Vajad kellegagi rääkida?
Küsi julgelt abi LasteAbi
Logi sisse
Ega pea pole prügikast! Tõsta enda õppeedukust ja õpi targalt. Telli VIP ja lae alla päris inimeste tehtu õppematerjale LOE EDASI Sulge

HAPNIKU, LÄMMASTIKU, SÜSIHAPPEGAASI JA VESINIKU KASUTAMINE - sarnased materjalid

vesinik, gaas, lämmastik, süsihappegaas, kumm, vedela, aatom, põlev, põleti, veeldub, puhastamiseks, vedelat, teadlane, rasv, lõikamisel, ahjude, ühendamiseks, auku, süsihape, fotosüntees, cavendish, soojusjuhtivus, gaasiga, tuukritel, kalad, ligniini, kanalisatsioonivee, joogivee, lisaainena, oksüdeerijana, kudesid, sperma, kosmeetikas
thumbnail
16
doc

MITTEMETALLID

HF) või gaasid (H2S, NH3, CH4). Mittemetallide ühendid hapnikuga on happelised või neutraalsed oksiidid (SO2, SO3, NO, NO2, CO, CO2, P4O10). VESINIK--HYDROGENIUM--H. 1s 1.Leidumine. Vesinikku leidub looduses peamiselt ühendite koostises (vesi, orgaanilised ühendid). Vabana (H2) esineb ta vulkaaniliste gaaside ja naftagaaside koostises ning tühisel määral atmosfääris (atmosfääri ülemistes kihtides). Kosmoses on vesinik levinumaks elemendiks. Ta moodustab umbes 75% Päikese ja tähtede massist. Looduses esineb kolm vesiniku isotoopi: prootium--H (harilik vesinik), deuteerium 21H ehk D (raskevesinik) ja triitium 31H ehk T (üliraske vesinik). T on radioaktiivne. 2.Saamine. Laboratoorselt saadakse vesinikku: a) tsingi reageerimisel hapetega (asendusreaktsioonil) Kippi aparaadis: Zn+H2SO4=ZnSo4+H2 b) aktiivsete metallide (leelismetallide) ja vee reageerimisel: 2Na+2H2O=2NaOH+H2 c) vee elektrolüüsil:

Keemia
151 allalaadimist
thumbnail
12
doc

Lühikokkuvõte

kokkupuude toiduainetega on lubatud. Vedelate alkaanide veekogudesse sattumisel on paljudele organismidele kahjulikud (naftareostus). Õnneks leidub looduslikes veekogudes mikroorganisme, mis suudavad alkaane oksüdeerida. See puhastusprotsess toimub aga üpris aeglaselt. Pürolüüs on aine lagunemine kõrge temperatuuri toimel (krakkimine, isomeerimine). Alkaane kasutatakse nende suure põlemissoojuse tõttu kütusena. CH4 on peamine loodusliku gaasi koostisosa ning peamine gaas majapidamisgaasis. Propaani (C3H8) ja butaani (C4H10) isomeere kasutatakse vedelgaasis ehk balloonigaasis, mida saadakse nafta töötlemise kõrvalsaadusena. Triklorometaan e. kloroform (CHCl3) on narkoosivahend meditsiinis. Tetraklorometaani (CCl4) kasutatakse tulekustutites, ta on hea lahusti rasvadele ja vaikudele. Diklorodifluorometaani e. freooni (CCl2F2) kasutatakse külmikutes ning aerosoolides pihustusainena. Kloroetaani e

Keemia
349 allalaadimist
thumbnail
18
doc

Keemia

Oksiidid jagunevad aluselisteks, amfoteerseteks ja happelisteks oksiidideks. Aluselised oksiidid on metallioksiidid, happelised aga mittemetallioksiidid. Happelise oksiidi reageerimisel veega tekib hape (CO2+H2O -> H2CO3), aluselise oksiidi reageerimisel veega tekib alus (MgO+H2O -> Mg(OH)2). Amfoteersed oksiidid reagreerivad nii aluste kui hapetega. Tuua näiteid õhus, vees ja maakoores leiduvatest oksiididest. Õhus: Süsinikdioksiid e. Süsihappegaas (CO2), 0,03% Vees: Vesi (H2O), 75% Maa pinnast Maakoores: Liiva põhiline koostisosa ränidioksiid (SiO2), rauaoksiidid (Fe2O3; Fe3O4), alumiiniumoksiid (Al2O3) ja vasemaak kupriit vaskoksiid (Cu2O). Iseloomustada vingugaasi (CO) ja süsihappegaasi (CO2). Süsihappegaas on happeline oksiid, mida leidub nii inimese kehas kui ka sissehingatavas õhus. Selle määramiseks kasutatakse reaktsiooni lubjaveega. Vingugaas on väga mürgine aine, millel puudub nii lõhn kui värvus

