Protsendid © T. Lepikult 2010 Protsendi mõiste (1) Protsent (tähis %) on üks sajandik vaadeldavast tervikust (arvust, rahasummast, toodanguhulgast jne.): 1 1% = = 0,01. 100 Näide 1 Leiame, kui palju on 1% 150-st kilost. Lahendus Kuna 1% on üks sajandik, siis tuleb selleks, et leida 1% arvust, jagada see arv sajaga ehk korrutada ühe sajandikuga: 150 1% = 150 0,01 = 1,5. Vastus:
Protsent A Protsent B 1. Esita antud protsendid kümnendmurdudes 1. Esita antud kümnendmurrud protsentides a) 56 % c) 80 % a) 0,57 c) 0,8 b) 3,4 % d) 0,6 % b) 0,034 d) 1,24 2. Esita antud protsendid 2. Esita antud harilikud murrud protsentides
MAJANDUSMATEMAATIKA I Ako Sauga Tallinn 2003 SISUKORD 1. MUDELID MAJANDUSES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 Mudeli mõiste. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 Matemaatiliste mudelite liigitus ja elemendid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 Matemaatilise mudeli struktuur ja sisu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2. FUNKTSIOONID JA NENDE ALGEBRA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Arvud ja nende hulgad . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Funktsionaalne sõltuvus . . . . . . . . . .
…….. 3 2.3 Tehetevahelised seosed ……………………………………….…….. 3 2.4 Tehted harilike murdudega ………………………………….……… 4 2.5 Tehete põhiomadused ……………………………………….……… 5 2.6 Näited tehete kohta positiivsete ja negatiivsete arvudega …….…….. 5 2.7 Näited tehete kohta ratsionaalarvudega ……………………….……. 6 2.8 Protsent ja promill …………………………………………….……. 8 2.9 Näited protsentarvutusest …………………………………………... 9 2.10 Arvu absoluutväärtus ………………………………………………. 10 2.11 Ülesanded ……………………………………………………….….. 11 3. ALGEBRA …………………………………………………….……. 12 3
Mainori Kõrgkool Matemaatika ja statistika Loengukonspekt Silver Toompalu, MSc 2008/2009 1 Matemaatika ja statistika 2008/2009 Sisukord 1 Mudelid majanduses ............................................................................................................. 4 1.1 Mudeli mõiste ......................................................................................................................... 4 1.2 Matemaatilise mudeli struktuur ja sisu ................................................................................... 4 2 Funktsioonid ja nende algebra............................................................................................... 5 2.1 Funktsionaalne sõltuvus ....................................
Ruutfunktsioon Sissejuhatav kordamine 1. Teosta tehted. Vastustes vabane negatiivsetest astendajatest. 3 1 2 3 1 a) 2 a b c 3 Lahendus: ; 1 4 2 s 3 t b) 4 5 3 4 s t Lahendus: . 2. Lihtsusta avaldis. a) xy(x + 3y) + (x + y)(x2 2xy y2) Lahendus: xy(x + 3y) + (x + y)(x2 2xy y2) = = x2y + 3xy2 + x3 2x2y xy2 + x2y 2xy2 y3 = = x 3 y3 = = (x y)(x2 + xy + y2) b) (3a 2)2 + (2 + 3a)(2 3a) Lahendus: (3a 2)2 + (2 + 3a)(2 3a) = 9a2 12a + 4 + 4 9a2 = = 8 12a 3. Lahenda võrrand. a) 24x2 + 5x 1 (24x2 6x 12x + 3) = 111 Lahendus: 24x2 + 5x 1 (24x2 6x 12x + 3) = 111; 24x2 + 5x 1 24x2 + 6x
LIIKUMISHULK JA JÕUIMPULSS 45. Pall massiga 0.40 kg visatakse vastu kiviseina, nii et ta liigub horisontaalselt edasi- tagasi. Tema kiirus enne põrget on 30 m/s ja pärast põrget 20 m/s. Leida liikumishulga muut ja keskmine jõud, mida sein avaldab pallile, kui põrge kestab 0.010 s. Lahendus: Joonis. Palli mass m = 0,4 kg Palli kiirus enne põrget v1= -30 m/s Palli kiirus pärast põrget v2= 20 m/s Põrke kestvus t = 0,010 s Liikumishulk e. impulss (vektor) ⃗ ⃗ ⃗ 0,4 30 / = 2 / ⃗ 0,4 20 8 / Liikumishulga muut avaldub ⃗⃗⃗⃗⃗⃗ ⃗ ⃗ 8 2 / Keskmise jõu leiame järgmiselt ⃗⃗⃗⃗⃗⃗ / ⃗⃗ = 2000 / = 2000 N
Matemaatika nuputamisülesandeid 4. ja 5. kl õpilastele Panin siia kirja 325 ülesannet, mida võiks anda nuputamiseks 4. ja 5. kl matemaatikahuvilistele õpilastele. Olen nuputamisülesanded väga erinevatest allikatest juba mitu aastat kogunud ja olümpiaadiks ettevalmistamisel praktikas kasutanud. Praegune valik on selline. Võib-olla on need ülesanded natukene abiks ka mõnele kolleegile. On lisatud ka vastused ja üks võimalikest lahenduskäikudest. 1. Ühe staadioniringi läbimiseks kulub Sassil 3 minutit ja Reinul 4 minutit. Poisid alustasid jooksu samal ajal samalt stardijoonelt. Leia vähim aeg, mis kulub poistel, et ületada jälle samaaegselt seda stardijoont. VASTUS: 12 minutit, sest see on väikseim arv, mis jagub nii 3-ga kui ka 4- ga. 2. Mitu kolmnurka on joonisel? VASTUS: 20 3. Mari elab koos ema, isa ja vennaga. Neil on kodus üks koer, kaks kassi, kaks papagoid ja akvaariumis neli kuldkala. Mitu jalga on neil kõigil kokk
Kõik kommentaarid