Vajad kellegagi rääkida?
Küsi julgelt abi LasteAbi
Logi sisse

Andmetöötluse arvestustööks kordamismaterjalid (0)

1 Hindamata
Punktid

Lõik failist

Vasakule Paremale
Andmetöötluse arvestustööks kordamismaterjalid #1 Andmetöötluse arvestustööks kordamismaterjalid #2 Andmetöötluse arvestustööks kordamismaterjalid #3 Andmetöötluse arvestustööks kordamismaterjalid #4 Andmetöötluse arvestustööks kordamismaterjalid #5 Andmetöötluse arvestustööks kordamismaterjalid #6 Andmetöötluse arvestustööks kordamismaterjalid #7 Andmetöötluse arvestustööks kordamismaterjalid #8 Andmetöötluse arvestustööks kordamismaterjalid #9 Andmetöötluse arvestustööks kordamismaterjalid #10
Punktid 50 punkti Autor soovib selle materjali allalaadimise eest saada 50 punkti.
Leheküljed ~ 10 lehte Lehekülgede arv dokumendis
Aeg2023-03-10 Kuupäev, millal dokument üles laeti
Allalaadimisi 0 laadimist Kokku alla laetud
Kommentaarid 0 arvamust Teiste kasutajate poolt lisatud kommentaarid
Autor 412886 Õppematerjali autor
1. Mis on üldkogum?
2. Mis on valim? Esinduslik valim.
3. Mis on andmestik? Rühmitamata ja rühmitatud andmestik.
4. Arvuline tunnus – pidev, diskreetne
5. Mittearvuline tunnus – järjestustunnus, nominaaltunnus.
6. Mis on juhuslik suurus?
7. Kuidas on defineeritud jaotusfunktsioon? Jaotusfunktsiooni
skitseerimine, graafikult lugemine (kvantiil, kvartiil, mediaan,
täiendkvantiil)

Sarnased õppematerjalid

thumbnail
5
docx

Andmetöötluse kordamine

Kordamine arvestustööks 1. Üldkogum (uurimisobjekt, populatsioon) on teatud nähtuste (objektide) hulk, mida soovitakse objektiivsete meetoditega tundma õppida. 2.. Valimiks nimetatakse teatud hulka üldkogumi elemente, mille mõõtmisandmed on uurija käsutuses. Esinduslik valim. 3. Valimi mõõtmisandmed moodustavad andmestiku. Rühmitamata ja rühmitatud andmestik. 4. Arvuline tunnus ­ pidev, diskreetne. Pidev ­ võib omada väärtusi mingil lõigul. Diskreetne ­ arvuliste tunnuste võimalike väärtuste hulk on lõplik või loenduv 5. Mittearvuline tunnus ­ järjestustunnus, nominaaltunnus. Järjestustunnus ­ mittearvuline tunnus, mille väärtused on järjestatavad (Krafti klass, puistu Orlovi boniteet). Nominaaltunnus ­ mittearvuline tunnus, mille väärtused pole järjestatavad. 6. Juhuslik suurus ehk juhuslik muutuja ­ suurus või muutuja, mille väärtus enne mõõtmist või katset ei ole teada. 7. Kuidas on defineeritud jaotusfunktsioon? Jaotusfunktsiooni skitseeri

Andmetöötlus
thumbnail
3
docx

Andmetöötlus alused

Kordamine arvestustööks 1. Mis on üldkogum? Üldkogumehk populatsioon ­huvialuste objektide hulk (lõpmatu). on objektide (nähtuste, isendite, protsesside) hulk, mille kohta soovitakse teha teaduslikult põhjendatud järeldusi 2. Mis on valim? Esinduslik valim. Valim­mõõdetud objektide hulk (lõplik). on üldkogumist eraldatud objektide hulk, mille mõõtmise ja vaatlemise alusel tehakse järeldusi üldkogumi kohta. Igal üldkogumi elemendil peab olema võrdne võimalus valimisse sattumiseks Esinduslik valim -valimisse saGunud isikud peavad esindama populatsioonis esinevaid uuritavaid tunnuseid 3. Mis on andmestik? Rühmitamata ja rühmitatud andmestik. 4. Arvuline tunnus ­ pidev, diskreetne. Pidev­võib omada väärtusi mingil lõigul. Diskreetne­arvuliste tunnuste võimalike väärtuste hulk on lõplik või loenduv. 5. Mittearvuline tunnus ­ järjestustunnus, nominaaltunnus. Järjestustunnus­mittearvuline tunnus, mille väärtused on järjestatavad (Krafti klass

