Vajad kellegagi rääkida?
Küsi julgelt abi LasteAbi
Logi sisse
Ega pea pole prügikast! Tõsta enda õppeedukust ja õpi targalt. Telli VIP ja lae alla päris inimeste tehtu õppematerjale LOE EDASI Sulge

"cos" - 1011 õppematerjali

cos on perioodiline funktsioon perioodiga T 2 ⋅π 1 ω t + 2π T= = t +T = 0 ω0 υ ω0 ϕ + ω0 (t + T ) = ω0t + 2π + ϕ
thumbnail
1
rtf

Sin Cos Tan

Phytagorase teoreem. a2+b2=c2 Siinus. sin =a/c sin =b/c Teravnurga siinus on selle nurga vastaskaateti ja hüpotenuusi suhe. 0 cos =a/c Travnurga koosinus on selle nurga lähiskaateti ja hüpotenuusi suhe. 0 < cos < 1 30 0 45 0 60 0 cos 3/2 2/2 1/2 Tangens. tan =a/b tan =b/a Teravnurga tangens on selle nurga vastaskaateti ja lähiskaateti suhe. 30 0 45 0 60 0 tan 3/3 1 3 Teravnurga siinuse,koosinuse ja tangensi vahelised seosed. Tan =sin /cos

Matemaatika → Matemaatika
167 allalaadimist
thumbnail
4
docx

Sin, cos, tan - valemid

sin 1 √2 √3 α 2 2 2 cos √3 √2 1 α 2 2 2 tan √3 √3 α 3 1 a vastaskaatet b l ä hiskaatet sin α = c = h ü potenuus , sin β = c = hü potenuus , b l ä hiskaatet a vastaskaatet cos α = c = hü potenuus , cos β = c = h ü potenuus a vastaskaatet b l ä hiskaatet tan α = b = l ä hiskaatet , tan β = a = vastaskaatet Täiendusnurga valemid sin α = cos (90°- α) cos α = sin (90°- α) 1 tan α = tan(90 ° −α ) Nurga α kasvades sin α väärtused kasvavad, cos α väärtused kahanevad ja tan α väärtused kasvavad. Teravnurga siinuse, koosinuse ja tangensi vahelised seosed

Matemaatika → Matemaatika
10 allalaadimist
thumbnail
1
doc

Siinused ja Coosinused

(a±b)³=a³±3a²b+3ab²±b³ Sin/cos=tan (a±b)(a²-+ab+b²)=a³±b³ Sin²+cos²=1 1+tan²=1/cos² c=a²+b²-2ab*cos cost tan*cot=1 cos=(b²+c²-a²)/2bc sint cot=cos/sin S=[p(p-a)(p-b)(p-c)] 1+cot²=1/sin² p=P/2_S=p*r_S=abc/4R a/sin=b/sin=c/sin=2R Sin(±)=sin*cos±sin*cos S=(ab*sin)/2 Cos(±)=cos*cos-+sin*sin Tan(±)=(tan±tan)/(1-+tan*tan) sin2=2sin*cos sin/2=±[(1-cos)/2] cos2=cos²-sin² cos/2=±[(1+cos)/2] tan2=2tan/(1-tan²) tan/2=±(1-cos)/(1+cos) tan/2=(1-cos)/sin l=xr l=/360°*2r tan/2=sin/(1+cos) S=xr²/2 S=/360°*r² 030°45°60°90°180°270°360°Sin00,52:23:21 0-10Cos13:22:20,50-101Tan03:313-0- 0Cot-313:30-0-

Matemaatika → Matemaatika
187 allalaadimist
thumbnail
2
doc

Trigonomeetria

Trigonomeetria Teravnurga puhul on sin vastaskaateti ja hüpotenuusi suhe, tan vastaskaateti ja lähiskaateti suhe ning cos lähiskaateti ja hüpotenuusi suhe. y sin = r x cos = r y tan = x x cot = y Taandamisvalemid: II sin ( - ) = sin cos ( - ) = -cos tan ( - ) = -tan III sin ( + ) = -sin cos ( + ) = -cos tan ( + ) = tan IV sin (2 - ) = -sin cos (2 - ) = cos tan (2 - ) = -tan - sin (-) = -sin cos (-) = cos tan (-) = -tan Täiendusnurgad: sin = cos = cos (90° - ) cos = sin (90° - ) 1 tan = cot (90° - ) = tan(90°-) Eriväärtuste tabel: 0 30 45 60 90 180 270 360°

Matemaatika → Matemaatika
19 allalaadimist
thumbnail
1
doc

Matemaatika - Trigonomeetria tabel

sin cos tan cot 0 30° 45° 60° 90 180 270 360° ° ° ° ° 1 2 3 sin 0 1 0 -1 0 2 2 2 3 2 1 cos 1 0 -1 0 1 2 2 2 3 tan 0 3 1 - 0 - 0 3 cot - 3 1 3 0 - 0 - 3 Sin(-)=-sin Cos(-)=cos Tan(-)=-tan Cot(-)=-cot

