Vajad kellegagi rääkida?
Küsi julgelt abi LasteAbi
Logi sisse
✍🏽 Avalikusta oma sahtlis olevad luuletused! Luuletus.ee Sulge

Biotehnoloogia - sarnased materjalid

vood, stöhhiomeetriline
thumbnail
50
xlsx

Kodutöö biotehnoloogias

F -1 -0.5 -0.5 -1 0.5 -0.25 b3 b4 0 0 0 0 0 0 -1 0 0 0 0 1 MÕÕDETUD VOOGUDE STÖHHIOMEETRILINE MAATRIKS b1 b2 b4 A 1 0 0 B 0 0 0 C 0 -1 0 D 0 0 0 E 0 0 0 F 0 0 1 TASAKAALUVEKTOR b TUNDMATUD VOOD -25 25 0 25 6 23.25 0 2.5 0 0 -5 23.25 V1 V2 V3 1 G6P 1 -1 0 2 F6P 0 1 -1 3 FBP 0 0 1 4 GAP 0 0 0 5 Dihydroxyacetone-P 0 0 0 6 GBP 0 0 0

Biotehnoloogia
5 allalaadimist
thumbnail
60
xlsx

KT3-6 Operatsioonianalüüs

Ülesanne 1. Lahendada transpordiülesanne. 1. Kas transpordiülesanne on kinnine või lahtine? Miks? kinnine pakutav ja nõutav kogus samad 2. Leida transpordiülesande esialgne lubatav lahend: a) loodenurga meetodil; b) Vogeli meetodil 3. Kontrollida lahendi optimaalsust lähtudes Vogeli meetodil saadud lahendist a) leida potentsiaalid b) leida teisendatud transpordikulud. 4. Leida optimaalne lahend lähtudes Vogeli meetodil saadud lahendist. Kirjutada välja lahend. 5. Leida optimaalsed transpordikulud. ai 10 7 9 6 7 19 C= 11 11 9 10 5 12 21 17

tehnomaterjalid
127 allalaadimist
thumbnail
8
xls

Turunduse labor 8 - ül 4

Ülesanne 4 Firmal on 3 tehast X, Y ja Z, mis varustavad hulgifirmasid A, B, C, D ja E. Tehaste kuuvõimsused on vastavalt 80, 50 ja 90 ühikut. Hulgifirmad vajavad kaupa järgmiselt ühes kuus järgmiselt: 40, 40, 50, 40 ja 80 ühikut. Leida selline veoplaan, et kulutused kujuneksid minimaalseks. 1 ühiku toodangu transpordikulud on toodud tabelis: A B C D E ai X 5 8 6 6 3 80 Y 4 7 7 6 6 50 Z 8 4 6 6 3 90 250 bj 40 40 50 40 80 220 1. Kas transpordiülesanne on kinnine või l

Turunduse alused
9 allalaadimist
thumbnail
104
pdf

Konspekt

I. Determinandid 1 Determinandi m~ oiste 1.1 Idee selgitus Algul defineerime esimest j¨ arku determinandi, siis esimest j¨arku determinandi abil teist j¨ arku determinandi, seej¨arel teist j¨arku determinandi abil kolmandat j¨ arku detereminandi jne, n-j¨arku determinandi defineerime (n - 1)-j¨arku determinandi kaudu. Sel- list defineerimisviisi nimetatakse induktiivseks ja vastavat objekti induktiivseks konstruktsiooniks. Eelnevalt on soovitatav tutvuda maatriksi m~oistega (II.1.1). Kooloniga v~ordus A := B t¨ahendab j¨argnevas, et A on defineeri- tud B kaudu. Seda v~ordust kasutame ka samav¨ a¨arsete t¨ ahistuste sissetoomiseks. 1.2 Esimest j¨ arku determinant Arvu a R determinandi |a| ehk esimest j¨ arku determinandi de- fineerime valemiga |a| := det a := a. 1.3 N¨ aide | - 5| = -5

Lineaaralgebra
511 allalaadimist
thumbnail
8
pdf

Determinandid gümnaasiumiõpikus

DETERMINANDI MÕISTE. KAHEREALISE DETERMINANDI Avaldanud esimesest võrrandist x-i ja asendanud saadud tulemuse teise võr- KASUTAMINE VÕRRANDISÜSTEEMIDE LAHENDAMISEL randisse, saame c1 b1 y Paljude sisult erinevate probleemide lahendamine viib ühe ja sama seaduse a1 x b1 y c1 x , kui a1 0. järgi koostatud avaldisteni. Sel juhul on otstarbekas uurida nende avaldiste a1 üldisi omadusi. c b y° a2 ¡¡ 1 1 ±± b2 y c2 a1 korrutame võrrandi pooli a1-ga Üheks selliseks av

