8 1 0 0 0 1 1 1 1 1 1 1 9 1 0 0 1 1 1 1 0 0 1 1 A 1 0 1 0 1 1 1 0 1 1 1 B 1 0 1 1 0 0 1 1 1 1 1 C 1 1 0 0 1 0 0 1 1 1 1 D 1 1 0 1 0 1 1 1 1 0 1 E 1 1 1 0 1 0 0 1 1 1 1 F 1 1 1 1 1 0 0 0 1 1 1 Tabel. 1 Kõige aluseks on antud funktsionaalplokk, kus a-g on segmendid ja b3-b0 tähistab neljakohalist kahendkoodi. Loogikafunktsioonide tuletamine Loogikafunktsioonid koostatakse iga segmendi kohta eraldi ehk siis a-g. Loogikafunktsiooni saab teha kahel viisil: 1. Konjunktsioonide disjunktsioonidest (valitakse tabelist loogilised ühed) 2. Disjunktsioonide konjunktsioonidest (valitakse tabelist loogilised nullid) Antud juhul kasutan funktsiooni koostamiseks esimest varianti, kus funktsionaalploki tabelist tuleb valida loogilised ühed. Näide: Ya = 3 21 0 + 3 210 + 3 210 + 3210 + 3210 + 3210 + 321 0 + 3210 + 3210 + 321 0 + 3210 + 3210 Sama tuleb teha nüüd kõigi segmentide väärtuste kohta. Loogikafunktsioonid
Semiconductori laboratooriumis. - IV põlvkond (1980-...) – väga suured mikroskeemid (VLSI) 3. Milleks on võimeline transistor (2 tegurit) - Transistor suudab väikese signaaliga kontrollida palju suuremat signaali (võimsuse mõttes). - Transistor suudab väljundit kontrollida proportsionaalselt sisendiga – võimendi. Samas on ta võimeline toimima ka switchina. 4. Mis asi on wafer? - Räni plaadid, millele toodetakse integraalskeemid. 5. Mida ütleb Moore seadus? - Ühele ränikristallile paigutatavate transistorite arv kahekordistub iga 18 kuuga. 6. Mis on aadressi- ja andmesiin? - Aadressisiin (Address bus) - Protsessori ja mälu vaheline siin aadresside edastuseks, kui protsessor tahab mällu kirjutada või sealt lugeda. Aadressisiiini bittide arv määrab ära mälu maksimaalse suuruse, mille poole protsessor saab pöörduda - Andmesiini laius (Data bus) - Andmesiini kaudu samaaegselt edastatavate
1.1. Diskreetsed ja arvsignaalid 7 1.1.1. Kvantimine 7 1.1.2. Kodeerimine, dekodeerimine ja koodide liigid 8 1.1.3 Kümnendarvude teisendamine kahend-, kaheksand- ja kuueteistkümnendarvudeks 12 1.1.4. Informatsiooni hulk ja signaali viga 13 1.2. Loogikafunktsioonid ja loogikalülitused ning nende esitusviisid 14 1.2.1. Loogikatehted 14 1.2.2. Loogikaseadused 17 1.2.3. Loogikalülituste süntees ja minimeerimine 21 1.3. Funktsionaalsed loogikalülitused 24 1.3.1
Arvutid I – Eksamipiletid Sisukord I................................................................................................................................................ 3 1. Trigerid.............................................................................................................................. 3 2. Konveier protsessoris ja mälus.......................................................................................... 5 3. Siirete (hargnemiste) ennustamine (Branch Prediction)....................................................6 II...............................................................................................................................