Matemaatika → Trigonomeetria
22 allalaadimist
thumbnail
1
doc

Trigonomeetria

sin ( + ) = sin cos + cos sin sin ( - ) = sin cos - cos sin cos( + ) = cos cos - sin sin cos( - ) = cos cos + sin sin tan + tan tan ( + ) = 1 - tan tan tan - tan tan ( - ) = 1 + tan tan sin 2 = 2 sin cos cos 2 = cos 2 - sin 2 2 tan tan 2 = 1 - tan 2 2 cos 2 = 1 + cos 2 1 + cos cos =± 2 2 2 sin 2 = 1 - cos 2 1 - cos sin =± 2 2 1 - cos tan =± 21 + cos 1 - cos sin tan = = 2 sin 1 + cos + - sin + sin = 2 sin cos 2 2 + - sin - sin = 2 cos sin 2 2 + - cos + cos = 2 cos cos 2 2

Matemaatika → Matemaatika
153 allalaadimist
thumbnail
1
docx

Sin, cos, tan, cot väärtuste tabel 0-360

0° 30° 45° 60° 90° 120° 135° 150° 180° 210° 225° 240° 270° 300° 315° 330° 36 sin 0 1 0 -1 0 cos 1 0 -1 0 1 tan 0 1 puudub -1 0 1 Puudub -1 0 cot puudub 1 0 -1 puudub 1 0 -1 pu

Matemaatika → Matemaatika
68 allalaadimist
thumbnail
3
doc

TRIGONOMEETRIA VALEMID

Täiendusnurga valemid. sin (90 - ) =cos cos (90 - ) = sin tan (90 - ) = 1/tan = cot cot (90 - ) = 1/cot = tan Negatiivse nurga siinus, koosinus, tangens ja kootangens. sin (- ) = -sin cos (- ) = cos tan (- ) = -tan cot (- ) = -cot Trigonomeetria põhivalemid ja nende järeldused. sin 2 + cos2 = 1 tan =sin /cos cot =cos /sin tan cot =1 1+ tan 2 = 1/cos2 1 + cot2 = 1/sin2 sin 4 + cos4 = 1 - 2 sin2 cos2 sin 6 +cos6 = 1 - 3sin 2 cos2 Kahe nurga summa ja vahe siinus, koosinus, tangens ja kootangens. sin ( + ) =sin cos + cos sin tan ( + ) = tan + tan / (1 - tan tan )

Matemaatika → Matemaatika
639 allalaadimist
thumbnail
1
rtf

Matemaatilised valemid 11 klass

1+cot²=1/sin² cot=tan(90°) cot=cos/sin tan*cot=1 Taandamisvalmeid: a) sin(n*360°+)=sin b) IIv sin(180°)=sin cos(n*360°+)=cos =cos tan(n*360°+)=tan =tan cot(n*360°+)=cot =cot c)III veerand d)IV veerand e)nega nurk sin(180°+)=sin sin(360°)=sin sin()=sin =cos =cos cos()=cos =tan =tan an()=tan =cot =cot cot()=cot + + + + sin cos + tan/cot + sin=a/c Täisnurkse ga teravnurga siinus on vastaskaateti ja hüpotenuusi suhe. cos=b/c ..koosinus on lähiskaateti ja hüpotenuusi suhe. tan=a/b ..tangens on vastaskaateti ja lähiskaateti suhe. cot=b/a ..kotangens on lähiskaateti ja vastaskaateti suhe.

Matemaatika → Matemaatika
75 allalaadimist
thumbnail
2
pdf

Trigonomeetria valemid 10.-12. klass

Trigonomeetria valemid: Põhiseosed Täiendusnurga trigonomeetrilised Negatiivse nurga trigonomeetrilised sin α funktsioonid funktsioonid sin 2 α + cos 2 α = 1 = tan α tan α ⋅ cot α = 1 cosα 1 1 1 + tan 2 α = 1 + cot 2 α = cos 2 α sin 2 α Põhilised taandamisvalemid

Matemaatika → Trigonomeetria
73 allalaadimist
thumbnail
2
odt

Trigonomeetriline võrrand

TRIGONOMEETRILINE VÕRRAND Trigonomeetriliseks võrrandiks nimetatakse võrrandit, milles tundmatu esineb vaid trigonomeetrilise funktsiooni argumendis. Trigonimeetrilised põhivõrrandid: sin x = m cos x = m tan x = m TRIGONOMEETRILISE VÕRRANDI LAHENDAMINE 1) Teisendan trigonomeetrilise võrrandi põhivõrrandiks: a) kui võimalik, lahendan ruutvõrrandi sin x; cos x või tan x järgi b) Kasutades trigonomeetrilisi valemeid teisendan vasakupoole korrutiseks, kui parem pool on 0 (null). c) Kui on käes trigonomeetriline põhivõrrand, kasutan üldlahendi valemeid. Üldlahendi valemid: a) sin x = m x= (-1) n arcsin m + n n Z arcsin m = x= (-1) n + n n Z b) cos x = m x = +- arccos m + 2n n Z arccos m = x = +- + 2n n Z c) tan x = m x = arctan m + n n Z arctan m =

