Vajad kellegagi rääkida?
Küsi julgelt abi LasteAbi
Logi sisse

Siinus, koosinus, tangens (7)

4 HEA
Punktid

Lõik failist

Õpetus: sin, cos ja tan
tan = VK:LK

Sin = vk: hüp
Cos = lk : hüp
Kuna sooviti teada saada mõningaid
põhitõdesi seoses sin, cos ja tan-iga siis tegin ülevaatliku, kuid
siiski suhteliselt detailse teema seoses nendega. See õpetus peax
andma selguse antud seostest ja kuidas seda kõike rakendada Game Maker -is. Selle teadmine võib tulla kasuks, kui on vaja leida
erinevaid nurki.
Räägin siis mõningad põhitõed seoses
siinus, koosinus ja tangensiga.
Kõik suhted on
seotud täisnurkse kolmnurgaga. Ilma
täisnurgata vastavad seosed ei kehti.
Pildil:
a
= alus / kaatet 1
b = kõrgus / kaatet 2
c
= hüpotenuus
A' = alfa kraad
B'
= beeta kraad
GM funktsioonid:
radtodeg(x)
= teeb radiaanid kraadideks
arcsin (x) = sin-1 e.

Siinus-koosinus-tangens #1 Siinus-koosinus-tangens #2 Siinus-koosinus-tangens #3
Punktid 50 punkti Autor soovib selle materjali allalaadimise eest saada 50 punkti.
Leheküljed ~ 3 lehte Lehekülgede arv dokumendis
Aeg2009-01-12 Kuupäev, millal dokument üles laeti
Allalaadimisi 254 laadimist Kokku alla laetud
Kommentaarid 7 arvamust Teiste kasutajate poolt lisatud kommentaarid
Autor pisike Õppematerjali autor

Sarnased õppematerjalid

thumbnail
54
doc

Valemid ja mõisted

(kraadides) 0o 30o 45o 60o 90o 180o 270o 360o x (radiaanides) 0 3 2 6 4 3 2 2 3.2 Teravnurga trigonomeetrilised funktsioonid Täisnurkse kolmnurga teravnurkade trigonomeetrilised funktsioonid on järgmised. vastaskaatet a b Teravnurga siinus = ; sin = , sin = hüpotenuus c c lähiskaatet b a c Teravnurga koosinus = ; cos = , cos = a hüpotenuus c c vastaskaatet a b

Matemaatika
thumbnail
108
doc

MATEMAATIKA TÄIENDÕPE: Valemid

x (radiaanides) 0      3 2 6 4 3 2 2 3.2 Teravnurga trigonomeetrilised funktsioonid Täisnurkse kolmnurga teravnurkade trigonomeetrilised funktsioonid on järgmised. vastaskaatet a b Teravnurga siinus  ; sin   , sin   hüpotenuus c c lähiskaatet b a c  Teravnurga koosinus  ; cos   , cos   a hüpotenuus c c  vastaskaatet a b

Algebra I
thumbnail
43
pdf

Keskkooli lõpueksam (2008)

2007. aasta matemaatika riigieksami ülesanded koos lahenduste ja kommentaaridega 2 1. ÜLESANNE (5 punkti) Ülesannete tekstid 1 5x 1 I Antud on avaldis 2 , kus x 0 ja x . x 25 x 2 x 0 5 1) Lihtsustage see avaldis. 3 2) Arvutage avaldise väärtus, kui x 2 . Vastus andke täpsusega 10 2. 2 x 2 (9 x 2 x 0 ) 1 II Antud on avaldis , kus x 0 ja x . 1 3x 3 1)

Algebra ja analüütiline geomeetria
thumbnail
156
pdf

Kõrgem matemaatika

. . . . . . . . . . . . . . . . . . . . . . . . . 138 15.2 Kompleksarvud . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138 15.3 Kompleksarvu algebraline kuju . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138 15.4 Tehted kompleksarvudega . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139 15.5 Kompleksarvu trigonomeetriline kuju . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140 15.6 Siinus ja koosinus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141 15.7 Tehted trigonomeetrilisel kujul antud kompleksarvudega . . . . . . . . . . . . . . . . . . . . 142 16 Kompleksarvu juured. Eksponentkuju 145 16.1 Kompleksarvu n-astme juured . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146 16.2 Kompleksarvu eksponentkuju . . . . . . . . . . . . . . . . . . .