Matemaatika
39 allalaadimist
thumbnail
25
docx

Soojustehnika

1. ( ?) , , . . , , . , ( , ), . . ((p 0 v ) . () . 2. . , . . . ? . ) - , : pV=kNT (1-10) . N - V, k - . , . µ - (moolmass) , kg/kmol ­ (tihedus), kg/m3 , : NA = 6,0228 10 23 molekuli /mool : µ/ = v µ = const - , . 3. . . ?( - , ?) - , ( , ) 2/3 . p = 2/3 n mw2/2 , (1-6) n ­ m ­ w2 ­ . mw2/2 - . (1-6) ( ) - . - 2/3mw2/2 = kT (1-8) k ­ k= 1,38 10-23 J/K , . (1-6) (1-8) V pV = nVkT (1-9) V N= nV 4. . , . ( .) pVµ = 8314 T ( ) µ, 1 ( ), : pv = R0T (1-19) R0 ­ () R0= 8314/ µ , J/ (kgK) µ - , kg/mol R ­ () R= 8, 314 J/ (molK) = 8314 J/ (kmolK) v ­ , m3/kg V - , m3 R0

Vene keel
5 allalaadimist
thumbnail
9
doc

Füüsika I Praktikum 15 - STOKES´I MEETOD

Tallinna Tehnikaülikool Füüsikainstituut Üliõpilane: Taivo Tarum Teostatud: Õpperühm: EAEI20 Kaitstud: Töö nr: 15 OT allkiri: STOKES´I MEETOD Töö eesmärk Töövahendid Vedeliku sisehõõrdeteguri Klaasanum uuritava määramine toatemperatuuril. vedelikuga, kruvik, ajamõõtja, mõõtejoonlaud, areomeeter. Töö teoreetilised alused Vedelike sisehõõre väljendub vedelike omaduses avaldada takistust vedelikukihtide nihkumisele üksteise suhtes. Seetõttu liiguvad vedelikukihid laminaarsel voolamisel erinevate kiirustega, kusjuures igale vedelikukihile mõjub takistusjõud dv F = S dx , (1) kus on sisehõõrdetegur (dünaamiline visko

Füüsika
538 allalaadimist
thumbnail
11
pdf

Mitmene regressioonmudel I

Teemad · Mitmene lineaarne regressioonmudel ­ Mitmese lineaarse regressioonmudeli parameetrite hindamine ­ Parameetrite tõlgendus ­ Standardiseeritud kordajad Mitmene regressioonmudel I ­ ANOVA tabel ­ F-test ja mudeli statistilise olulisuse kontroll ­ Korrigeeritud determinatsioonikordaja

Ökonomeetria
23 allalaadimist
thumbnail
33
doc

Matemaatika riigieksam

Tiia Toobal 2008 II osa Pärnu Koidula Gümnaasium Test nr. 1. a 0,5 - 16b 0, 5 1. Leia avaldise - 4b 0, 25 , kui a = 16. a 0, 25 - 4b 0, 25 1) 6 2) -2 3) 4 4) 2 2. Leia antud arvudest suurim ( 2) ( 2) 3, 2 3 1 4, 7 1) 2) 3) 4) 3 4 5 2 3 1- log 3 6 - log 4 0 ,125 3. Arvuta avaldise 27 -4 väärtus. 1) 0 2) 7,875 3) ­ 7,875 4) ­ 3,875 4. On antud perioodilise funktsiooni y