Matemaatika → Matemaatika
22 allalaadimist
thumbnail
1
doc

Valemid trigonomeetriliste avaldiste lihtsustamiseks

Ande Andekas-Lammutaja Matemaatika ­ Valemid trigonomeetriliste avaldiste lihtsustamiseks I. sin 2 + cos 2 = 1 sin tan = cos cos cot = sin 1 1 + tan 2 = cos 2 1 1 + cot 2 = sin 2 tan × cot = 1 II. sin( ± ) = sin cos ± cos sin cos( ± ) = cos cos sin sin tan ± tan tan( ± ) = 1 tan tan III. sin 2 = 2 sin cos cos 2 = cos 2 - sin 2 2 tan tan 2 = 1 - tan 2 IV. 1 - cos sin =± 2 2 1 + cos cos =± 2 2 1 - cos 1 - cos sin tan =± = = 2 1 + cos sin 1 + cos

Matemaatika → Matemaatika
268 allalaadimist
thumbnail
1
doc

Trigonomeetria seosed

alfa 0 30 45 60 9 1 2 3 0 8 7 6 0 0 0 sin 0 0.5 Rut2 Rut3 1 0 -1 0 /2 /2 cos 1 Rut Rut2 0.5 0 -1 0 1 3/2 /2 tan 0 Rut 1 Rut3 - 0 - 0 3/3 cot - Rut 1 Rut3 1 - 0 - 3 /3

Matemaatika → Matemaatika
55 allalaadimist
thumbnail
1
doc

Matemaatika valemid

Sin2+cos2=1 tan=sin/cos 1+tan2=1/cos2 1+cot2=1/sin2 cot=cos/sin Tan*cot=1 sin=cos(90°-) tan=1/tan(90°-)=cot(90°-) cos=sin(90°-) cot=1/cot(90°-)=tan(90°-) 0° 30° 45° 60° 90° 180° 270° 360° sin 0 ½ 2/2 3/2 1 0 -1 0 cos 1 3/2 2/2 ½ 0 -1 0 1 tan 0 3/3 1 3 p. 0 p. 0 cot p. 3 1 3/3 0 p. 0 p. sin(180°-)=sin sin(180°-)=-sin cos(180°-)=-cos cos(180°-)=-cos tan(180°-)=-tan tan(180°-)=tan cot(180°-)=-cot cot(180°-)=cot sin(360°-)=-sin sin(-)=-sin cos(360°-)=cos cos(-)=cos tan(360°-)=-tan tan(-)=-tan cot(360°-)=-cot cot(-)=-cot

Matemaatika → Matemaatika
123 allalaadimist
thumbnail
1
doc

Trigonomeetria valemid

0 30 45 60 90 180 270 360° ° ° ° ° ° ° ° 1 2 3 sin 0 /2 /2 /2 1 0 -1 0 3 2 1 cos 1 /2 /2 /2 0 -1 0 1 3 tan 0 /3 1 3 - 0 - 0 sin cos tan II:+ I:+ II: - I: + II: - I: + III:- IV:- III: - IV:+ III:+ IV: - · sin= cos(90°-) · sin·sin= -1/2[cos(+)-cos(-)] · cos= sin(90°-) · cos·cos= 1/2[cos(+)+cos(-)] · sin(-x)= -sinx · sin·cos= 1/2[sin(+)+sin(-)]

Matemaatika → Matemaatika
159 allalaadimist
thumbnail
2
doc

Trigonomeetrilised valemid

90 0 ± 180 0 ± 270 0 ± 360 0 ± sin cos sin ­ cos ± sin cos sin ­ cos ± sin cos tan cot ± tan cot ± tan cot tan ± cot tan ± cot 0o 30 o 45 o 60 o 90 o 180 o 270 o 1 sin 2 3 0 1 0 ­1 2 2 2 1 cos 3 2

Matemaatika → Matemaatika
371 allalaadimist
thumbnail
1
doc

Sirged ja tasandid ruumis

Ande Andekas-Lammutaja Matemaatika ­ Sirged ja tasandid ruumis Sin on vastaskaateti ja hüpotenuusi suhe, tan vastaskaateti ja lähiskaateti suhe ning cos lähiskaateti ja hüpotenuusi suhe. Paralleelseteks sirgeteks nimetatakse kaht üht tasandil asuvat sirget, millel ei ole ühtki ühist punkti. Lõikuvateks sirgeteks nimetatakse kaht sirget, millel on üks ühine punkt. Kiivsirgeteks nimetatakse kaht mitteparalleelset sirget ruumis, mis ei oma ühiseid punkte (s ­ t). Kahe kiivsirge vaheliseks kauguseks nimetatakse vähimat kaugust nende sirgete selliste punktide vahel, millest üks asub ühel, teine teisel sirgel