Kõrgem matemaatika
thumbnail
273
pdf

Lembit Pallase materjalid

Paele vaadeldud p~ohiliste elementaarfunktsioonide vaadeldakse matemaati- lises anal¨ uu¨sis veel nn h¨ uperboolseid funktsioone ja nende p¨o¨ordfunktsioone, nn areafunktsioone. H¨ uperboolsed funktsioonid ja areafunktsioonid avaldu- vad juba vaadeldud p~ohiliste elementaarfunktsioonide kaudu. 16 H¨uperboolseteks funktsioonideks on h¨uperboolne siinus, h¨ uperboolne koo- sinus, h¨ uperboolne tangens ja h¨ uperboolne kootangens. H¨uperboolne siinus y = sh x on defineeritud kui ex - e-x sh x = . 2 H¨ uperboolse siinuse graafik on esitatud joonisel 1.24. Funktsiooni m¨a¨aramispiirkond

Matemaatiline analüüs
thumbnail
142
pdf

Matemaatilise analüüsi konspekt TTÜ's

Matemaatiline anal¨ uu¨s I Jaan Janno ii Sisukord 1 Funktsioonid ja nendega seotud m~ oisted 1 1.1 Reaalarvud ja Arvtelg. Absoluutv¨a¨artuse m~oiste. Reaalarvudest koosnevad hulgad. . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 J¨a¨avad ja muutuvad suurused. Funktsiooni m~oiste ja esitusviisid. 3 1.3 Funktsioonide liigid. Konstantne funktsioon. Astme-, eksponent- ja trigonomeetrilised funktsioonid. . . . . . . . . . . . . . . . . . 6 1.4 P¨o¨ordfunktsiooni m~oiste. Logaritmfunktsioon. Arkusfunktsioonid. 8 1.5 Tehted funktsioonidega. Elementaarfunktsioon. Pol¨ unoom ja ratsionaalfunktsioon. . . . . . . . . . . . . . . . . . . . . . . . . . 18 1.6 Ilmutatud ja ilmutamata funktsioonid. Parameetrilisel kujul an- tud jooned ja funktsioonid. . . . . . . . . . . . . . . . . . . . . . 19 1.7 H¨uperboolsed trigonomeetrilised funktsioonid. . . . . . . . .

Matemaatiline analüüs
thumbnail
142
pdf

Matemaatiline analüüs I

Matemaatiline anal¨ uu¨s I Jaan Janno ii Sisukord 1 Funktsioonid ja nendega seotud m~ oisted 1 1.1 Reaalarvud ja Arvtelg. Absoluutv¨a¨artuse m~oiste. Reaalarvudest koosnevad hulgad. . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 J¨a¨ avad ja muutuvad suurused. Funktsiooni m~oiste ja esitusviisid. 3 1.3 Funktsioonide liigid. Konstantne funktsioon. Astme-, eksponent- ja trigonomeetrilised funktsioonid. . . . . . . . . . . . . . . . . . 6 1.4 P¨o¨ ordfunktsiooni m~oiste. Logaritmfunktsioon. Arkusfunktsioonid. 8 1.5 Tehted funktsioonidega. Elementaarfunktsioon. Pol¨ unoom ja ratsionaalfunktsioon. . . . . . . . . . . . . . . . . . . . . . . . . . 18 1.6 Ilmutatud ja ilmutamata funktsioonid. Parameetrilisel kujul an- tud jooned ja funktsioonid. . . . . . . . . . . . . . . . . . . . . . 19 1.7 H¨uperboolsed trigonomeetrilised funktsio

Matemaatika
thumbnail
64
pdf

Kolokvium 1 materjal

TTU¨ Matemaatikainstituut http://www.staff.ttu.ee/math/ Ivar Tammeraid http://www.staff.ttu.ee/itammeraid/ ¨ US MATEMAATILINE ANALU ¨ I Elektrooniline ~oppevahend Tallinn, 2001 Tr¨ ukitud versioon: Ivar Tammeraid, Matemaatiline anal¨ uu ¨ Kirjastus, ¨s I, TTU Tallinn 2001, 227 lk, ISBN 9985-59-289-1 ¨ Raamatukogu Viitenumber http://www.lib.ttu.ee TTU ~opikute osakonnas 517/T-15 c Ivar Tammeraid, 2001 Sisukord 0.1. Eess~ ona K¨aesoleva ~ oppevahendi aluseks on autori poolt viimastel aastatel Tallinna Tehnika¨ ulikoo- lis bakalaureuse~ oppe u ¨li~ opilastele peetud u ¨he muutuja funktsiooni diferentsiaal- ja inte- graalarvutuse loengud nimetuse "Matemaatiline anal¨ uu¨s I" all. Siiski ei ole tegu pelgalt u ¨hel semestril esitatu kirjapanekuga. Lisatud on

Matemaatiline analüüs




Meedia

Kommentaarid (7)

taavi568 profiilipilt
taavi568: väga hea, alles nüüd sain sellest teemast aru, koolis seletati küll, aga nüüd jõudis kohale. aitäh :)
17:46 27-03-2009
M6nksu profiilipilt
Margen Jürgens: Käib kah!!!!!!!!!!
10:09 15-05-2011
kaiisa profiilipilt
kaiisa: huhh, päriis heaa
18:01 18-04-2010



Sellel veebilehel kasutatakse küpsiseid. Kasutamist jätkates nõustute küpsiste ja veebilehe üldtingimustega Nõustun