Matemaatika
526 allalaadimist
thumbnail
24
rtf

Lineaaralgebra eksam

1. Kompleksarv kui reaalarvude paar. Tehted kompleksarvudega. Tehete omadused. Kompleksarvu algebraline kuju. Tuletatavad tehted ja nende omadused. Kompleksarvuks nimetatakse reaalarvude paari (x,y). C = {(x;y) | x, y R} Tehted kompleksarvudega: z1 = (x1; y1) C; z2 = (x2; y2) C 1. liitmine: z1 + z2 = (x1 + x2; y1 + y2) 2. korrutamine: z1 * z2 = (x1x2 - y1y2; x1y2 + x2y1) Kompleksarvudega tehete omadused 1. liitmine on kommutatiivne, st z1 + z2 = z2 + z1 z1, z2 C korral 2. liitmine on assotsiatiivne, st (z1 + z2) + z3 = z1 + (z2 + z3) z1, z2, z3 C korral 3. liitmise suhtes leidub nullelement (reaalarv 0, 0 + z = z + 0 = z z C korral), st leidub C, nii et z + = + z = z z korral; = (0; 0) = 0 4. igal kompleksarvul z = (x; y) = x + yi leidub (liitmise suhtes) vastandarv, st selline arv w C, et z + w = w + z = 0; w = -z 5. korrutamine on kommutatiivne, st z1z2 = z2z1 z1, z2 C korral 6. korrutamine on assotsiatiivne, st (z1z2)z3 = z1(z2z3) z1, z2, z3 C korral

Lineaaralgebra
199 allalaadimist
thumbnail
40
doc

Keskkooli matemaatika raudvara

KESKKOOLI MATEMAATIKA RAUDVARA 1. osa Andres Haavasalu dikteeritud konspekti järgi koostanud Viljar Veidenberg. 2003. aasta 1 Sisukord Sisukord........................................................................................................................................2 Arvuhulgad............................................................................................................................... 5 Naturaalarvude hulk N..........................................................................................................5 Negatiivsete täisarvude hulk z ­...........................................................................................5 Täisarvude hulk Z.................................................................................................................5 Murdarvu

Matemaatika
1453 allalaadimist
thumbnail
37
pdf

Hägusad süsteemid

TALLINNA TEHNIKAÜLIKOOL Automaatikainstituut Automaatjuhtimise ja süsteemianalüüsi õppetool HÄGUSAD SÜSTEEMID Õppematerjal Koostas: Andri Riid Tallinn 2004 Sissejuhatus 2 Sissejuhatus Viimaste aastakümnete jooksul on hägus loogika leidnud edukat rakendust mitmesuguste juhtimis- ja modelleerimisprobleemide lahendamisel. Informatsiooni esitus hägusloogikasüsteemides on lähedane nendele mehhanismidele, mida inimene igapäevaelus otsuste tegemisel kasutab, mis võimaldab hägusloogikasüsteemide kaudu teha kättesaadavaks traditsioonilistele vahenditele halvasti alluv inimteadmus näiteks protsesside modelleerimis- ja juhtimisrakendustes. Teksti esimeses peatükis antakse kompaktne, kuid piisav ülevaade hägusloogikasüsteemide aluseks olevast hägusast hulgateooriast, hägusloogikasüsteemide arhi

Süsteemiteooria
104 allalaadimist
thumbnail
150
xlsm

Informaatika I tunnitöö "Valemid"

Andmed ja valemid Excel'is id Excel'is Andmete tüübid Excelis Valemid ja avaldised Funktsioonid Arvandmed, -avaldised ja -funktsioonid Aadressite ja nimede kasutamine valemites. Harjutus "Kolmnurk" Harjutus "Täisnurkne kolmnurk " Arvavaldised - tehete prioriteedid, funktsioonid Loogikaandmed, -avaldised ja funktsioonid Võrdlused ja loogikatehted Võrdlused ja loogikatehted. Harjutused IF-funktsioon Palk & Kauba hind Funktsioonide tabel Minirakendus "Detail" - ülesande püstitus "Detail" - kasutajaliides "Detail" - materjalid "Detail" - värvid Ajaandmed, -avaldised ja -funktsioonid Tekstandmed, -avaldised ja funktsioonid Lisad Nimede määramine ja kasutamine Valideerimine Matemaatikafunktsioonid Tekstifunktsioonid Loogikafunktsioonid Ajafunktsioonid Otsimine. Funktsioon VLOOKUP Valemiredaktor MS Equation 3.0 s "Kolmnurk"

Informaatika I (tehnika)
6 allalaadimist
thumbnail
100
pdf

MATEMAATIKA TÄIENDUSÕPE

MATEMAATIKA TÄIENDUSÕPE MÕISTED, VALEMID, NÄITED, ÜLESANDED LEA PALLAS I OSA SISUKORD 1. ARVUHULGAD …………………………………………………… 2 2. ARITMEETIKA ……………………………………………….…… 3 2.1 Mõningate arvude kõrgemad astmed ………………………….……. 3 2.2 Hariliku murru põhiomadus ………………………………….…….. 3 2.3 Tehetevahelised seosed ……………………………………….…….. 3 2.4 Tehted harilike murdudega ………………………………….……… 4 2.5 Tehete põhiomadused ……………………………………….……… 5 2.6 Näited tehete kohta positiivsete ja negatiivsete arvudega …….…….. 5 2.7 Näited tehete kohta ratsionaalarvudega ……………………….……. 6 2.8 Protsent ja promill ……………�

Matemaatika
75 allalaadimist
thumbnail
14
docx

Arvutustöö A12

KVALITEEDITEHNIKA JA METROLOOGIA ÕPPETOOL METROLOOGIA & MÕÕTETEHNIKA MHT0010/MHT0013 ARVUTUSTÖÖ ALGANDMED Esitamise kuupäev: 23.05.12 Arvestatud: Üliõpilane: Matrikli number: Õpperühm: MAHB41 Variandi number: A12 Mõõteskeem: OSA A. 1. Mõõtemudel mõõtme B ja hälvete mõõtmisel Sirgjoonelisuse hälve STR on mõõtevahendi näitude maksimaalne erinevus mõõteulatuses: Paralleelsuse hälve PAR on mõõtevahendi näitude maksimaalne erinevus mõõteulatuses: Sümmeetrilisuse hälve SYM on leitav valemiga: Laius: 2. Mõõteriista valik Kuna vajatav täpsustase on 5 m, siis valin mõõteriistaks digitaalse indikaatorkella, mille mõõtetäpsuseks on 1 m ning millel on olemas ka rakis. Lisaks veel pikkusplaat. OSA B. Tabel 1. Algandmed A1 42 74 20 15

Metroloogia ja mõõtetehnika
194 allalaadimist
thumbnail
77
xls

Valemid lahendatud

Tallinna Tehnikaülikool Informaatikainstituut Tõõ Andmed ja valemid Üliõpilane Õppemärkmik Õppejõud J. Vilipõld Õpperühm Palun täitke tühjad lahtrid MASB11 Harjutused Andmete tüübid Excelis Valemid ja avaldised Funktsioonid Arvandmed, -avaldised ja -funktsioonid Aadressite ja nimede kasutamine valemites Arvavaldised - tehete prioriteedid, funktsioonid Minirakendus "Detailike" - ülesande püstitus Minirakendus "Detailike" - aadresside kasutamine Minirakendus "Detailike" - nimede kasutamine Pildi hind Loogikaandmed, -avaldised ja funktsioonid Võrdlused ja loogikatehted IF-funktsioon Funktsioonid Palk & Kauba hind Viktoriin_1 Tekstandmed, -avaldised ja funktsioonid Ajaandmed, -avaldised ja -funktsioonid Ülesanded Kolmnurga karakteristikud Prisma silinder Arvvalemid Ruutvõrrand Intressi arvutamine Pall Ideaalne inimene Viktor

Informaatika
238 allalaadimist
thumbnail
16
xlsx

KODUTÖÖ METEROLOOGIA JA MÕÕTETEHNIKA Kodutöö A12, Excel tabel

OSA A 1. Mõõtemudel mõõtme B ja hälvete mõõtmiseks 2. Mõõteriista valik. Vajatav täpsustase 5 m Valin: Digitaalne indikaatorkell (täpsus 1m) rakisega + pikkusplaat OSA B Tabel 1. Algandmed A1 42 74 20 15 52 87 25 1 A2 32 93 33 55 50 24 3 56 A3 47 54 62 46 41 71 79 55 A4 51 40 71 66 32 82 96 49 A5 60 80 25 41 74 85 22 55 C6 50 28 75 65 59 46 51 44 C7 45 61 65 71 27 53 41 64 C8 71 76 46 48 44 57 23 6 C9 82 96 69 56