Matemaatika → Matemaatika
304 allalaadimist
thumbnail
2
doc

Trigonomeetria taandamisvalemid

http://www.abiks.pri.ee TAANDAMISVALEMID VALEMID sin = sin(180 - ) = sin sin2 + cos2 = 1 cos = cos(180 - ) = - cos tan = tan(180 - ) = - tan sin = sin(180 + ) = - sin tan*cot = 1 cos = cos(180 + ) = - cos sin( + )=sin*cos + cos*sin tan = tan(180 + ) = tan sin( - )=sin*cos - cos*sin sin = sin(360 - ) = - sin cos( + )=cos*cos - sin*sin cos = cos(360 - ) = cos cos( - )=cos*cos + sin*sin tan = tan(360 - ) = - tan sin(-) = - sin < cos(-) = cos tan(-) = - tan a2 = b2 + c2 ­ 2bc cos VERTIKAALTELJE JUURES TAANDAMINE + + - + - + sin(90 - ) = cos - - - + + - cos(90 - ) = sin sin cos tan tan(90 - ) = cot sin(90 + ) = cos cos(90 + ) = - sin tan(90 + ) = - cot sin(270 - ) = - cos cos(270 - ) = - sin

Matemaatika → Matemaatika
422 allalaadimist
thumbnail
1
doc

Valemid

Põhiseosed : Kui sinx=m, siis x=(-1)n arcsinm + n, sin 2 + cos 2 = 1 kus n Z sin tan = cos Kui cosx=m, siis x=±arccosm + 2n, tan · cot = 1 kus n Z 1 1 + tan 2 = Kui tanx=m, siis x=arctanm + n, kus n cos 2 Liitmisvalemid : Z sin( ± ) = sin cos ± cos sin Viete'I teoreem ax2+bx+c=0 cos( ± ) = cos cos sin sin

Matemaatika → Matemaatika
22 allalaadimist
thumbnail
1
doc

Tuletised

x x ( ln x ) = 1 ( log a x ) = 1 (a ) = a x x ln a x x ln a (sin x ) =cos x (cos x ) =-sin x ( tan x ) = 1 cos 2 x -1 ( arcsin x ) = 1 ( arccos x ) = ( arctan x ) = 1 2 1-x 2 1 - x2 1+ x [u( x ) + v( x ) ] = u ( x ) + v ( x ) [u( x ) - v( x ) ] = u ( x ) - v ( x ) [c u( x )] = c u ( x ) (uv ) = u v + v u u u v - uv = v v2

Matemaatika → Matemaatika
94 allalaadimist
thumbnail
0
zip

Praks 20 - Malusi seadus

docstxt/128708563233392.txt

Füüsika → Füüsika ii
599 allalaadimist
thumbnail
2
docx

Trigonomeetria

30 45 60 sin cos tan 1 cot 1 Täisnurkse kolmnurga lihtustamine: Valemid: sin2 x + cos2 x = 1 Üle 90 nurgad · Esimene veerand kuni 90nurgad · Teine veerand kuni 180nurgad. Otsitava nurga leidad 180- Ntks: cos120=cos(180-60)=cos 60=0.5 · Kolmas veerand kuni 270. Otsitava nurga leiad 180+ · Neljad veerand kuni 360. Otsitava nurga leiad 360-

Matemaatika → Matemaatika
44 allalaadimist
thumbnail
1
docx

Trigonomeetria valemid

Matemaatika → Matemaatika
84 allalaadimist
thumbnail
2
doc

Trigonomeetria

Ande Andekas-Lammutaja Matemaatika ­ Trigonomeetria Teravnurga puhul on sin vastaskaateti ja hüpotenuusi suhe, tan vastaskaateti ja lähiskaateti suhe ning cos lähiskaateti ja hüpotenuusi suhe. Nurga veerand võetakse lõpphaara asukoha järgi ning on vastupäeva positiivne, päripäeva negatiivne. Taandamisvalemid võimaldavad taandada mistahes nurga radiaanideks. ja on teineteise täiendusnurgad 90°-ni, kui + = 90°. Siinusfunktsiooniks nimetatakse funktsiooni y=sinx. Tegu on paarisfunktsiooniga, periood on 2. Arkussiinuseks nimetatakse funktsiooni y=arcsinx. Tegu on

Matemaatika → Matemaatika
336 allalaadimist
thumbnail
3
doc

Siinus, koosinus, tangens

Õpetus: sin, cos ja tan tan = VK:LK Sin = vk: hüp Cos = lk : hüp Kuna sooviti teada saada mõningaid põhitõdesi seoses sin, cos ja tan-iga siis tegin ülevaatliku, kuid siiski suhteliselt detailse teema seoses nendega. See õpetus peax andma selguse antud seostest ja kuidas seda kõike rakendada Game Maker -is. Selle teadmine võib tulla kasuks, kui on vaja leida erinevaid nurki. Räägin siis mõningad põhitõed seoses siinus, koosinus ja tangensiga. Kõik suhted on seotud täisnurkse kolmnurgaga. Ilma täisnurgata vastavad seosed ei kehti. Pildil: a = alus / kaatet 1 b = kõrgus / kaatet 2 c = hüpotenuus