Rekursiooni- ja...
19 allalaadimist
thumbnail
29
doc

Keemia aluste KT3

Aatomiraadiused vähenevad perioodis vasakult paremale ja rühmas kasvavad ülevalt alla. Aatomi raadius väheneb perioodilisuse tabelis vasakult paremale ja suureneb ülevalt alla. Igas uues perioodis lisanduvad uued elektronid järjest välimistele elektronkihtidele, mis asuvad aina kaugemal tuumast ja seetõttu suureneb raadius ülevalt alla. Vasakult paremale väheneb raadius, sest siis suureneb elektronegatiivsus, mis tõmbab elektrone tugevamingi tuuma suunas ja seetõttu on aatom kompaktsem. Ionisatsioonienergia- esimesed eionisatsioonienergiad I kasvavad perioodis vasakult paremale ja rühmas vähenevad ülalt alla. Elektronide väljalöömine. Järgmises perioodis langeb tagasi madalamale väärtusele ja hakkab uuesti tõusma jne. Ionisatsioonienergia on energia, mis kulub elektroni eelmaldamiseks aatomist. Ionisatsioonienergia väheneb tüüpiliselt rühmas ülevalt alla, kuna väliskihi elektronid

Keemia alused
41 allalaadimist
thumbnail
34
pdf

Üldkeemia

vahane aine, mis helendab pimedas. 2. Kes ja kuidas avastas vesiniku. Kirjutage reaktsiooni võrrandit. Vesiniku avastajaks (1766) loetakse inglise füüsik ja keemik Henry Cavendishi, kes isoleeris metallidest ja hapetest saadud "põleva õhu" (divesiniku) ning kirjeldas ja uuris seda põhjalikult. Elavhõbeda ja happe segus tekkisid väikesed gaasimullid, mille koostist ei õnnestunud tal samastada ühegi tuntud gaasiga. Kuigi ta ekslikult arvas, et vesinik on elavhõbeda (mitte happe) koostisosa, suutis ta selle omadusi hästi kirjeldada. 2Na + 2H2O --> H2 + 2Na+ + 2OH­ 3. Keda peetakse kaasaegse keemia isaks ja miks? Kaasaegse keemia isaks peetakse Antoine Lavoisieri, kes uuris põlemisreaktsioone, kasutades hermeetiliselt suletavaid nõusid ning kaaludes reaktsiooni lähteained ja saadused. Nende abil näitas ta, et põlemine on ühinemine hapnikuga. 4

Üldkeemia
69 allalaadimist
thumbnail
72
pdf

Keemia ja materjaliõpetus (YKI3030) eksami kordamisküsimused ja vastused 2016/2017

10. Püsivus ja reaktsioonivõime. 11. Terviserisk. 12. Keskkonnarisk. 13. Jäätmekäitluse viis. 14.Veonõuded. 15. Õigusaktid. 16. Muu teave. 4 22. Mis on REACH? Registration, Evaluation and Authorisation of CHemicals  Euroopa parlamendi määrus, mis käsitleb kemikaalide registreerimist, hindamist, autoriseerimist ja piiramist. 23. Gaas ja aur-definitsioonid.  GAAS on aine, mis normaaltemperatuuril ja rõhul on täielikult gaasilises olekus.  AUR on selline aine gaasilises olekus, mille keemistemperatuur on kõrgem kui toatemperatuur. Näiteks veeaur. 24. Gaaside omadused.  Gaaside kõige iseloomulikum omadus on nende kokkusurutavus ja võime paisuda.  Gaasidel ei ole kindlat kuju, nad täidavad anuma võttes selle kuju.  Gaasi ruumala ühtib anuma ruumalaga, milles ta asub.