Metroloogia ja mõõtetehnika
263 allalaadimist
thumbnail
60
doc

Matemaatiline analüüs I kollokvium

HULGATEOORIA PÕHIMÕISTEID HULK - algmõiste, intuitiivse definitsiooni järgi objektide kogum. George Cantor (1845-1918) - saksa matemaatik, hulgateooria rajaja. Hulgad jaotuvad lõpmatuteks ja lõplikeks. Meie kursuses käsitletakse lõplikke hulki, mõnikord ka lõpmatuid loenduvaid hulki. Hulgateoreetilised operatsioonid  Hulkade ühend A B = { x  ( x  A) V ( x  B ) }  Hulkade ühisosa (lõige) A B = { x  ( x  A) & ( x  B )  Hulga täiend A = { x  ( x  I ) & ( x  A ) }, kus I on nn. universaalhulk.  Hulkade vahe A B = { x  ( x  A) & ( x  B ) }  Hulkade sümmeetriline vahe A  B = { x  (( x  A ) & ( x  B )) V (( x  A ) & ( x  B )) } Hulga A astmehulgaks 2A nimetatakse hulga A kõigi alamhulkade hulka. Hulgateoreetiliste operatsioonide omadused  Kommutatiivsusseadused A B = B   A  B = B   Assotsiatiivsusseadused A ( B  C ) = ( A B )  C A ( B  C ) = ( A B )

Matemaatika
33 allalaadimist
thumbnail
31
doc

Diskreetne matemaatika - konspekt

AIY3310 Diskreetne matemaatika Lühikonspekt Käesolev lühikonspekt katab suure osa aines AIY3310 (endise koodiga LIY3310) loetavast. Samal ajal ei saa seda materjali vaadelda kui antud aine täiskonspekti, mille läbitöötamine garanteeriks hea eksamiresultaadi. Loengutes ja harjutustundides käsitletakse mitmeid probleeme tunduvalt põhjalikumalt. Sellest hoolimata usun, et antud kirjutisest on paljudele tudengitest lugejatele kasu valmistumisel kontrolltööks ja eksamiks. Margus Kruus HULGATEOORIA PÕHIMÕISTEID HULK - algmõiste, intuitiivse definitsiooni järgi objektide kogum. George Cantor (1845-1918) - saksa matemaatik, hulgateooria rajaja. Hulgad jaotuvad lõpmatuteks ja lõplikeks. Meie kursuses käsitletakse lõplikke hulki, mõnikord ka lõpmatuid loenduvaid hulki. Hulgateoreetilised operatsioonid · Hulkade ühend AB={x |(xA)V (xB)} · Hulkade ühisosa (lõige) AB={x |(xA)& (xB) · Hulga täiend A = { x | ( x I ) & ( x A ) }, kus I on nn. universaalhulk. ·

Diskreetne matemaatika
620 allalaadimist
thumbnail
30
xlsx

Operatsioonianalüüs

Ülesanne 1 Firma toodab kahesuguseid metalltooteid M1 ja M2, milliseid toodetaksekse ühel ja samal masinal. Ühe toote M1 valmistamine võtab aega 10 minutit ja toote M2 valmistamine 2 minutit. Masinat on võimalik kasutada kuni 35 tundi nädalas. Toote M1 valmistamiseks vajatakse toormaterjali 1 kg ja toote M2 valmistamiseks 500 g. Toormaterjali on võimalik nädalas saada mitte rohkem kui 600 kg. Nõudlus toote M2 järgi ei ole suurem kui 800 toodet nädalas. Leida, kui palju tooteid M1 ja M2 peaks firma tootma, et kasum kujuneks suurimaks, kui on teada, et ühe toote M1 tootmiskulu on 50 € ja toodet müüakse hinnaga 100 € tükk ja ühe toote M2 tootmiskulu on 60 € ja müüakse hinnaga 80 € tükk. 1. Püstitada lineaarse planeerimise ülesanne põhikujul: a) tundmatud b) kitsendused c) sihifunktsioon 2. Koostada esialgse ülesandega duaalne ülesanne. 3. Koostada algsimplekstabel ülesande la

tehnomaterjalid
139 allalaadimist
thumbnail
3
doc

Mat analüüs 2

4) - . . . . -.: 2, N . 4) . (x,y)S - .1: D . . - Rn . . . - . . . r ×r f(x,y)g(x,y), - . . . . . . . - yR 1)D - N= 1 2 . f ( x, y )dxdy g ( x, y r1 × r2 . . . - D=D(f) n2) y . . - 3) -