Matemaatika → Matemaatika
254 allalaadimist
thumbnail
2
doc

Trigonomeetria

2. (Nurgaminut) 1' on 1/60 kraadist. 3. Teravnurga sin,cos,tan täisnurkses kolmnurgas- sin=a/c, cos=b/c, tan=a/b 4. Seosed ühe nurga sin,cos, tan jaoks- sin2+cos2=1, tan=sin/cos, 1+tan2=1/cos2 5. Täiendusnurga tri. funkt. sin=cos(90º-), cos=sin(90º-), tan=1/tan(90º-) 0o 30 o 45 o 60 o 90 o sin 0 1/2 2 /2 3 /2 1 cos 1 3 /2 2 /2 1/2 0 tan 0 3 /3 1 3 ­ 6. 7. nurga sin nim nurga lõpphaara mistahes punkti ordinaadi suhet selle punkti kaugusesse koordinaatide alguspunktist s.t. sin=y/r 8. nurga cos nim nurga lõpphaara mistahes punkti abstsissi suhet selle punkti kaugusesse koordinaatide alguspunktist s.t. cos=x/r 9

Matemaatika → Matemaatika
333 allalaadimist
thumbnail
1
doc

Trigonomeetria valemid - spikker

Trigonomeetria valemid

Matemaatika → Matemaatika
197 allalaadimist
thumbnail
2
doc

Matemaatika valemid

Ring ­ S=r2 ; P=2r Rööpkülik ­ S=ah ; P=2(a+b) Ruut ­ S=a ; P=4a 2 Romb ­ S=d1*d2/2 = a*h Ristkülik ­ S=a*b ; P=2(a+b) Trapets ­ S=a+b/2*h = k*h ; P=a+b+c+d Kolmnurk ­ S=a*h:2 ; P=a+b+c Täisnurkne kolmnurk ­ S=1/2*ah ; Risttahukas ­ S=2(ab+ac+bc) ; V=abc Viete teoreem: X1+X2 = -p Püstprisma ­ Sk=P*h ; St=Sk+2Sp; V=Sp*h X1*X2 = q Kuup ­ Sp=a ; Sk=4*a 2 2 Silinder ­ Sp=r2 ; St=2r ; Sk=2rh ; V=r2h Kera ­ S=4r2 ; V= 4/3 r3 Koonus ­ Sp=r2 ; Sk=rm ; St=r ; V= 1/3 r2h Korrapärane püramiid ­ Sk=P*h ; St=Sk+2Sp ; V=Sp*h Püramiid ­ Sk=Pm/2 ; St =Sk+Sp ; V=1/3Sp*h · (a+b)(a-b)= a²- b² · (a-b)³=a³-3a²b+3ab²-b³ · (a+b)²= a²+2ab+b² · (a+b)(a²-ab+b²)= a³+b³ · (a-b)²= a²-2ab+b² · (a-b)(a²+ab+b²)= a³-b³ · (a+b)³= a³+3a²b+3ab²+b³ Sin = a/c a = c*sin c = a/sin Sin = b/c Cos = b/c b = c*cos ax2 + bx + c = 0 -b +- b2 ...

Matemaatika → Matemaatika
208 allalaadimist
thumbnail
1
doc

Trigonomeetria

Trigonomeetrilised põhiseosed sin( + ) = sin cos + cos sin sin 2 = sin( + ) = sin cos + cos sin sin 2 + cos 2 = 1 sin 2 = 2 sin cos sin tan = cos( + ) = cos cos - sin sin cos cos cos 2 = cos( + ) = cos cos - sin sin cot = sin cos 2 = cos 2 - sin 2 1 tan + tan 1 + tan 2 = tan( + ) = cos 2 1 - tan tan 1 tan + tan

Matemaatika → Matemaatika
25 allalaadimist
thumbnail
2
doc

Trigonomeetria põhiseosed

Trigonomeetria põhiseosed Lihtsustamiseks kasutatakse 1. Trigonomeetria põhiseoseid: sin 2 + cos 2 = 1 1 - cos 2 = sin 2 sin 1 - sin 2 = cos 2 = tan cos cos tan = sin 1 1 + tan 2 = tan cot = 1 cos 2 1 cos tan = = cot cot sin 2. Ühise teguri sulgude ette toomist 3. Ühise nimetaja leidmist 4. Abivalemeid: ( a + b )( a - b ) = a 2 - b 2 ( a + b) 2 = a 2 + 2ab + b 2 ( a - b) 2 = a 2 - 2ab + b 2 Näited: 1. (1 - sin )(1 + tan ) - cos = cos

Matemaatika → Matemaatika
26 allalaadimist
thumbnail
6
doc

TRIGONOMEETRILISTE AVALDISTE LIHTSUSTAMINE.