Keemia ja materjaliõpetus
42 allalaadimist
thumbnail
80
docx

Keemia ja materjaliõpetus

11. Terviserisk. 12. Keskkonnarisk. 13. Jäätmekäitluse viis. 14. Veonõuded. 15. Õigusaktid. 16. Muu teave 4 22. Mis on REACH? – Euroopa parlamendi ja nõukogu määrus, mis käsitleb kemikaalide registreerimist, hindamist, autoriseerimist ja piiramist. REACH on selle määruse inglisekeelsetest võtmesõnadest tulenev akronüüm 23. Gaas ja aur-definitsioonid. GAAS on aine, mis normaaltemperatuuril ja rõhul on täielikult gaasilises olekus. AUR on selline aine gaasilises olekus, mille keemistemperatuur on kõrgem kui toatemperatuur. Näiteks veeaur Näide: CO2 balloon praktikumis (balloonis on vedel, välja tuleb aur, kolvis gaasina). 24. Gaaside omadused.

Keemia ja materjaliõpetus
38 allalaadimist
thumbnail
62
doc

YKI 3030 Keemia ja materjaliõpetus

5. Tegutsemine tulekahju korral; 6. Õnnetuste vältimise abinõud (kaitsevahendid, seadmed); 7. Käitlemine ja hoiustamine, kusjuures enamuses SC-del puuduvad sellele ainele iseloomulikud keemilised reaktsioonid. 8. Mõju inimesele ja isikukaitsevahendid. 9. Esmaabi viisid kemikaali sissehingamisel, allaneelamisel ja sattumisel nahale 10. Püsivus ja reaktsioonivõime. 11. Terviserisk. 12. Keskkonnarisk. 13. Jäätmekäitluse viis. 14.Veonõuded. 15. Õigusaktid. 16. Muu teave. 23. Gaas ja aur-definitsioonid GAAS on aine, mis normaaltemperatuuril ja rõhul on täielikult gaasilises olekus. AUR on selline aine gaasilises olekus, mille keemistemperatuur on kõrgem kui toatemperatuur. Näiteks veeaur 24. Gaaside omadused Gaaside kõige iseloomulikum omadus on nende kokkusurutavus ja võime paisuda.Gaasidel ei ole kindlat kuju, nad täidavad anuma võttes selle kuju. Gaasi ruumala ühtib anuma ruumalaga, milles ta asub. Ruumala sõltub temperatuurist ja rõhust 25

Keemia ja materjaliõpetus
108 allalaadimist
thumbnail
288
pdf

Keemiakursuse kokkuvõte

erinevalt ­ kord osakese, kord lainena. Anihilatsioonil mass kaob ja moodustuvad footonid. Vastasmõjudest - Päikese valgusrõhk Maale on 100 000 tonni. Isegi 4 miljardi kilomeetri kaugusel olev planeet Neptuun tõmbab Maad 18 miljonilise tonni jõuga. 20 Elementide päritolu Juba Suure Paugu ajal tekkisid kerged elemendid vesinik (75%) ja heelium (umbes 25%) ning väikeses koguses liitiumi ja berülliumi. Raskemad elemendid tekivad Universumis tähtedes toimuvate tuumareaktsioonide (enamasti termotuumareaktsioonide) tulemusel. Tekkinud vesinikust, mille aatommass on umbes 1,0 (üks prooton), Põhijada tähtedes (mille hulka kuulub ka Päike) ühinevad vesinikutuumad kõrgel temperatuuril (mitu miljonit kraadi) ja kõrgel rõhul heeliumituumadeks

Rekursiooni- ja...
16 allalaadimist
thumbnail
82
doc

Gaaskeevitus

õigesti ette valmistada. Samuti tuleb enne keevitamist keevitatavad servad ning õmblusega külgnev põhimetalli pind (ala) gaasipõleti leegi abil hoolikalt puhastada õlist, rasvast, tagist, niiskusest. Kasutatakse selleks ka mehaanilist puhastusviisi: terashari, lihvkäi või muud vahendid. Keevisõmbluste liigid. Keevisõmbluseks nimetatakse keevisliite osa, mis moodustub keevisvannis oleva sulametalli kristalliseerumisel. Põleti leek sulatab üheaegselt põhimetalliga ka keevitustraati, mis omavahel segunedes moodustavad õmblusemetalli. Keevisõmblused jagunevad valmistamisvisilt ühe- ja kahepoolseteks. Mõjuvate jõudude suuna järgi liigitatakse keevisõmblused külg- (a), laup- (b), kombineeritud (c) ja kaldõmblusteks (d). Külgõmbluse puhul on mõjuva jõu suund õmbluse pikiteljega paralleelne, laupõmbluse puhul aga risti. Kombineeritud