Matemaatiline analüüs 2
136 allalaadimist
thumbnail
7
doc

Valguse lainepikkuse määramine difraktsioonivõre abil

Praktiline töö Valguse lainepikkuse määramine difraktsioonivõre abil 1. Töövahendid: lamp, difraktsioonivõre (1:100), riist valguse lainepikkuse määramiseks 2. Katse joonis: 3. Põhivalem ja arvutused = (d*b)/(k*a) Andmed: a1 = 50cm = 0,5m a2 = 40cm = 0,4m k1 = 1 k2 = 2 d = 1:100mm = 0,01mm = 0.01 * 0,001m Punane värv: b1 = 35mm = 0.035m b2 = 27mm = 0.027m b3 = 53mm = 0.053m b4 = 66mm = 0.066m Violetne värv: b1 = 20mm = 0.02m b2 = 17mm = 0.017m b3 = 33mm = 0.033m b4 = 42mm = 0.042m Leida keskmine lainepikkus 1) punasel valgusel 2) violetsel valgusel k=1 , a=0,5m Punane valgus: = (0.01 * 0.001 * 0.035)/(1 * 0.5) = 700 nm Violetne valgus: = (0.01* 0.001 * 0.02)/(1* 0.5) = 400 nm k = 1, a = 0,4m Punane valgus: = (0.01 * 0.001 * 0.027)/(1 * 0.4) = 675 nm Violetne valgus: = (0.01 * 0.001 * 0.017)/(1 * 0.4) = 425 nm k = 2, a = 0,5m Punane valgus: = (0.01 * 0.001 * 0.066)/(2 * 0.5) = 6

Füüsika
337 allalaadimist
thumbnail
12
pdf

Mageveekäsna Ephydatia fluviatilis populatsiooni geneetiline analüüs

Intragenomic Profiling Using Multicopy Genes: The rDNA Internal Transcribed Spacer Sequences of the Freshwater Sponge Ephydatia fluviatilis Liisi Karlep, To~nu Reintamm, Merike Kelve* Department of Gene Technology, Tallinn University of Technology, Tallinn, Estonia Abstract Multicopy genes, like ribosomal RNA genes (rDNA), are widely used to describe and distinguish individuals. Despite concerted evolution that homogenizes a large number of rDNA gene copies, the presence of different gene variants within a genome has been reported. Characterization of an organism by defining every single variant of tens to thousands of rDNA repeat units present in a eukaryotic genome would be quite unreasonable. Here we provide an alternative approach for the characterization of a set of internal transcribed spacer sequences found within every rDNA repeat unit by implementing direct sequencing methodology. The prominent allelic variants and their relative amounts c

Eesti loomad
1 allalaadimist
thumbnail
54
doc

Valemid ja mõisted

MATEMAATIKA TÄIENDÕPE VALEMID JA MÕISTED KOOSTANUD LEA PALLAS 1 2 SAATEKS Käesolev trükis sisaldab koolimatemaatika valemeid, lauseid, reegleid ja muid seoseid, mille tundmine on vajalik kõrgema matemaatika ülesannete lahendamisel. Kogumikus on ka mõned kõrgema matemaatika õppimisel vajalikud mõisted, mida koolimatemaatika kursuses ei käsitletud.. 3 KREEKA TÄHESTIK - alfa - nüü - beeta - ksii - gamma - omikron - delta - pii - epsilon - roo - dzeeta - sigma - eeta - tau - teeta - üpsilon - ioota - fii - kapa - hii - lambda - psii - müü - oomega

Matemaatika
1099 allalaadimist
thumbnail
9
pdf

MHT0010 Metroloogia ja mõõtetehnika kodutöö

Osa B. Mõõtetulemuste hinnangud, usaldusvahemikud ja statistiline jaotumine 3. Leida detaili mõõtme B keskväärtus ning standardhälve. keskväärtus standardhälve Mõõtme B väärtused [mm] B1 20,063 20,121 20,163 20,182 20,105 20,106 20,039 20,153 20,063 20,03 B2 20,049 20,083 20,123 20,134 20,071 20,136 20,079 20,152 20,128 20,096 B3 20,133 20,026 20,084 20,111 20,1 20,071 20,117 20,1 20,14 20,045 B4 20,117 20,087 20,084 20,12 20,045 20,1 20,176 20,084 20,101 20,049 B5 20,072 20,095 20,09 20,053 20,124 20,073 20,134 20,127 20,071 20,1 (xi - x)2 B1 0,0012 0,0005 0,0042 0,0070 0,0000 0,0001 0,0035 0,0030 0,0012 0,0046 B2 0,0024 0,0002 0,0006 0,0013