TRIGONOMEETRILISTE AVALDISTE LIHTSUSTAMINE. TÕESTA SAMASUSED. 2 cos 2 a 1 1 cos 2a 1 tan a 1. 2 tan a sin 2 a 2. 0 1 sin 2a 1 tan a 4 4 1 sin a cos a 4 4 2 1 sin a 1 sin a 3.. 4. 2 tan a cos a4 2 cos a 1 sin a 1 sin a sin a cos a 1 cos a cos 2a cos 3a 5. a =1 6

Matemaatika → Trigonomeetria
56 allalaadimist
thumbnail
2
doc

Trigonomeetria valemid

Põhiseosed : Funktsioonid: sin + cos = 1 2 2 sin sin(180° - )=sin tan = cos(180° - )=-cos cos tan · cot = 1 tan(180° - )=-tan cot(180° - )=-cot 1 1 + tan 2 = cos 2 sin(180° + )=-sin Liitmisvalemid : cos(180° + )=-cos sin( ± ) = sin cos ± cos sin tan(180° + )=tan cos( ± ) = cos cos sin sin cot(180° + )=cot tan ± tan sin( ± ) tan( ± ) = = 1 tan · tan cos( ± ) sin(360° - )=-sin

Matemaatika → Matemaatika
150 allalaadimist
thumbnail
13
ppt

Trigonomeetriliste avaldiste teisendamine

Trigonomeetriliste avaldiste teisendamine Trigonomeetria põhivalemid sin 2 + cos 2 = 1 sin tan = cos 1 1 + tan = 2 cos 2 cos cot = sin Taandamisvalemid Taandamisvalemite rakendamiseks piisab järgmise reegli teadmisest: nurkade - , + ja 2 - korral teiseneb nende siinus avaldiseks sin , koosinus avaldiseks cos ja tangens avaldiseks tan , mille ees olev märk ("+" või "-") sõltub sellest, milline on vastavalt siinuse, koosinuse või tangensi märk veerandis, kuhu kuulub esialgne nurk - , + ja 2 - Märgi määramisel loetakse nurk teravnurgaks. Kui nurk on kirjutatud kujul / 2 ± või 3 / 2 ± , siis muutub, sin cos tan cot cos sin cot tan. märgi määramise reegel jääb endiseks. Trigonomeetriliste funktsioonide märgid

Matemaatika → Matemaatika
26 allalaadimist
thumbnail
1
doc

Trigonomeetria valemid

PÕHISEOSED tan cot = 1 sin 2 + cos 2 = 1 + y + - y + - y + sin 1 tan = 1 + tan 2 = cos cos 2 x x x cot = cos 1 + cot 2 = 1 - - - + + - sin sin 2 +sin

Matemaatika → Matemaatika
42 allalaadimist
thumbnail
1
wps

Trigonomeetria taandamisvalemid

Matemaatika ­ Trigonomeetria taandamisvalemid TAANDAMISVALEMID sin = sin(180 - ) = sin cos = cos(180 - ) = - cos tan = tan(180 - ) = - tan sin = sin(180 + ) = - sin cos = cos(180 + ) = - cos tan = tan(180 + ) = tan sin = sin(360 - ) = - sin cos = cos(360 - ) = cos tan = tan(360 - ) = - tan sin(-) = - sin cos(-) = cos tan(-) = - tan VERTIKAALTELJE JUURES TAANDAMINE sin(90 - ) = cos cos(90 - ) = sin tan(90 - ) = cot sin(90 + ) = cos cos(90 + ) = - sin tan(90 + ) = - cot sin(270 - ) = - cos cos(270 - ) = - sin tan(270 - ) = cot sin(270 + ) = - cos cos(270 + ) = sin tan(270 + ) = - cot VALEMID sin2 + cos2 = 1 tan*cot = 1 sin( + )=sin*cos + cos*sin sin( - )=sin*cos - cos*sin cos( + )=cos*cos - sin*sin cos( - )=cos*cos + sin*sin < a2 = b2 + c2 ­ 2bc cos ++-+-+ ---++- sin cos tan

Matemaatika → Matemaatika
410 allalaadimist
thumbnail
8
docx

Trigonomeetrilised võrrandid

Trigonomeetrilised võrrandid Kordamine (lai matemaatika) 1. Trigonomeetrilised põhivõrrandid Näide: sin x = 0,3342 arcsin 0,3342 = 19,5 0 Vastus : x = ( - 1) 19,5 0 + n 180 0 , n Z n Näide: Lahenda võrrand lõigul - 90 ;90 0 0 [ ] 2 cos 3 x + 2 = 0 3x = ±135 0 + n 360 0 , n Z : 3 n = 1 x = ±45 0 + 1 120 0 2 cos 3 x = - 2 : 2 x = ±45 0 + n 120 0 , n Z x3 = 165 0 (ei sobi ), x 4 = 75 0 2 Leian lahendid antud lõigus: n = -1 x = ±45 0 + ( - 1) 120 0 cos 3 x = - 2 n = 0 x = ±45 0 + 0 120 0