Abimehanismid
15 allalaadimist
thumbnail
113
doc

Energia ja keskkond konspekt

....................................63 6.6 SISEPÕLEMISMOOTORIGA KOOSTOOTMISE SEADMED....................................................................................65 6.7 KÜTUSEELEMENDID......................................................................................................................................67 6.7.1 Kütuseelementide tehnilised lahendused........................................................................................68 6.7.2 Vesinik kütuseelementide kütusena................................................................................................70 7 TAASTUVATE ENERGIAALLIKATE RAKENDAMINE..........................................................................72 7.1 BIOKÜTUSTE RAKENDAMINE.........................................................................................................................72 7.1.1 Biokütuste laod ja edastamisseadmed.................................................

Energia ja keskkond
56 allalaadimist
thumbnail
68
docx

Keemia ja materjaliõpetuse eksam 2014/2015 õppeaastal

16) muu teave. 23. Mis on REACH? Euroopa parlamendi ja nõukogu määrus,mis käsitleb kemikaalide registreerimist, hindamist, autoriseerimist ja piiramist ning millega asutatakse Euroopa Kemikaaliamet. Vastu võetud kaitsmaks inimeste tervist ja keskkonda võimalike kemikaalidega seotud riskide eest ja samal ajal suurendada kemikaalitööstuse konkurentsivõimet. Samuti edendab see ainete ohtlikkuse hindamise alternatiivseid meetodeid, et vähendada loomkatsete arvu. 24. Gaas ja aur-definitsioonid. Gaas – aine, mis normaaltemperatuuril ja rõhul on täielikult gaasilises olekus. Täidab ruumi ühtlaselt, molekulid pidevas korrapäratus soojusliikumises, molekulidevahelised jõud on väiksed. Aur – selline aine gaasilises olekus, mille keemistemperatuur on kõrgem kui toatemperatuur (veeaur) CO 2 balloon – balloonis vedel, välja tuleb aur, kolvis gaasina 25. Gaaside omadused.  Kokkusurutavus ja paisuvus  Puudub kindel kuju, võtavad anuma kuju.

Keemia ja materjaliõpetus
147 allalaadimist
thumbnail
304
doc

ELEMENTIDE RÜHMITAMISE PÕHIMÕTTED

1. ELEMENTIDE RÜHMITAMISE PÕHIMÕTTED 1.1. Elementide jaotus IUPAC’i süsteemis Reeglid ja põhimõtted, kohaldatuna eesti keelele: Karik, H., jt. (koost.) Inglise-eesti-vene keemia sõnaraamat Tallinn: Eesti Entsüklopeediakirjastus, 1998, lk. 24-28 Rühmitamine alanivoode täitumise põhjal 2. ELEMENDID   Vesinik Lihtsaim, kergeim element Elektronvalem 1s1, 1 valentselektron, mille kergesti loovutab → H+-ioon (prooton, vesinik(1+)ioon) võib ka siduda elektroni → H- (hüdriidioon, esineb hüdriidides) Perioodilisusesüsteemis paigutatakse (tänapäeval) 1. rühma 2.1.1. Üldiseloomustus Gaasiline vesinik – sai esimesena Paracelsus XVI saj. – uuris põhjalikult H.Cavendish, 1776 – elementaarne loomus: A.Lavoisier, 1783 Elemendina: mõõduka aktiivsusega, o.-a

