Vajad kellegagi rääkida?
Küsi julgelt abi LasteAbi
Logi sisse

Protsent (0)

5 VÄGA HEA
Punktid

Esitatud küsimused

  • Mitu kilogrammi kartuleid mdi?
  • Mitme protsendi vrra kaal suurenes?
  • Kui mitu protsenti kaal vhenes?
  • Kui suur summa tuli Emmanuelil tasuda?
  • Mitu kilogrammi oli laos igat aedvilja?
  • Kui palju on linnas B elanikke kellel on krgharidus?
  • Mitu puud istutasid Jri ja Karl he pevaga?
Vasakule Paremale
Protsent #1 Protsent #2 Protsent #3 Protsent #4 Protsent #5 Protsent #6 Protsent #7 Protsent #8
Punktid 50 punkti Autor soovib selle materjali allalaadimise eest saada 50 punkti.
Leheküljed ~ 8 lehte Lehekülgede arv dokumendis
Aeg2011-03-09 Kuupäev, millal dokument üles laeti
Allalaadimisi 67 laadimist Kokku alla laetud
Kommentaarid 0 arvamust Teiste kasutajate poolt lisatud kommentaarid
Autor mcrolts Õppematerjali autor
Näited

Sarnased õppematerjalid

thumbnail
15
pdf

Protsendid

Protsendid © T. Lepikult 2010 Protsendi mõiste (1) Protsent (tähis %) on üks sajandik vaadeldavast tervikust (arvust, rahasummast, toodanguhulgast jne.): 1 1% = = 0,01. 100 Näide 1 Leiame, kui palju on 1% 150-st kilost. Lahendus Kuna 1% on üks sajandik, siis tuleb selleks, et leida 1% arvust, jagada see arv sajaga ehk korrutada ühe sajandikuga: 150 1% = 150 0,01 = 1,5. Vastus:

Matemaatika
thumbnail
33
doc

PROTSENT ÜLESANDED

Protsent A Protsent B 1. Esita antud protsendid kümnendmurdudes 1. Esita antud kümnendmurrud protsentides a) 56 % c) 80 % a) 0,57 c) 0,8 b) 3,4 % d) 0,6 % b) 0,034 d) 1,24 2. Esita antud protsendid 2. Esita antud harilikud murrud protsentides

Matemaatika
thumbnail
78
pdf

Majandusmatemaatika

MAJANDUSMATEMAATIKA I Ako Sauga Tallinn 2003 SISUKORD 1. MUDELID MAJANDUSES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 Mudeli mõiste. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 Matemaatiliste mudelite liigitus ja elemendid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 Matemaatilise mudeli struktuur ja sisu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2. FUNKTSIOONID JA NENDE ALGEBRA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Arvud ja nende hulgad . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Funktsionaalne sõltuvus . . . . . . . . . .

Raamatupidamise alused
thumbnail
100
pdf

MATEMAATIKA TÄIENDUSÕPE

…….. 3 2.3 Tehetevahelised seosed ……………………………………….…….. 3 2.4 Tehted harilike murdudega ………………………………….……… 4 2.5 Tehete põhiomadused ……………………………………….……… 5 2.6 Näited tehete kohta positiivsete ja negatiivsete arvudega …….…….. 5 2.7 Näited tehete kohta ratsionaalarvudega ……………………….……. 6 2.8 Protsent ja promill …………………………………………….……. 8 2.9 Näited protsentarvutusest …………………………………………... 9 2.10 Arvu absoluutväärtus ………………………………………………. 10 2.11 Ülesanded ……………………………………………………….….. 11 3. ALGEBRA …………………………………………………….……. 12 3

Matemaatika
thumbnail
85
pdf

Konspekt

Mainori Kõrgkool Matemaatika ja statistika Loengukonspekt Silver Toompalu, MSc 2008/2009 1 Matemaatika ja statistika 2008/2009 Sisukord 1 Mudelid majanduses ............................................................................................................. 4 1.1 Mudeli mõiste ......................................................................................................................... 4 1.2 Matemaatilise mudeli struktuur ja sisu ................................................................................... 4 2 Funktsioonid ja nende algebra............................................................................................... 5 2.1 Funktsionaalne sõltuvus ....................................