Matemaatika → Matemaatika
65 allalaadimist
thumbnail
2
doc

Trigonomeetria

Trigonomeetria põhivalemid ja nende järeldused: sin 2 + cos 2 = 1 2 2 2 sin = 1 - cos sin = 1 - cos 2 2 2 cos = 1 - sin cos = 1 - sin sin = cos( 90° - ) ; cos = sin ( 90° - ) sin sin tan = sin = cos tan cos = cos tan 1 1 tan = ; cot = cot tan 1 1 + tan 2 = cos 2 Kahekordse nurga valemid: sin 2 = 2 sin cos cos 2 = cos 2 - sin 2 2 tan tan 2 = 1 - tan 2 Liitmisvalemid: sin ( + ) = sin cos +cos sin cos( + ) = cos cos +sin sin tan + tan tan (+ ) =

Matemaatika → Matemaatika
499 allalaadimist
thumbnail
2
odt

Trigonomeetria valemid

Trigonomeetrilised funktsioonid. Trigonomeetrilised võrrandid Valemid · Trigonomeetriliste funktsioonide väärtuste märgid Funktsioon I veerand II veerand III veerand IV veerand y = sin + + ­ ­ y = cos + ­ ­ + y = tan + ­ + ­ y = cot + ­ + ­ · Trigonomeetriliste funktsioonide väärtusi 0o 30 o 45 o 60 o 90 o 180 o 270 o 1 sin 2 3 0 1 0 ­1

Matemaatika → Trigonomeetria
179 allalaadimist
thumbnail
3
doc

Matemaatika valemid

tan 2 = Ruumala: V = S p h 2 2 1 - tan 2 2 Külgpindala: S k = PH sin cos 1 3 2 1 0 tan = Täispindala: S t = S k + 2 S p 2 1 + cos 2 2 2 1 - cos Korrapärane püramiid sin = ± 1

Matemaatika → Matemaatika
230 allalaadimist
thumbnail
2
pdf

Trigonomeetria valemileht

0° 30° 45° 60° 90° 180°() 270° 6 4 3 2 2 1 2 3 sin 0 1 0 -1 2 2 2 3 2 1 cos 1 0 -1 0 2 2 2 3 tan 0 1 3 puudub 0 puudub 3 3 cot puudub 3 1 0 puudub 0 3 Kuus trigonomeetria põhiseost

Matemaatika → Matemaatika
227 allalaadimist
thumbnail
2
doc

Siinus - taandamisvalemid

TAANDAMISVALEMID sin = sin(180 ) = sin cos = cos(180 ) = cos tan = tan(180 ) = tan sin = sin(180 + ) = sin cos = cos(180 + ) = cos tan = tan(180 + ) = tan sin = sin(360 ) = sin cos = cos(360 ) = cos tan = tan(360 ) = tan sin() = sin cos() = cos tan() = tan VERTIKAALTELJE JUURES TAANDAMINE sin(90 ) = cos cos(90 ) = sin tan(90 ) = cot sin(90 + ) = cos cos(90 + ) = sin tan(90 + ) = cot sin(270 ) = cos cos(270 ) = sin tan(270 ) = cot sin(270 + ) = cos cos(270 + ) = sin tan(270 + ) = cot

Matemaatika → Matemaatika
60 allalaadimist
thumbnail
3
doc

Taandamisvalemid

tangensi leidmise taandada positiivse nurga juhule. 1. Taandamisvalemid II veerandi nurkade korral. Iga II veerandi nurga , kui 90° < < 180°, saab esitada kujul = 180° - , kus on positiivne teravnurk. Näiteks = 110° = 180° - 70°. y II veerandi nurkade korral kehtivad valemid: sin(180° - ) = sin cos(180° - ) = - cos x tan(180° - ) = - tan Näide 1. Kasutades II veerandi nurkade taandamisvalemeid, saame sin 155° = sin(180° - 25°) = sin 25°, cos155° = cos(180° - 25°) = - cos 25°, tan155° = tan(180° - 25°) = - tan 25°. 2. Taandamisvalemid III veerandi nurkade korral. Iga III veerandi nurga , kui 180° < < 270°, saab esitada kujul = 180° + , kus on positiivne teravnurk.

Matemaatika → Matemaatika
58 allalaadimist
thumbnail
2
doc

Trigonomeetria valemid

Trigonomeetria põhivalemid ja nende järeldused: sin 2 + cos 2 = 1 2 2 2 sin = 1 - cos sin = 1 - cos 2 2 2 cos = 1 - sin cos = 1 - sin sin = cos( 90° - ) ; cos = sin ( 90° - ) sin sin tan = sin = cos tan cos = cos tan 1 1 tan = ; cot = cot tan 1 1 + tan 2 = cos 2 Kahekordse nurga valemid: sin 2 = 2 sin cos cos 2 = cos 2 - sin 2 2 tan tan 2 = 1 - tan 2 Liitmisvalemid: cos( ) = cos cos sin sin + tan tan tan ( ) = 1 tan tan + + + +

Matemaatika → Matemaatika
304 allalaadimist
thumbnail
1
doc

Tuletiste ja Trigonomeetria valemid

Trigonomeetriliste funktsioonide tuletised Hüperboolne trig. 1 1 e x - e -x (sin x ) = cos x ( arcsin x ) = ( sh x ) = ch x ( arsh x ) = sh x := 1- x2 x 2 +1 2