TALLINNA POLÜTEHNIKUM Meedia erialaosakond Referaat OPERATSIOONISÜSTEEMI KOOSTISOSAD JA FUNKTSIOONID MULTIMEEDIA SPETSIALIST MM-17 Tallinn 2017 Sissejuhatus Olen valinud selle teemal põhjusel, et laiendada enda teadmisi operatsioonisüsteemide kohta. Ma pole iseseisvalt varem õppinud erinevate arvuti programmide ja funktsioonide kohta ja selle referaadi koostamine on perfektne võimalus just seda teha. Minu eesmärgiks on selle töö koostamise käigus teha endale selgeks, mida operatsioonisüsteem endast täpsemalt kujutab ning mis on selle erinevad funktsioonid. Selle teema koostamisel käsitlen teemasid, mis teeks lugejale selgeks: operatsioonisüsteemi mõiste, koostisosad, funktsioonid ning lühikesed ülevaated OSi tähtsusest, ajaloost ja näidetest.
......... 161 6.5.4. Koodimuundur.............................................................................................................. 161 6.5.5. Kooder.......................................................................................................................... 163 6.6. Jadaloogika tüüplülitused....................................................................................................... 164 6.6.1. Trigerid......................................................................................................................... 164 6.6.2. Registrid........................................................................................................................ 174 6.6.3. Loendurid...................................................................................................................... 178 6.7. Mälud................................................
kiiretoimeline. Väga kiire. * MOS (Metal Oxyde Silicon)- unipolaarne tehnoloogia * NMOS (n- channel MOS)- n juhtivusega MOS- loogika. * PMOS- P juhtivusega MOS loogika * CMOS (Complementary MOS) Kasut. arvutiskeemides. Aeglasemad, kui bipolaarsed, kuid võimaldavad suurema pakkimistiheduse, energitarve väiksem. 3.TRIGERID Triger on mäluelement, mis säilitab 1 biti informatsiooni. Triger on kahe stabiilse olekuga loogikalülitus (1 või 0). Trigeri olek vastab tema väljundsignaalile. Sõltuvalt sisendsignaalist säilitab triger endise oleku või muudab seda hüppeliselt. Trigeril tavaliselt 2 väljundit: otsene O ja invertne Õ. Tööpõhimõtte järgi jaotatakse trigerid seadesisenditega ehk SR- trigeriteks, loendussisenditega e. T-trigeriteks, andmesisenditega ehk D- trigeriteks ning universaalsisenditega e. JK-trigeriteks. Kui trigeri oleku muutmine toimub kasvõi ühe sisendi kaudu täiendava sünkroniseerimis signaali abil, nim
Trigerid Triger on mäluelement mis säilitab 1bit informatsiooni. Qt = S + -R * Qt-1Trigeril on 2 stabiilset olekut 1 ja 0. Olekuks nimetatakse trigeri väljundi väärtust antud ajakhetkel. Sõltuvalt sisendsignaalist muudab triger oleku vastupidiseks või säilitab endise oleku. Sünkroniseerimine kui trigeriga on ühendatud lubav sisend, mille kõrgel väärtusel loetakse sisse uued sisendid, toimuvad üleminekud, madalal olekul aga on triger passiivne, säilitades oma endise oleku. Vastasel juhul võiksid erinevate elementide ja kombinatsioonide erinevad viited väjundit mõjutada. Esifront vs tagafront.
erinevat kombinatsiooni, millega ta vastab sissetulevale impulsijadale. Suvalise mooduliga e. grey koodiga loendurid – kõik järgnevad koodid on naaberkoodid. g= QI+ QI +1 Suvalise mooduliga e. naaberkoodid on koodid, mis erinevad teineteisest ainult ühe kahendjärgu poolest. Gray koodi puhul lülitub korraga ümber ainult 1 triger. Reversiivne loendur - Loendur, mis loendab nii pos. kui ka neg. suunas. Loendussuuna muutmine sõltub sellest, kas ülekandeks kasutatakse trigeri otsest või inverteeritud signaali. Ringloendur - Loendur, mis on moodustatud nihkeregistrist, kui selle väljund ühendada sisendiga. 2. Pinumälu(stack)realiseerimine ja kasutamine protsessoris. Pinumälu – LIFO ehk Last in, first out. On mälu poole pöördumise viis, registrisse viimasena kantud andmed saab esiemsenas välja võtta. Tegemist on protseduuriga, mis tegeleb andmestruktuuride
Pilet 1 1. Trigerid. 2. Konveier protsessoris ja mälus. 3. Suvapöördusmälud. Trigerid (Flip-Flops)kuuluvad järjestiskeemide hulka sest neil on olemas mälu omadus, see tähendab väljundi väärtus sõltub peale sisendite väärtuse antud ajahetkel ka eelnevast väljundiväärtusest. Triger on elementaarne mäluelement, mis võimaldab säilitada infot üks bit. + 1) asünkroonsed - salvestatakse infi vahetult sisenditesse antud signaalidega. 2) sünkroonsed - see on võimalik ainult sünkroimpulsi olemasolul.
