuleb kasutada uusi lähenemisi mudeli parameetrite hindamiseks. Autokorrelatsiooni testitakse aegridade puhul. Kui juhuslikud vead korreleeruvad omavahel, siis on olemas autokorrelatsioon. Kui autok. Esineb, tuleb mudel ümber vaadata, tuleb muuta spetsifikatsiooni. 2. Asümptootilised hinnangud kui juhuslike vigade normaaljaotuse eeldus ei ole täidetud, siis usalduspiirid on asümptootilised. Nad on täpsed siis, kui valimi maht on lõpmatu; lõpliku valimi mahu korral usalduspiirid on ligikaudsed.
Eksponentkeskmist kasutatakse, kui on tegemist: 1. Keskmise taseme leidmisega väga pikkades aegridades 2. Keskmise taseme leidmisega momentreas ja ajavahemikud on võrdsed 3. Keskmise taseme leidmisega perioodreas ja perioodid ei ole võrdsed 4. Aegreaga ja väärtuste standardhälbe arvutamise juures 5. Aegreaga ja selle tasandamise juures Valimivaatluse korral 1. Usalduspiiride laius sõltub väärtuste varieerumisest 2. Suurema valimi kasutamisel usalduspiirid laienevad 3. Valitud usaldatavus ei avalda mõju moodustatava valimi suurusele 4. Keskmine esindusviga ei sõltu valimi suurusest 5. Suurem valimi kasutamine vähendab väärtuste varieerumist üldkogumis Esindusviga on oma sisult: 1. Viga mis tekib aritmeetilise keskmise ebatäpsuse tulemusena 2. Kõikide võimalike esindusvigade harmooniline keskmine 3. Väljavõtukogumi ja üldkogumi struktuurid erinevuse tulemusel tekkinud ebatäpsus 4. Ei ükski eelnevatest
Kõik kommentaarid