Matemaatika → Matemaatiline analüüs
120 allalaadimist
thumbnail
1
doc

Trigonomeetria

Trigonomeetria põhivalemid: 1) sin² + cos² = 1 Ühe ja sama nurga siinuse ja koosinuse ruutude summa on võrdne ühega. sin 2) tan = cos Nurga tangens võrdub nurga siinuse ja koosinuse jagatisega. 1 3) 1 + tan = 2 cos 2 Näide 1. sin² 20² + cos² 20° = 1 sin 20 0 Näide 2. = tan 20 0 cos 20 0 Valemite tuletamisel lähtume täisnurksest kolmnurgast, mille kaatetid on a ja b, hüpotenuus c ning teravnurgad on ja . 1) Lähtume Pythagorase teoreemist: a² + b² = c². Jagame selle võrduse mõlemad pooled arvuga c², saame a2 b2 c2 a 2

Matemaatika → Matemaatika
77 allalaadimist
thumbnail
3
doc

Trigonomeetriliste funktsioonide valemid

· lihtsamate trigonomeetriliste võrrandite lahendite leidmine etteantud piirkonnas; · trigonomeetria valemite kasutamine geomeetriaülesannete lahendamisel. Valemid · Trigonomeetriliste funktsioonide väärtuste märgid Funktsioon I veerand II veerand III veerand IV veerand y = sin + + ­ ­ y = cos + ­ ­ + y = tan + ­ + ­ y = cot + ­ + ­ · Trigonomeetriliste funktsioonide väärtusi 0o 30 o 45 o 60 o 90 o 180 o 270 o 1 sin 2 3

Matemaatika → Matemaatika
72 allalaadimist
thumbnail
3
doc

Kõik Trigonomeetrilised valemid

· lihtsamate trigonomeetriliste võrrandite lahendite leidmine etteantud piirkonnas; · trigonomeetria valemite kasutamine geomeetriaülesannete lahendamisel. Valemid · Trigonomeetriliste funktsioonide väärtuste märgid Funktsioon I veerand II veerand III veerand IV veerand y = sin + + ­ ­ y = cos + ­ ­ + y = tan + ­ + ­ y = cot + ­ + ­ · Trigonomeetriliste funktsioonide väärtusi 0o 30 o 45 o 60 o 90 o 180 o 270 o 1 sin 2 3

Matemaatika → Trigonomeetria
97 allalaadimist
thumbnail
9
ppt

Trigonomeetrilised võrrandid

Trigonomeetrilised võrrandid © T. Lepikult, 2010 Trigonomeetriline võrrand Trigonomeetriliseks võrrandiks nimetatakse võrrandit, milles muutuja esineb vaid trigonomeetriliste funktsioonide argumentides Näiteks võrrand 2 sin 2 x + cos x - 1 = 0 on trigonomeetriline võrrand, võrrand x sin 1 + x 2 cos = 0 aga ei ole trigonomeetriline võrrand. Võrrandeid sin x = a, | a | 1, tan x = a, cos x = a, | a | 1, cot x = a, nimetatakse trigonomeetrilisteks põhivõrranditeks. Trigonomeetriliste põhivõrrandite lahendamine sin x = a, | a | 1 x = (-1) n arcsin a + n , n Z ; cos x = a, | a | 1 x = ± arccos a + 2n , n Z ; tan x = a, x = arctan a + n , n Z ; cot x = a, x = arccot a + n , n Z . Näide Lahendada võrrand tan x = 3. Lahendus Kuna arctan 3 = , 3

Matemaatika → Matemaatika
57 allalaadimist
thumbnail
2
docx

Matemaatika põhivalemid

Põhivalemid sin cos tan = cot = sin + cos = 1 2 2 cos sin 1 1 1 1 sec = cos ec = 1 + tan 2 = 1 + cot 2 = cos sin cos 2 sin 2 Kahekordse ja poolnurga valemid 2 tan tan 2 = sin 2 = 2 sin cos cos 2 = cos 2 ­sin 2 1 - tan 2 1 - cos = 2 sin 2 1 + cos = 2 cos 2 2 2

Matemaatika → Matemaatika
21 allalaadimist
thumbnail
3
doc

Gümnaasiumi valemid

Paarisfunktsioon: f ( -x) = f ( x) , x X Paaritu funktsioon: f (-x) = - f ( x) , x X Perioodiline funktsioon: f ( x + T ) = f ( x) , x X b 4ac - b 2 Parabooli y = ax 2 + bx + c haripunkt P - ; 2a 4a Trigonomeetria põhi valemid: sin sin sin 2 + cos 2 = 1 = tan cot = cos cos 1 1 tan cot = 1 1 + tan 2 = 1 + cot 2 = cos 2 sin 2

Matemaatika → Matemaatika
833 allalaadimist


Sellel veebilehel kasutatakse küpsiseid. Kasutamist jätkates nõustute küpsiste ja veebilehe üldtingimustega Nõustun