Arvutid I eksamipiletid ja vastused 1. PILET.............................................................................................................................................4 1. Trigerid.......................................................................................................................................4 2. Konveier protsessoris ja mälus...................................................................................................5 3. Suvapöördusmälud.....................................................................................................................5 2. PILET..........................................................................
Sissejuhatus. Automaatika süsteeme kasutatakse tootmisprotsessis, kus ta kõrvaldab inimese osavõtu selles protsessis ja võimaldab teostada selliseid protsesse mis on inimesele kahjulikud. Automaatika süsteemi kuuluvad automaat kontrollimine ja automaat reguleerimine. Esimene neist teostab mõõtmisi ja teine teostab reguleerimist e. parameetri hoidmist kindlal tasemel või parameetri hoidmist kindlal tasemel reguleerimisprogrammi järgi. Automaatika süsteemi nimetatakse automatiseerimiseks see võib olla osaline näiteks üks tööpink või tööliin või tsehh ja samuti võib esineda täielik automatiseerimine, sel juhul automatiseeritakse mitu tehnoloogilist protsessi mis on oma vahel seotud. Kompleks automatiseerimine on sel juhul, kui automatiseeritakse juhtimisprotsessid. Seadmete sõlmede kogum mis võimaldab teostada automatiseerimist nimetatakse automaatika süsteemiks. Nad võimaldavad mehhanismide ja seadmete automaatset käivitust, reversee
Matemaatika õhtuõpik 1 2 Matemaatika õhtuõpik 3 Alates 31. märtsist 2014 on raamatu elektrooniline versioon tasuta kättesaadav aadressilt 6htu6pik.ut.ee CC litsentsi alusel (Autorile viitamine + Mitteäriline eesmärk + Jagamine samadel tingimustel 3.0 Eesti litsents (http://creativecommons.org/licenses/by-nc-sa/3.0/ee/). Autoriõigus: Juhan Aru, Kristjan Korjus, Elis Saar ja OÜ Hea Lugu, 2014 Viies, parandatud trükk Toimetaja: Hele Kiisel Illustratsioonid ja graafikud: Elis Saar Korrektor: Maris Makko Kujundaja: Janek Saareoja ISBN 978-9949-489-95-4 (trükis) ISBN 978-9949-489-96-1 (epub) Trükitud trükikojas Print Best 4 Sisukord osa 0 – SISSEJUHATUS . .................... 17 OSA 2 – arvud ..................................... 75 matemaatika meie ümber ................... 20 arvuhulgad ....................