Matemaatika ja statistika
thumbnail
63
doc

Põhikooli matemaatika kordamine

Ruutfunktsioon Sissejuhatav kordamine 1. Teosta tehted. Vastustes vabane negatiivsetest astendajatest. 3 1 2 3 1 a) 2 a b c 3 Lahendus: ; 1 4 2 s 3 t b) 4 5 3 4 s t Lahendus: . 2. Lihtsusta avaldis. a) xy(x + 3y) + (x + y)(x2 ­ 2xy ­ y2) Lahendus: xy(x + 3y) + (x + y)(x2 ­ 2xy ­ y2) = = x2y + 3xy2 + x3 ­ 2x2y ­ xy2 + x2y ­ 2xy2 ­ y3 = = x 3 ­ y3 = = (x ­ y)(x2 + xy + y2) b) (3a ­ 2)2 + (2 + 3a)(2 ­ 3a) Lahendus: (3a ­ 2)2 + (2 + 3a)(2 ­ 3a) = 9a2 ­ 12a + 4 + 4 ­ 9a2 = = 8 ­ 12a 3. Lahenda võrrand. a) 24x2 + 5x ­ 1 ­ (24x2 ­ 6x ­ 12x + 3) = 111 Lahendus: 24x2 + 5x ­ 1 ­ (24x2 ­ 6x ­ 12x + 3) = 111; 24x2 + 5x ­ 1 ­ 24x2 + 6x

Matemaatika
thumbnail
38
pdf

Füüsika lahendused 45-86

LIIKUMISHULK JA JÕUIMPULSS 45. Pall massiga 0.40 kg visatakse vastu kiviseina, nii et ta liigub horisontaalselt edasi- tagasi. Tema kiirus enne põrget on 30 m/s ja pärast põrget 20 m/s. Leida liikumishulga muut ja keskmine jõud, mida sein avaldab pallile, kui põrge kestab 0.010 s. Lahendus: Joonis. Palli mass m = 0,4 kg Palli kiirus enne põrget v1= -30 m/s Palli kiirus pärast põrget v2= 20 m/s Põrke kestvus t = 0,010 s Liikumishulk e. impulss (vektor) ⃗ ⃗ ⃗ 0,4 30 / = 2 / ⃗ 0,4 20 8 / Liikumishulga muut avaldub ⃗⃗⃗⃗⃗⃗ ⃗ ⃗ 8 2 / Keskmise jõu leiame järgmiselt ⃗⃗⃗⃗⃗⃗ / ⃗⃗ = 2000 / = 2000 N

Füüsika
thumbnail
62
pdf

Nupukas - Nuputamisülesanded

Matemaatika nuputamisülesandeid 4. ja 5. kl õpilastele Panin siia kirja 325 ülesannet, mida võiks anda nuputamiseks 4. ja 5. kl matemaatikahuvilistele õpilastele. Olen nuputamisülesanded väga erinevatest allikatest juba mitu aastat kogunud ja olümpiaadiks ettevalmistamisel praktikas kasutanud. Praegune valik on selline. Võib-olla on need ülesanded natukene abiks ka mõnele kolleegile. On lisatud ka vastused ja üks võimalikest lahenduskäikudest. 1. Ühe staadioniringi läbimiseks kulub Sassil 3 minutit ja Reinul 4 minutit. Poisid alustasid jooksu samal ajal samalt stardijoonelt. Leia vähim aeg, mis kulub poistel, et ületada jälle samaaegselt seda stardijoont. VASTUS: 12 minutit, sest see on väikseim arv, mis jagub nii 3-ga kui ka 4- ga. 2. Mitu kolmnurka on joonisel? VASTUS: 20 3. Mari elab koos ema, isa ja vennaga. Neil on kodus üks koer, kaks kassi, kaks papagoid ja akvaariumis neli kuldkala. Mitu jalga on neil kõigil kokk

Matemaatika




Kommentaarid (0)

Kommentaarid sellele materjalile puuduvad. Ole esimene ja kommenteeri



Sellel veebilehel kasutatakse küpsiseid. Kasutamist jätkates nõustute küpsiste ja veebilehe üldtingimustega Nõustun