Keemia
72 allalaadimist
thumbnail
30
docx

Keemia ja materjaliõpetuse eksami küsimuste vastused

Aatom on elemendi väikseim osake, millel säilivad selle elemendi keemilised omadused, koosneb positiivse laenguga tuumast ja seda ümbritsevast elektronkattest. Elektron on negatiivse laenguga (e­) aatomi stabiilne elementaarosake. Molekul on elektriliselt neutraalne, on lihtaine või ühendi väikseim osake, mis eksisteerib iseseisvalt ja samal ajal säilitab selle elemendi keemilised omadused. Ioon on elektriliselt laetud osake, mis tekib siis, kui aatom loovutab või liidab ühe või mitu elektroni, et moodustada stabiilne väliselektronkiht. Jagunevad ­ katioonid ja anioonid. Valem on informatsioon ühendi keemilise koostise ja struktuuri kohta, milles kasutatakse elementide keemilisi sümboleid; jagunevad empiirilisteks ja struktuurilisteks. Empiiriline valem näitab aine elementaarkoostist ja elemendi ning elemendi gruppide omavahelist suhet, nt H 2S. Struktuurivalem näitab lisaks empiirilisele ka kuidas need on omavahel seotud, nt O=C=O

Keemia ja materjaliõpetus
309 allalaadimist
thumbnail
19
docx

Keemia ja materjaliõpetus kokkuvõte

), · Koosis (keemiline, CAS, EINECS), · Ohtlikkus (omaduste kirjeldus), · Esmaabi viisid kemikaali sissehingamisel, allaneelamisel ja sattumisel nahale, · Tegutsemine tulekahju korral, · Õnnetuste vältimise abinõud, · Käitlemine ja hoiustamine, · Mõju inimesele ja isikukaitsevahendid. Aatom ­ üks tuum ja selle ümber selline arv elektrone, et aatom kui tervik oleks elektriliselt neutraalne. · Tuumalaeng võrdub prootonite arvuga tuumas, · Massiarv võrdub prootonite ja neutronite arvu summaga, · Neutraalses aatomis on tuumalaeng ja elektronide arv võrdsed. Isotoop ­ sama tuumalaengu kui erineva massiarvuga aatomiliik. Aatomi mass ­ tuuma massi ja elektronide massi summa. Määratakse eksperimentaalselt. Aatommassiühik ­ mikroosakeste massi mõõtühik, 1/12 C-12 aatommassist.

Keemia ja materjaliõpetus
214 allalaadimist
thumbnail
25
docx

Konspekt eksamiks

pH mõiste, näited. pH arvutamine prootonite kontsentratsioonist ja vastupidi. Aatom ­ elemendi väikseim osake, millel säilivad selle elemendi keemilised omadused, koosneb positiivse laenguga tuumast ja seda ümbritsevast elektronkattest. Elektron ­ negatiivse laenguga (e­) aatomi stabiilne elementaarosake. Molekul ­ elektriliselt neutraalne, st aine iseseisvalt eksisteeriv väikseim osake. Ioon ­ on elektriliselt laetud osake, mis tekib siis, kui aatom loovutab või liidab ühe või mitu elektroni, et moodustada stabiilne väliselektronkiht. Jagunevad ­ katioonid ja anioonid. Valem ­ on informatsioon ühendi keemilise koostise ja struktuuri kohta, milles kasutatakse elementide keemilisi sümboleid; jagunevad empiirilisteks ja struktuurilisteks. Empiiriline valem näitab aine elementaarkoostist ja elemendi ning elemendi gruppide omavahelist suhet, nt H2S. Struktuurivalem näitab lisaks empiirilisele ka kuidas need on omavahel seotud, nt O=C=O

Keemia ja materjaliõpetus
276 allalaadimist
thumbnail
70
pdf

Rakenduskeemia kordamisküsimused

8. Ionisatsioonienergia. Ionisatsioonienergia on energia, mis kulub elektroni (valentselektroni) eemaldamiseks üksikult aatomilt või molekulilt, et moodustada katioon. Tegu on elektroni seoseenergiaga aatomis (või molekulis) - mida lähemal on elektronid aatomituumale, seda suurem on aatomi ionisatsioonienergia… seega mida väiksem on ionisatsioonienergia, seda meelsamini loovutab aatom (või molekul) elektroni ja ioniseerub. Valemi kujul oleks ionisatsioonienergiat võimalik kirjeldada X + energia → X+ + e−, kus X on ioniseerumisvõimeline aatom või molekul, X+ on eemaldatud elektroniga aatom ning e− on eemaldatud elektron. 9. Keemiline side. Keemiline side on viis, kuidas kaks või enam aatomit või iooni on aines omavahel seotud, moodustades uue keemilise ühendi. Sideme tekke põhjuseks võib olla erilaenguliste aatomite omavaheline külgetõmme või