Sissejuhatus. Automaatika süsteeme kasutatakse tootmisprotsessis, kus ta kõrvaldab inimese osavõtu selles protsessis ja võimaldab teostada selliseid protsesse mis on inimesele kahjulikud. Automaatika süsteemi kuuluvad automaat kontrollimine ja automaat reguleerimine. Esimene neist teostab mõõtmisi ja teine teostab reguleerimist e. parameetri hoidmist kindlal tasemel või parameetri hoidmist kindlal tasemel reguleerimisprogrammi järgi. Automaatika süsteemi nimetatakse automatiseerimiseks see võib olla osaline näiteks üks tööpink või tööliin või tsehh ja samuti võib esineda täielik automatiseerimine, sel juhul automatiseeritakse mitu tehnoloogilist protsessi mis on oma vahel seotud. Komp
LCD, LED, OLED ja plasma kuvarid. Passiivmaatriks ja aktiivmaatriks. LCD kahe soontega klaasplaadi vahel on vedelkristallid, mis juhivad valgust. Vedelkristallid võtavad soontega sama suuna ning kuna sooned on risti, siis tekivad keerdunud ahelad. Kui lasta valgust läbi, siis oleks polarisatsioon 90 kraadi. Kui nüüd vedelkristalli mõlemale poole panna elektroodid ja juhtida sealt läbi pinge, siis oleks polarisatsioon endine. Luues 3-kihilise elemendi -> filter (0 pol) valgusallikas vedelkristall filter (0 pol) ja juhtides sealt läbi pinge, siis ei laseks filter valgust läbi. Kui pinge maha keerata, siis oleks polarisatsioon jälle 90 kraadi. LCD kuvarid vajavad valgusallikat. Nt: ekraanitagune peegel (kelladel), ekraanitagune aktiivne valgusallikas, kombineeritud. LED valgusallikaks valgusdiood, mis võimaldab teha õhemaid ekraane (nt läpakas). LEDil halvem kvaliteet, kui LCD, nt väga heleda valguse korral ekraani raske näha. Vähem jahutada, sest tarbim v
Praktiline elektroonika I Analoogskeemid Veljo Sinivee felch@staff.ttu.ee Kondensaatorid · Kondensaator on nagu veeanum kogub elektrone.Erinevalt veepurgist on tühjas kondes alati elektrone · Juhib vahelduvvoolu, alalispingele lõpmatu takistus (v.a. laadimisel). Miks? · Polaarsed, mittepolaarsed ja unipolaarsed konded · Max. pinge, töötemperatuur, ehitusest tulenevad omadused (induktiivsus, lekkevool jne). · Ühik Farad (Maa mahtuvus ca 700 nF). Skeemil sümbol C · Kasutatakse pinge silumiseks toiteallikates (vihmaveetünn) ; viidete tekitamiseks; filtrites; signaali ahelates alalispinge blokeerimiseks. Sügis 2010 Praktilise elektroonika loeng 2 Konded · Silub, võimendi toide nt. Samuti kasulik patareiga paralleelselt vähendab toiteallika sisetakistust · Mahtuvustakistus. Vananemine
Signalit saab kasutada erinevate plokkide vahel signaali edastamiseks. Variable on lokaalne ehk processi sisene ning signal on globaalne. Väärtustamine signal <= ja variable :=. Kasutatakse signalit entity, architecture sees ja variable-t process, function-i sees. 75. Milleks kasutatakse VHDL keeles TEXTIOd? Failist lugemine, kirjutamine. Failist loetud tulemuste võrdlemine eeldavate tulemustega, laadida ja kirjutada mälu sisu faili. 76. Mis erinevus on Mealy ja Moore masinatel? Mealy olekumasin sõltub nii sisendist, kui ka hetke olekust ja Moore masin sõltub ainult hetke olekust. 77. Kirjutage Moore masina baasil stopperi (Omab ainult ühte nuppu – olekud start, stop, reset, start jne) olekudiagramm. Alguses on S0. Kui on S0 ja btn on 1, siis liigub S1-te. Kui on S1 ja btn on 0, siis liigub S2. S2 tähendab, et stopper loendab. Kui on S2 ja btn on 1, siis liigub S3-e. Kui on S3 ja btn on 0, siis liigub S4-ja