Andmetöötlus alused
thumbnail
22
docx

Statistika kordamisküsimused

1. MÕÕTMINE Mõõtmine on objektide võrdlemine - Korraga saab võrrelda ainult kaht objekti omavahel. Kui objekte palju, valitakse välja üks (etalon) ning teisi võrreldakse sellega. Otsene mõõtmine ja kaudne mõõtmine – otseste mõõtmiste kaudu Nimi- ehk nominaalskaala – objektide eristamiseks – sugu, rahvus, huvid, kaubakood, ettevõtte registrinumber Järjestusskaala – võimaldab objekte järjestada mingi tunnuse alusel – nt ettevõtted: väikesed, keskmised, suured – küsitlus: "poolt", pigem poolt kui vastu", "pigem vastu kui poolt", "vastu" – intervallid skaalajaotuste vahel pole võrdsed Intervallskaala – skaalajaotuste intervallid on võrdsed  Vahemikskaala – nullpunkti asukoht kokkuleppeline – ajaskaala, Celsiuse skaala temperatuuri mõõtmiseks – võib leida vahesid, ei tohi leida suhteid  Suhteskaala – nullpunkt fikseeritud absoluutselt – objekti pikkus, kaal, töötajate arv, käive, m

Statistika
thumbnail
12
doc

Proovitüki nr. 722 andmete analüüs

Kuna d2 võib olla 0, st. mõõtmata, kasutan keskmise leidmisel funktsiooni IF (=IF(d2>0; (d1+d2)/2; d1)). b) Filtreerisin välja selle puuliigi 1. rinde puud, mida oli risttabelis 1. rindes kõige rohkem ehk 1 rinde kuused. Kopeerisin nende diameetrid uuele töölehele (Kleebi teisiti, Väärtused (Paste Special, Values). Proovitükil 772 on peapuuliigiks kuusk (KU). 4. Rühmitamine Edasises töös vaatlen uuritava juhusliku suurusena diameetrit d. Andmetöötluse lihtsustamiseks omistasin pesadele, kus asuvad d väärtused, nime (märkisin hiirega andmeplokk, valisin menüüst: Lisa, Nimi, Määratle). Leidsin rühmitamata andmeist valimi esmased karakteristikud: valimi mahuks funktsiooniga COUNT sain 63, minimaalsks väärtuseks 4,05 cm ja maksimaalseks väärtuseks 14,55 cm funktsioonidega MIN ja MAX. Nende põhjal arvutatasin tunnuse haardeks 10,5 cm (MAX-MIN), klasside arvuks 6 (k = 1 + INT(3,32*LOG(N))) ja

Andmetöötlus alused
thumbnail
7
docx

Tõenäosusteooria ja matemaatilise statistika kokkuvõte

1. Tõenäosuse mõiste - Sündmuse (klassikaliseks) tõenäosuseks nimetame temas sisalduvate (ehk soodsate) elementaarsündmuste arvu ja kõigi elementaarsündmuste arvu suhet. kindel sündmus, võimatu, juhuslik. Vastandsündmus, selle tõenäosus. - Sündmuse A vastandsündmuseks nimetame sündmust, mis toimub parajasti siis, kui sündmus A ei toimu. 2. Sündmuste summa - Sündmuste A ja B summa on sündmus, mis toimub kui toimub vähemalt üks sündmustest A või B. korrutis - Sündmuste A ja B korrutis on sündmus, mis toimub parajasti siis, kui toimuvad sündmused A ja B. (samaaegselt) vahe - Sündmuste A ja B vahe on sündmus, mis toimub parajasti siis, kui sündmus A toimub aga sündmus B ei toimu. A\B 3. Sõltumatud sündmused. - Sündmused on sõltumatud kui: P(A|B)=P(A), ehk sündmuse A tõenäosus ei sõltu sündmuse B toimumisest või mittetoimumisest: Välistavad sündmused - Sündmus