Rakenduskeemia
46 allalaadimist
thumbnail
48
doc

Keemia eksam 2011

Vesilahuste peamised omadused sertifikaadis on välimus, värvus, olek, pH, kontsentratsioon, strateegilised temperatuurid (sulamis-, keemis- jne), tihedus, viskoossus, riskid (põleb, plahvatab) 6. Aatomi, elektroni, molekuli, iooni, valemi, mooli, faasi ja süsteemi mõisted ja sisu, näited. Hapete ja aluste teooria, hapete ja aluste tugevuse ja reaktsioonivõime mõiste, näited. pH mõiste, näited. pH arvutamine prootonite kontsentratsioonist ja vastupidi. Aatom - keemilise elemendi väikseim osake, mis koosneb positiivse laenguga tuumast ja seda ümbritsevast elektronkattest. Tal on elemendile omased keemil. omadused. Elektron - negatiivse elektrilanguga püsiv elementaarosake. Molekul - lihtaine või ühendi väikseim osake, mis eksisteerib iseseisvalt ja samal ajal säilitab selle elemendi keemil. omadused. Ioon - elektriliselt laetud osake, mis tekib siis, kui aatom loovutab või liidab ühe

Keemia ja materjaliõpetus
204 allalaadimist
thumbnail
23
docx

Nimetu

c)tahkete ainete puhul osakeste kuju, suurus ja pinna iseloomustus; d)vedelike puhul viskoossus erinevatel temp-l; e)tihedus; f)sulamis- ja keemistemp; g)koostiselementide või ainete ja lisandite sisald; h)lisainfo; Gaaside ja aurude korral: a) sulamis-, keemis-, tahkumis- ja veeldumistemperatuur b)kriitiline temperatuur- temperatuur, millest kõrgemal ei saa gaasi veeldada ilma rõhu kasvamiseta c) kriitiline rõhk- rõhk mille korral gaas on nii gaasilises kui ka vedelas olekus, nende vahel esineb tasakaal. Mitmesugune lisainfo: tule- või plahvatusohtlikkus, eripind, hoidmistingimused, säilivusaeg jm. Vesilahus - lahustiks on alati vesi, vaatamata tema sisaldusele lahuses. Tähtsamad omadused: pH, kontsentratsioon, külmumistemp, elektrijuhtivus, värv lahuste puhul valguse neeldumine, küllastunud auru rõhk lahuse kohal jne. Sertifikaati märgitakse need

Keemia ja materjaliõpetus
419 allalaadimist
thumbnail
88
pdf

Materjaliõpetus

temperatuuril 6...8 tundi. Selle aja jooksul tungib süsinik 1,8...2 mm sügavusele pinnakihti ning süsiniku sisaldus pinnakihis tõuseb 0,8... 1,2%- ni . Tsementeeritud detailid kuuluvad karastamisele ja noolutusele. Tsementeeritud detailid on hästi kulumiskindlad. Nitreerimine. Nitreerimiseks nim pindkihi rikastamist lämmastikuga. Nitreeritavad detailid asetatakse ahju mille temperatuur on 500...600ºC, ahju juhitakse ammoniaaki mis laguneb seal vesinikuks ja lämmastikuks. Lämmastik difundeerub pinnakihti kiirusega 0,1 mm 10 tunni jooksul. Vesinik tuleb ahjust kõrvaldada. Nitreerimise põhipuuduseks on see, et hoideaeg ahjus on väga pikk. Nitreeritud detailid ei vaja termotöötlust säilitavad oma mõõtmed ja on puhtad. Võrreldes tsementeeritud detailidega on nitreeritud detailid kulumis- ja korrosioonikindlamad. Nitreeritud detailidel suureneb väsimustugevus. Tsüaneerimine. See on materjali pinnakihi rikastamine nii süsiniku kui ka lämmastikuga. Selleks