EESTI MEREAKADEEMIA RAKENDUSMEHAANIKA ÕPPETOOL MTA 5298 RAKENDUSMEHAANIKA LOENGUMATERJAL Koostanud: dotsent I. Penkov TALLINN 2010 EESSÕNA Selleks, et aru saada kuidas see või teine masin töötab, peab teadma millistest osadest see koosneb ning kuidas need osad mõjutavad teineteist. Selleks aga, et taolist masinat konstrueerida tuleb arvutada ka iga seesolevat detaili. Masinaelementide arvutusmeetodid põhinevad tugevusõpetuse printsiipides, kus vaadeldakse konstruktsioonide jäikust, tugevust ja stabiilsust. Tuuakse esile arvutamise põhihüpoteesid ning detailide deformatsioonide sõltuvuse väliskoormustest ja elastsusparameetritest. Detailide pinguse analüüs lubab optimeerida konstruktsiooni massi, mõõdu ja ökonoomsuse parameetrite kaudu. Masinate projekteerimisel omab suurt tähtsust detailide materjali õige valik. Masinaehitusel kasutatavate materjalide nomenklatuur täieneb pidevalt, rakendatakse efekti
Soojusautomaatika eksamiküsimuste vastused 1. Põhimõisted automatiseeritud tootmise alalt. Automaatikasüsteemide klassifikatsioon nende otstarbe järgi. Näited. Automatiseeritud tootmise põhimõisted: 1. Objekt 2. Regulaator 1. Andur 2. Tajur 3. Automaatikasüsteem Automaatikasüsteemide klassifikatsioon otstarbe järgi: 1. Automaatreguleerimise süsteemid (ARS) 2. Distantsioonjuhtimise süsteemid (DJS) 3. Tehnoloogilise kaitse süsteemid 4. Automaatblokeeringu süsteemid (ABS) 5. Reservseadme automaatse käivitamise süsteem (RAKS) 6. Automaatsed tehnoloogilise kontrolli süsteemid (ATKS) 7. Signalisatsioonisüsteemid (SS) valgus ja helisüsteemid 1
Tallinna Polütehnikum Energeetika õppesuund Rein Kask ELEKTRIAJAMITE JUHTIMINE Õppevahend TPT energeetika õppesuuna õpilastele Tallinn, 2007 Saateks Erialaainete õpikute ja muude õppevahendite krooniline puudus on juba palju aastaid raskendanud kutsehariduskoolide õpilastel omandada erialaseid teadmisi. Käesolev kirjatöö püüab mingilgi määral leevendada seda olukorda Tallinna Polütehnikumi energeetika õppesuuna õpilastele sellise õppeaine kui ,,Elektriajamite juhtimine" õppimisel. Elektriajamid on üheks põhiliseks elektritarvitite liigiks ja neid kasutatakse laialdaselt kõikides eluvaldkondades. On selge, et tulevased elektriala spetsialistid peavad neid hästi tundma ja oskama neid ka juhtida. Elektriajamite juhtimine ongi valdkonnaks, mida käsitleb käesolev õppevahend. Selle koostamisel on autor lähtunud põhimõttest selgitada probleeme nii põhjalikult kui vajalik ja nii napilt kui võimalik siit ka õppe-
Kaitsealade külastuskoormuse hindamise juhend: seiremeetodite arendamine ja rakendamine SA Keskkonnainvesteeringute Keskuse 2008. aasta looduskaitseprogrammi projekt nr. 193 „Kaitsealade külastuskoormuse hindamine“ Koostajad: Antti Roose, Kalev Sepp, Varje Vendla, Miguel Villoslada, Maaria Semm, Henri Järv, Janar Raet, Ene Hurt, Tuuli Veersalu Tartu 2011 SISUKORD SISSEJUHATUS.................................................................................................................................................... 4 VÕTMEMÕISTED...................................................................................................................................................................... 6 1. KAITSEALADE KÜLASTUSSEIRE ALUSED .......................................................................................................... 9 1.1 KÜLASTUSSEIRE ARENDAMINE MAAIL