Metroloogia ja mõõtetehnika
324 allalaadimist
thumbnail
72
pdf

Arvuti arhitektuur ja riistvara testide konspekt

Arvuti riistvara  1. Arvutustehnika ajalugu  a. Kes on nende kuulsate sõnade autor(id)? ­ “640K mälu peaks olema piisav  kõikidele.”  ■ Vastus: Bill Gates  b. Milline oli esimene kommertsmikroprotsessor?  ■ Vastus: 4004  c. Milline oli esimene tabelarvutusprogramm?  ■ Vastus: VisiCalc  d. Milline nendest firmadest esitles esimesena WYSIWYG konsteptsiooni?  ■ Xerox  e. Milline nendest firmadest valmistas esimese 32­bitise protsessori?  ■ National Semiconductor  f. Milli(ne/sed) arvuti(d) aitasi(d) briti valitusel II maailmasõja ajal murda koode?  ■ Colossus  g. Milline organisatsioon lõi WWW esialgse spetsifikatsiooni?  ■ CERN  2. Arvuti, mis see on?  3. Protsessorid 1  4. Protsessorid 2 

Arvuti arhitektuur
118 allalaadimist
thumbnail
9
docx

Metrologia koduneülesanne

OSA A. 1.Mõõtemudel mõõtme B ja hälvete mõõtmisel Sirgjoonelisuse hälve STR on mõõtevahendi näitude maksimaalne erinevus mõõteulatuses: Paralleelsuse hälve PAR on mõõtevahendi näitude maksimaalne erinevus mõõteulatuses: Sümmeetrilisuse hälve SYM on leitav valemiga: Laius: 2. Mõõteriista valik Kuna vajatav täpsustase on 5 m, siis valin mõõteriistaks digitaalse indikaatorkella, mille mõõtetäpsuseks on 1 m ning millel on olemas ka rakis. Lisaks veel pikkusplaat. OSA B. Tabel 1. Algandmed A6 7 3 4 4 5 9 2 4 1 7 1 6 6 8 4 7 3 6 4 A 2 5 6 4 8 3 8 4 7 2 4 2 8 3 4 3 8 8 3 4 A7 3 6 4 2 3 4 6 3 3 4 8 8 2 8 6 9 5 4 4 A5 4 7 6 3 8 9 4 5 1 4 1 0 1 6 2 2 6 9 6 0 A8 4 3 3 4 3 8 8 6 5 9 1 7 5 4 8 9 8 9 4 C1 6 7 8 6 5 2 9 5 1 6 0 1 5 6 9 9 6 9 0 2 C4 6 6 7 2 5 4 6 8 2 7 5 1 5 1 7 3 1

Metroloogia ja mõõtetehnika
56 allalaadimist
thumbnail
8
doc

Kõrgema matemaatika kordamisküsimused ja vastused

Kõrgem matemaatika 1. Maatriksi mõiste, järk, tähistused, liigid. Maatriks ­ ristkülikukujuline arvudega tabel, milles on m-rida ja n-veergu. Tähistused: (maatriksit tähistatakse suure tähega) a11 a12 ... a1n a 21 a 22 ... a2n i =1,2,..., m = A( aij ), ... ... ... ... j =1,2,..., n a m1 am2 ... a mn Maatriksi järk ­ tähistab maatriksi môôtmeid; A on m*n järku maatriks. Maatriksi liigid: 1) Ruutmaatriks: m=n; 2) Diagonaalmaatriks: a11, a22, amm - peadiagonaal (diagonaalil ei ole 0; muud elemendid 0-d); 3) Ühikmaatriks (diagonaalmaatriksi erijuht): a11 = a22 ... = amm = 1; (Täh. E); 4) Nullmaatriks: aij = 0, iga i ja j korral; (Täh ). 2. Tehted maatriksitega (korrutamine arvuga, liitmine, lahutamine, korrutamine). 1) Korrutamine arvuga: A=(aij), kR; kA=C; C=(cij), kus cij = kaij. 2) Maatriksite liitmine: (m*n) ­ ma. A, (p*q) ­ m

Matemaatika
241 allalaadimist
thumbnail
20
docx

AGT 2

1. a) A = 4; B = 4; D = 1 Imiteerimisvalemi kood T S0 4 LS 1 T0 2 LT 1 Y=g(X)=sign(X)D1-T|X|T x Y -10 -100.00 Teisendusfunktsiooni y=sign(x)D1-T|x|T graafik baasväärtustel S0 ja T0 -9 -81.00 150 -8 -64.00 100 -7 -49.00 -6 -36.00 50 -5 -25.00 0 -4 -16.00 -10-9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10 -3 -9.00 -50 -2 -4.00 -1