Materjaliõpe
60 allalaadimist
thumbnail
88
pdf

Materjaliõpetus

temperatuuril 6...8 tundi. Selle aja jooksul tungib süsinik 1,8...2 mm sügavusele pinnakihti ning süsiniku sisaldus pinnakihis tõuseb 0,8... 1,2%- ni . Tsementeeritud detailid kuuluvad karastamisele ja noolutusele. Tsementeeritud detailid on hästi kulumiskindlad. Nitreerimine. Nitreerimiseks nim pindkihi rikastamist lämmastikuga. Nitreeritavad detailid asetatakse ahju mille temperatuur on 500...600ºC, ahju juhitakse ammoniaaki mis laguneb seal vesinikuks ja lämmastikuks. Lämmastik difundeerub pinnakihti kiirusega 0,1 mm 10 tunni jooksul. Vesinik tuleb ahjust kõrvaldada. Nitreerimise põhipuuduseks on see, et hoideaeg ahjus on väga pikk. Nitreeritud detailid ei vaja termotöötlust säilitavad oma mõõtmed ja on puhtad. Võrreldes tsementeeritud detailidega on nitreeritud detailid kulumis- ja korrosioonikindlamad. Nitreeritud detailidel suureneb väsimustugevus. Tsüaneerimine. See on materjali pinnakihi rikastamine nii süsiniku kui ka lämmastikuga. Selleks

182 allalaadimist
thumbnail
71
docx

Ökoloogia konspekt

sajandi alguses Nobeli preemia laureaat Svante Arrhenius. Ta juhtis tähelepanu süsinikdioksiidi suurele tähtsusele atmosfääris, kuigi selle kogus on tühine (kõigest 0,03 massiprotsenti). Nn inimtekkeline kasvuhooneefekt hakkas ilmnema alles tööstusliku arengu algusest 19. sajandil ja tõusis hüppeliselt 20. sajandi 50ndatel aastatel. 4.1 Kasvuhoonegaasid Vastavalt kliimakonventsioonile ja selle Kyoto protokollile kuuluvad peamiste kasvuhooneefekti põhjustavate gaaside hulka: süsihappegaas ehk süsinikdioksiid (CO2), metaan(CH4), dilämm astikoksiid (N2O) ja fluoreeritud gaasid ehk fgaasid. Hetkel on kasvuhoonegaaside kontsentratsioon Maa atmosfääris suurim, mis on senini registreeritud ning vastavalt Rahvusvahelise kliimamuutuste paneelile (IPCC) on oodata kontsentratsiooni pidevat suurenemist. Põhiliseks põhjuseks, miks heitkogused pidevalt suurenevad, peetakse fossiilsete kütuste põletamist. o Süsihappegaas ehk süsinikdioksiid (CO2) on põhiline

Keskkonnakaitse ja säästev...
7 allalaadimist
thumbnail
109
doc

Füüsikaline maailmapilt

ei lakka hetkekski. Miks see nii on, ei teata. Teiste liikumiste korral peab olema mingi liikumise põhjus. Seda põhjust nimetatakse jõuks. Jõudusid võib jaotada kaheks liigiks: jõud, mis ilmnevad kehade vahetul kokkupuutel ja jõud, mis mõjuvad ka siis, kui kehad kokku ei puutu (mõju toimub välja vahendusel). Et vahetus kokkupuutes olev üks keha saaks teisele mõjuda, peab see keha olema erilises seisundis: deformeeritud. Selleks, et käsi, vibu või gaas silindris avaldaks teisele kehale (veepang, nool, kolb) jõudu tuleb lihaseid pingutada, vibu vinna tõmmata või gaas kokku suruda. Vahetul kokkupuutel ilmneb ka teisi jõude, näiteks hõõrdejõud. Selles jaotises vaatleme liikumist kirjeldavaid mõisteid ja suurusi, mis on kasutatavad kõikide liikumisvormide korral. Anname ülevaate liikumist kirjeldavatest klassikalistest seadustest ning liikumisega seotud füüsikalistest suurustest ja seostest nende vahel. 5.1