väljundid välja arvutada üheselt, väljundid on määratud üks-üheselt sisendite väärtustega. Järjestikskeem: digitaalskeem, milles väljundi väärtus sõltub eelmistest, eelnevatel diskreetse aja hetkedel I/O-s olnud väärtustest skeemil on mäluolek. Positiivne vs negatiivne loogika. Täielikult vs mittetäielikult määratud Boole'i funktsioonid {LAB1} Enamkasutatavaid järjestikskeeme 4. Trigerid: Triger on mäluelement mis säilitab 1bit informatsiooni. Qt = S + -R * Qt-1 Trigeril on 2 stabiilset olekut 1 ja 0. Olekuks nimetatakse trigeri väljundi väärtust antud ajakhetkel. Sõltuvalt sisendsignaalist muudab triger oleku vastupidiseks või säilitab endise oleku. Sünkroniseerimine kui trigeriga on ühendatud lubav sisend, mille kõrgel väärtusel loetakse sisse uued sisendid, toimuvad üleminekud, madalal olekul aga on triger passiivne, säilitades oma endise oleku
mäluelement, mis säilitab 1 biti signaalidega: vastuvõtt (write) ja juhtsisendite arv. Järelikult saab püsimälu (EPROM- erasable informatsiooni. Triger on kahe 0-seade (reset). Signaalidega kahe juhtsisendiga ehk kahebitise programmale read only memory) stabiilse olekuga loogikalülitus (1 write kirjut. sisendite Aº...An koodiga kommuteerida 4 sisendit, elektriliselt kustutatav või 0). Trigeri olek vastab tema informatsioon registrisse, kolme juhtsisendiga 8 sisendit ümberrogrammeeritav väljundsignaalile. Sõltuvalt signaaliga reset aga kustutatakse jne. püsimälu (EEPROM-electrically sisendsignaalist säilitab triger sealt. Nihkega ehk jadaregister - 9.Koodimuundur: Teisendab erasable programmable read only
väljundid välja arvutada üheselt, väljundid on määratud üks-üheselt sisendite väärtustega. Järjestikskeem: digitaalskeem, milles väljundi väärtus sõltub eelmistest, eelnevatel diskreetse aja hetkedel I/O-s olnud väärtustest skeemil on mäluolek. Positiivne vs negatiivne loogika. Täielikult vs mittetäielikult määratud Boole'i funktsioonid {LAB1} Enamkasutatavaid järjestikskeeme 4. Trigerid: Triger on mäluelement mis säilitab 1bit informatsiooni. Qt = S + -R * Qt-1 Trigeril on 2 stabiilset olekut 1 ja 0. Olekuks nimetatakse trigeri väljundi väärtust antud ajakhetkel. Sõltuvalt sisendsignaalist muudab triger oleku vastupidiseks või säilitab endise oleku. Sünkroniseerimine kui trigeriga on ühendatud lubav sisend, mille kõrgel väärtusel loetakse sisse uued sisendid, toimuvad üleminekud, madalal olekul aga on triger passiivne, säilitades oma endise oleku
Kulu põhivõõrand. Normaaldrosseliga kulumõõturid. Normaaldiafragma. Normaaldüüs. Venturi toru. Drosselkulumõõturi arvutamine. On mingi kohalik takistus(plaat väikse avaga) ja mõõdetakse rõhkude erivenus enne ja 2 pärast. Q = * F0 * ( p A - p B ) , - kulutegur Vedelik dif. Manomeeter-rõhk mõõdetakse U-manomeetriga; deform. Tajuriga, pieso- elekt, pieso-keraamiline manomeetri asemel on andur, mis muudetates oma kuju muudab ka oma takistus. 27. Vt. 26. 28. Vt. 26. 29. Püsiva rõhulanguga kulumõõturid. Rotameeter: R - N1 = N R = const R N 2 = Ap N1 = N 2 A-rootori frontaal pind p Qmah = CFo F0- min.pind 17 p
Kui te leiate vea siis osutage sellele kommentaariga (“Insert” ->”Comment” või märgi osa sellel parem klõps ning “Comment”). Küsimuste järel on vastamise koht. Vastamisel lisage kindlasti küsimus ja järjekorra number! TUBLID OLETE! :) Kes ütles? Palume autorit! :-) Kuidas kasutada Google Doc-si, õppevideo: http://www.youtube.com/watch?v=lMqdex3KDQM Rene 1-6 1. Käsu täitmine protsessoris (käsuloendur, käsuregister, käsu dekooder, operatsioon automaat ja juhtautomaat). 2. Arvuti mälu hierarhia. 3. Analoog info, ADC, DAC ja helikaart. 4. Pooljuhtmälud. 5. Konveier protsessoris ja mälus. 6. Virtuaal mälu. TAUSTAVÄRVIGA KÜSIMUSED ON VASTAMATA!!! PIIA 7-12 8. Andmevahetus mikroarvutis (erinevad siinid ja nende osa andmevahetuses, AB, DB, CB). 7. Erinevad siinid ja nende osa andmevahetuses (AB, DB, CB). 9.