Diskreetne matemaatika
41 allalaadimist
thumbnail
12
docx

Matemaatika 11.klass valemid

Valemid, teoreemid, seosed, tunnused, tingimused MATEMAATIKA EKSAMIL XI KLASSIS 1) a2-b2 = (a+b)(a-b) 2) a3 + b3=(a+b)(a2-ab+b2) 3) a3 - b3=(a-b)(a2+ab+b2) 4) (a+b)3 =a3+3a2b+3ab2+b3 5) (a-b)3 =a3-3a2b+3ab2-b3 −b ± √ b2−4 ac 2 6) a) lahenda ax + bx+c =0 2a b) tegurda : ax2 + bx+c= a( x− x1 )( x−x 2) c) tegurda ax3 + bx2+ax+b= x2(ax+b)+ax+b = (ax+b)(x2+1) 7) lim  an  bn   lim an  lim bn n  n  n  8) lim  an  bn   lim an  lim bn n  n  n  9) lim  anbn   lim an  lim bn n  n  n  an 10) lim  lim an  lim bn n  bn n  n  11) Korrutise tuletise sõnastus ja valem (u * v ) ´ = Korrutise tuletis võrdub esimese teguri tu

Matemaatika
18 allalaadimist
thumbnail
108
doc

MATEMAATIKA TÄIENDÕPE: Valemid

MATEMAATIKA TÄIENDÕPE VALEMID JA MÕISTED KOOSTANUD LEA PALLAS 1 2 SAATEKS Käesolev trükis sisaldab koolimatemaatika valemeid, lauseid, reegleid ja muid seoseid, mille tundmine on vajalik kõrgema matemaatika ülesannete lahendamisel. Kogumikus on ka mõned kõrgema matemaatika õppimisel vajalikud mõisted, mida koolimatemaatika kursuses ei käsitletud.. 3 KREEKA TÄHESTIK Α α  alfa Ν ν  nüü Β β  beeta Ξ ξ  ksii Γ γ  gamma Ο ο  omikron Δ δ  delta Π π  pii Ε ε  epsilon Ρ ρ  roo Ζ ζ  dzeeta Σ σ  sigma Η η  eeta Τ τ  tau Θ θ  teeta Υ υ  üpsilon Ι ι  ioota Φ φ  fii Κ κ  kap

Algebra I
61 allalaadimist
thumbnail
57
rtf

Maatriksid

1. MAATRIKSID 1.1. Üldmõisted Definitsioon 1. Maatriksiks nimetatakse riskülikujulist arvuliste elementidega tabelit, mis sisaldab n rida ja m veergu : Lühidalt maatriksit võib tähistada erinevate sulgudega (või kahekordsete püstjoontega): [ ] a = aij A = (aij ) = ij , (1.1) kus i = 1,...,n on rea number, j = 1,...,m on veeru number. Arve aij nimetatakse maatriksi elementideks. Nii et esimene alumine indeks näitab, mitmendas reas asub element , ja teine alumine indeks - mitmendas veerus asub element. Maatriksi suurust saab väljendada valemiga: ridade arv x veergude arv. Antud maatriks (1.1) on suurusega n x m ja seda saab kirjutada järgmiselt : An x m või dim A = n x m (dimensioon ­ suurus). 3 -

Matemaatika
283 allalaadimist
thumbnail
48
doc

Lineaaralgebra täielik konspekt

Lineaaralgebra elemendid. M.Latõnina 1. MAATRIKSID 1.1. Üldmõisted Definitsioon 1. Maatriksiks nimetatakse riskülikujulist arvuliste elementidega tabelit, mis sisaldab n rida ja m veergu : Lühidalt maatriksit võib tähistada erinevate sulgudega (või kahekordsete püstjoontega): A = (aij ) = [aij ] = aij , (1.1) kus i = 1,...,n on rea number, j = 1,...,m on veeru number. Arve aij nimetatakse maatriksi elementideks. Nii et esimene alumine indeks näitab, mitmendas reas asub element , ja teine alumine indeks - mitmendas veerus asub element. Maatriksi suurust saab väljendada valemiga: ridade arv x veergude arv. Antud maatriks (1.1) on suurusega n x m ja seda saab kirjutada järgmiselt : An x m või dim A = n x m (dimensioon ­ suurus).

Kõrgem matemaatika
858 allalaadimist


Sellel veebilehel kasutatakse küpsiseid. Kasutamist jätkates nõustute küpsiste ja veebilehe üldtingimustega Nõustun