Matemaatika
thumbnail
68
docx

Statistika moodle vastused

Test 1 mood, mediaan, aritmeetiline keskmine, asendikeskmine, mahukeskmine aritmeetiline keskmine, mood aritmeetiline keskmine, mood, mediaan, detsiilid detsiil, kvartiil lihtne harmooniline keskmine, kaalutud aritmeetiline keskmine, kaalutud harmooniline keskmine, lihtne aritmeetiline keskmine, mood, järjestusskaala kaalutud aritmeetiline keskmine, mediaan keskmise hinnaga, keskmine hind, arvukogumis, geomeetriline keskmine, harmooniline, aritmeetline mood, mediaan, harmooniline, aritmeetiline aritmeetiline, geomeetriline, harmooniline, mediaan Test 3 asümmeetriakordaja, püstakus, järku keskmoment, algmoment, tingmoment 1. 50 2. 65 3. 65 4. 90 5. 40 6. 70 kvartiilihaare, variatsiooniamplituud 3. 30 4. 10 5. 55,6 intervallskaala, standardhälve, püstakus kordaja, ekstsess järjestusskaala, mood, kvartiilhaare, standardhälbe valem, standardhälve tsebõsovi võrratus, variatsioonikoefitsient indeksid, kvantitatiivne, kva

Statistika
thumbnail
8
docx

Rakendusstatistika kokkuvõte

Juhuslik sündmus on midagi, mis mingi katse tulemusel võib toimuda. Katse on mingi tingimuste kompleksi realiseerumine. Elementaarsündmused on mingid üksteist välistavad sündmused, millest iga katse korral üks tingimata toimub. Juhuslikud sündmused: *vastastikku välistuvad sündmused- ei sisalda samu elementaarsündmusi *vastastikku mittevälistuvad sündmused- sisaldavad samu elementaarsündmusi *sündmuste sisalduvus- kui toimub A, toimub ka B *vastansündmus- kõik elementaarsündmused, mis ei sisaldu sündmuses Tõenäosus iseloomustab sündmuse esinemissagedust katsetes. Tõenäousese määramisviisid: klassikalised(kombinatoorne, geomeetriline, statistiline), mtteklassikalised(subjektiivne,intersubjektiivne) Juhuslikuks suuruseks nim suurust, mis järjekordse katse tulemusel omandab mingi mittennustatava väärtuse mingist võimalikust väärtuste hulgast. Diskreetne juhuslik suurus: võimalike väärtuste hulk on lõplik Pidev juhuslik suurus: võimelike

Rakendusstatistika
thumbnail
11
docx

ÜLEVAADE TÕENÄOSUSTEOORIA PÕHIMÕISTETEST

1 ÜLEVAADE TÕENÄOSUSTEOORIA PÕHIMÕISTETEST Juhuslik sündmus - midagi mis mingi katse tulemusel võib toimuda. Katse - mingi tingimuste kompleksi realiseerumist (mingit toimingut). Lähtepunktiks katsega seotud sündmustel on elementaarsündmuste ruum , mis koosneb elementaarsündmustest (mis on üksteist välistavad sündmused, iga katse korral toimub tingimata üks). Tingimused elementaarsündmuste ruumile on: 1) vastastikune välistatus: korraga toimub vaid üks elementaarsündmus: ij = Ø (ij), 2) täielikkus: alati mingi elementaarsündmus toimub: i = . nt. Kaardi valik 52'sest kaardipakist Juhuslike sündmustega seonduvad põhimõisted: Vastastikku välistuvad sündmused: mis ei sisalda samu elementaarsündmusi (nt A: ruutu kaart, B: ärtu kaart) Vastastikku mittevälistuvad sündmused: mis sisaldavad samu elementaarsündmusi (nt A : ruutu kaart, B: piltkaart) Sündmuste sisalduvus: kui toimub A, toimub

Rakendusstatistika




Kommentaarid (0)

Kommentaarid sellele materjalile puuduvad. Ole esimene ja kommenteeri



Sellel veebilehel kasutatakse küpsiseid. Kasutamist jätkates nõustute küpsiste ja veebilehe üldtingimustega Nõustun