1. Shannon–Weaveri mudel, ISO-OSI mudel, TCP/IP protokollistik. Shannon-Weaveri mudel: Allikaks võib olla kas analoogallikas (sarnane väljastavale signaalile – raadio) või digitaalallikas (numbriline). AD-muundur on ainult analoogallika puhul. Signaal on mistahes ajas muutuv füüsikaline suurus, müra on juhusliku iseloomuga signaal. Allika kodeerimine võtab infost ära ülearuse (surub info ajas väikseks kokku), muudab info haaratavaks. Kui pärast seda läheb veel infot kaduma, on kasulik info jäädavalt läinud. Kanali kodeerimisel pannakse juurde lisainfot, et vajalikku infot kaduma ei läheks. Modulatsiooniga pannakse abstraktne info kujule, mida on võimalik edastada. Side kanaliks võib olla näiteks kaabel, valguskaabel. Samuti võib side liikuda läbi õhu, elektromagnet-kiirgusega jne. Demodulaator ütleb, mis ta vastu võttis. Kui kindel pole, siis ennustab. Füüsiline signaal muudetakse tagasi abstraktseks. Kanali dekooder võtab vigadega ko
FUNKTSIONAALSED SIGNAALIPROTSESSORID Loengumaterjal 1 Toomas Ruuben Toomas Ruuben. TTÜ Raadio ja sidetehnika 1 instituut. Teemad Ülevaade DSP-dest, signaalitöötlusest, FPGA-dest Digitaalarvuti töö üldpõhimõtted Tehted kahendsüsteemis (+,-,*,/ jne) Erinevaid arvsüsteemid Peamisi loogikafunktsioonid (AND, OR jne) Loogikavõrrandid Trigerid, registrid, dekoodrid, multipleksorid, demultipleksorid, aritmeetika loogika seadmed jne) Toomas Ruuben. TTÜ Raadio ja sidetehnika 2 instituut. 1 Teemad Programmeeritavad loogikaseadmed CPLD, PLD FPGA FPGA (Field programmable gate array)arhidektuurid, tööpõhimõtted
Kombinatsioonskeemid ja järjestiskeemid. Kõikides arvutites kasutatavad loogikaskeemid kuuluvad kahte suurde klassi. 3. võimalust ei ole. Kombinatsioonskeemid on sellised loogikaelementidest koostatud skeemid, millel ei ole mälu omadusi. Nad kirjelduvad loogikafunktsioonidega, milles ei ole aja parameetrit. Teades hetke sisendit, saame arvutada samal hetkel väljundite väärtused vastava loogikafunktsiooni abil. Ei ole oluline, millised olid sisendite väärtused varasematel hetkedel. Kui väljundeid on mitu, siis on iga väljundi jaoks eraldi funktsioon. Järjestikskeemid on sellised loogikaelementidest koostatud skeemid, millel on mälu omadused. See tähendab, et kõnealusel hetkel on väljundite väärtuste määramiseks vaja teada väljundite väärtusi ka eelnevatel hetkedel. Sel juhul sisaldab olek infot eelnevate hetkede väljundite väärtuste kohta. Sünkroonsel