Füüsikaline maailmapilt
72 allalaadimist
thumbnail
86
pdf

Materjalid

1. MATERJALIÕPETUS Aatomituum Prooton 1.1. Materjalide struktuur ja omadused Neutron 1.1.1. Materjalide aatomstruktuur Kõikide tehnomaterjalide põhiliseks struktuuri-ühi- kuks on aatom, mis koosneb positiivselt laetud tuumast ja seda ümbritsevast elektronkattest. Aatomituum koosneb prootonitest ja neutronitest, mille arv võrdub aatomnumbriga (järjenumbriga). Aatommass määrab tahke aine e. tahkise tiheduse, elektrijuhtivuse, soojusmahtuvuse, mõjub aga vähe selle tugevusomadustele. Aatomkristallilise või lihtsalt kristallilise struk- Elektron tuuri all mõeldakse aatomite (ioonide) omavahelist

335 allalaadimist
thumbnail
90
pdf

Öko ja keskkonnakaitse konspekt

Energiavoog kulgeb ühes suunas. Osa päikeseenergiast teisendatakse (transformeeritakse) ümber orgaanilise aine koosseisu, suur osa energiast aga läheb süsteemist läbi ja eemaldub soojusenergia näol. Energia võib ökosüsteemis koguneda, siis uuesti vabaneda, aga teda ei saa teist korda uuesti kasutada ­ kõik ökosüsteemid on avatud süsteemid ­ nad peavad saama ja andma energiat. Erinevalt energiast võidakse aineringes osalevaid biogeenseid elemente (süsinik, lämmastik, fosfor jt.) ja vett kasutada korduvalt. Toiteelementide korduvkasutuse efektiivsus sõltub aga ökosüsteemi tüübist (korallriff ­ korduvkasutus puudub). Looduslikes ökosüsteemides kehtivad kindlad seaduspärasused, mis määravad nende stabiilsuse. Kõik ökosüsteemid sisaldavad ökoloogilisi komponente (nii abiootilisi kui ka biootilisi) ja nende ökoloogiliste komponentide vahel valitsevad tasakaalulised suhted. Kõik meie ökoloogilised probleemid on tingitud

Ökoloogia ja keskkonnakaitse1
776 allalaadimist
thumbnail
528
doc

Keskkonnakaitse lõpueksami küsimused-vastused

KESKKONNAKAITSE JA KORRALDUS 1. loodus- ja keskkonnakaitse üldküsimused  Keskkonnakaitse: atmosfääri, maavarade, hüdrosfääri ratsionaalse kasutamise ja kaitse, jäätmete taaskasutamise või ladustamise, kaitse müra, ioniseeriva kiirguse ja elektriväljade eest. Keskkonnakaitse on looduskaitse olulisim valdkond.  Looduskaitse : looduse kaitsmist (mitmekesisuse säilitamist, looduslike elupaikade ning loodusliku loomastiku, taimestiku ja seenestiku liikide soodsa seisundi tagamine), kultuurilooliselt ja esteetiliselt väärtusliku looduskeskkonna või selle elementide säilitamine, loodusvarade kasutamise säästlikkusele kaasaaitamine 2. loodus- ja keskkonnakaitse mõiste  Keskkonnakaitse- rahvusvahelised, riiklikud, poliitilis-administratiivsed, ühiskondlikud ja majanduslikud abinõud inimese elukeskkonna saastamise vähendamiseks ja vältimiseks ning l

Keskkonnakaitse ja säästev...
238 allalaadimist
thumbnail
1072
pdf

Logistika õpik

Eesti Rahvusraamatukogu digitaalarhiiv DIGAR Eesti Rahvusraamatukogu digitaalarhiiv DIGAR Ain Tulvi LOGISTIKA Õpik kutsekoolidele Tallinn 2013 Eesti Rahvusraamatukogu digitaalarhiiv DIGAR Käesolev õppematerjal on valminud „Riikliku struktuurivahendite kasutamise strateegia 2007- 2013” ja sellest tuleneva rakenduskava „Inimressursi arendamine” alusel prioriteetse suuna „Elukestev õpe” meetme „Kutseõppe sisuline kaasajastamine ning kvaliteedi kindlustamine” programmi „Kutsehariduse sisuline arendamine 2008-2013” raames.

Logistika alused
638 allalaadimist


Sellel veebilehel kasutatakse küpsiseid. Kasutamist jätkates nõustute küpsiste ja veebilehe üldtingimustega Nõustun