TaIlinna Tehnikaülikool Elektriajam ite ja jõueIektroonika instituut Eesti Moritz Hermann Jacobi Selts SUJUVKÄIWTiD JA sAGĘDĮJ$MUUNDUREņ rÕruu LEHTtA ... 'r'.. .,-.:r'i,,ili. 'r ".1 i 'Ļ 1 )- '':' : .,. 'l ..-: .- :ī- Īallinn 1 999 Sujr.rvkäivitid ia sagedusmuundLrrid' Koostanud T. Lehtla. TTÜelektriajalrrite .ļa iõrrelek1roonika instituut. Eesti Moritz Hermann Jacobi SeĮts. Taļlinrr, l999. 90 lk' Saa
ARVI TAVAST MARJU TAUKAR Mitmekeelne oskussuhtlus Tallinn 2013 Raamatu valmimist on finantseeritud riikliku programmi „Eesti keel ja kultuurimälu 2010” projektist EKKM09-134 „Eesti kirjakeel üld- ja erialasuhtluses” ja Euroopa Liidu Sotsiaalfondist. Kaane kujundanud Kersti Tormis Kõik õigused kaitstud Autoriõigus: Arvi Tavast, Marju Taukar, 2013 Trükitud raamatu ISBN 978-9985-68-287-6 E-raamatu ISBN 978-9949-33-510-7 (pdf) URL: tavast.ee/opik Trükitud trükikojas Pakett Sisukord 1 Sissejuhatus 8 1.1 Raamatu struktuur . . . . . . . . . . . . . . . . . . . 10 1.2 Sihtrühm ja eesmärk . . . . . . . . . . . . . . . . . . 11 I Eeldused
tegev programm ühe lindiga TM-l, nii et tema ajaline keerukus on O(t2(n)). Teoreem: Iga 1 lindiga mittedeterministlikul TM-l ajalise keerukusega O(t(n)) töötava programmi jaoks leidub sama tööd tegev programm 1 lindiga deterministlikul TM-l, nii et tema ajaline keerukus on 2O(t(n)). DEF: DEF: Polünomiaalne keerukusklass P on nende ülesannete hulk, mis on lahenduvad ühe lindiga deterministlikul TM-l polünomiaalse ajaga : Summa, korrutamine, kui pikk on graaf, arvutil lahendatavad. DEF: Omadus C on lahenduv hulgal A (ja mõnel x-l hulgas A on omadus C), kui leidub arvutatav predikaat DEF: Omadus C on tuvastatav hulgal A, kui leidub arvutatav predikaat kus iga x korral leidub väärtus s (tõestus/sertifikaat). See V on verifitseerija. NP keerukuse klass (non-deterministic polynomial time) 83% 9%
Jaan Reigo, Kristjan Ööpik EA06 Rakenduselektroonika Uudo Usai Võimendid 10.02.09 Võimendi on seade, mille abil toimub signaali amplituudi suurendamine sel määral, et signaalist piisaks võimendi väljundisse ühendatud tarbijale. See juures võimendamise käigus ei tohi signaal moonutuda. Võimendusprotsess toimub alati toiteallikate energia arvel, nii et võime vaadelda võimendit kui reguraatorit, mis juhib toiteallikate energijat tarbijatesse kooskõlas sisendsignaali muutustega. Võimendi sisendsignaaliks võib olla ükskõik milline elektriline signaal, milline on kasutamiseks liiga väikse amplituudiga. Näiteks mikrofon (1- 3mV), maki helipea (50-100mV), termopaar (10-