Andmed mingi tunnus või omadus. Tunnus omadus, nt keskmine pikkus, kummas paralleelklassis läks matemaatika eksamitöö paremini jne. Arvuline tunnus väärtuseks on arvud, nt pikkus, palk, hinne jne. Mittearvuline tunnus väärtuseks ei ole arvud, nt sugu, rahvus, haridus, juuste värv. Järjestustunnus tunnus, mille väärtusi saab sisu põhjal järjestada, nt matemaatika kt hinne, skaala küsitluses. Nominaaltunnus tunnus, millel on rohkem kui kaks erinevat väärtust, kuid ei leidu ühtegi sisulist järjestust, mis haaraks kõik tunnuse väärtused, nt rahvus, silmade värv. Binaarne tunnus ainult kaks teineteist välistavat tunnust, nt sugu. Pidev tunnus võib omandada kõiki reaalarvulisi väärtusi mingist piirkonnast, nt kaal, kasv, aeg, temperatuur. Diskreetne tunnus - tunnus võib omandada vaid üksteisest eraldatud väärtusi, väärtused saadakse tavaliselt loendamise teel, nt elanike arv majas, õpilaste arv klassis vms. Statistiline rida juhus
Ande Andekas-Lammutaja Matemaatika Statistika Statistiliseks kogumiks e. valimiks nimetatakse uuritavat indiviidide või esemete kogu või uuritavat juhuslikku nähtust, mille kohta tahetakse otsust langetada. Tunnus jaguneb sõnaliseks (silmavärv) ja arvuliseks (kinganumber), mis jaguneb omakorda pidevaks (võib omada igat reaalarvulist väärtust) ning diskreetseks. Statistilises reas on andmed suvalises järjekorras. Variatsioonireas on andmed kasvavas või kahanevas järjekorras
Statistilise rea karakteristikud. Tunnuseid ( nende väärtusi) iseloomustavad teatud suurused nn. karakteristikud. Karakteristikud on tunnuse jaotust ja selle omadusi iseloomustavad suurused. Karakteristikud jagunevad I keskmised e. paiknevuse karakteristikud - väljendavad antud tunnuse mingit keskmist väärtust, mille ümber tunnuse väärtused paiknevad. II hajuvuse karakteristikud - iseloomustavad tunnuse väärtuse hajuvust s.t kas väärtused erinevad üksteisest vähe või palju. Keskmised e. paiknevuse karakteristikud. Keskmised jagunevad a) asendikeskmised ( mediaan, mood) - sõltuvad elementide asendist variatsioonreas, b) mahukeskmised (keskväärtus, kaalutud aritmeetiline keskmine, harmooniline keskmine, geomeetriline keskmine, ruutkeskmine) - sõltuvad rea mahust. ASENDIKESKMISED Mediaan variatsioonrea keskmin
Kirjeldav statistika Uuritavad indiviidide või esemete kogu või uuritavat juhulikku nähtus, mille kohta tahetakse otsuseid langetada, nimetatakse statistiliseks kogumiks (ka valimiks). Kogumit uuritakse tema objektide mingi omaduse järge, mida nimetatakse tunnuseks. Tunnused · Arvulised tunnused (pikkus, aeg, temperatuur jne) · Mittearvulised tunnused (silmade ja juuste värvus näiteks) Statistiline rida a1, a2, a3, ..., an - Statistilise rea liikmed N Kogumi maht (statistilise rea maht) 01) Ühe klassi kontrolltöö hinnete rida oli järgmine: 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5. (variatsioonirida) Kui kirjutatakse realiikmed kasvavas või kahanevad järjekorras (võrdsed liikmed kirjutatakse järjest), siis saadakse variatsioonirida. Sagedustabel Hinne x 2 3 4 5 Sagedus fa 3 7 10 8 fb 2 5 9 6 N: 2+5+9+6 = 22 Igale hindele vastab tema esinemise arv. N = 3 + 7 + 10 + 8 = 28 N = f1 + f2
12. klass Statistiliste andmete töötlemine Statistiliste andmete kogumisele järgneb andmete töötlemine ehk andmeanalüüs. Selle käigus leitakse karakteristikud, mis iseloomustavad tunnuse väärtuste jaotust kui tervikut ühest või teisest seisukohast. Põhilised karakteristikud jagunevad kahte rühma: 1. paiknemise karakteristikud ehk keskmised 2. hajuvuse karakteristikud Paiknemise karakteristikud Paiknemise karakteristikud annavad informatsiooni tunnuse väärtuste paiknemise kohta arvteljel ja iseloomustavad tunnust keskmise väärtuse seisukohalt. Need on aritmeetiline keskmine, mediaan, mood. 1. Aritmeetiliseks keskmiseks ( X ) nimetatakse tunnuse kõigi väärtuste summa ja väärtuste arvu jagatist. Kui tunnuse väärtused on x1, x2, x3, …, xn, siis x x 2 .... x n
andmetest erinevate jooniste, tabelite ning diagrammide kujutamine. Uurimistöö hõlmab endas tunnis õpitu kasutamist ning abimaterjalide oskuslikku praktiseerimist. Uurimustöös arvutame 34 õpilase lõpueksamite tulemuste kohta mediaane, moode ning keskväärtusi. Joonestan ka sageduspolügoone ning jagan andmeid tabelitesse. Uurimistöös kasutan järgmiseid mõisteid: Statistika - teadus, mis käsitleb andmete kogumist, töötlemist ja analüüsimist Matemaatiline statistika - matemaatika haru, mis uurib statistiliste andmete põhjal järelduste tegemise meetodeid Üldkogum - objektide hulk, mille kohta tehakse teaduslikult põhjendatud järeldusi Valim - uurimiseks valitud üldkogumi osa Tunnus - omadus, mille põhjal uuritakse objekti Sagedustabel - tabel, mis näitab, mitmel korral antud tunnus saab antud väärtuse Jaotustabel - tabel, mis näitab tunnuse väärtuse suhtelist esinemissagedust Statistiline rida - tunnuse väärtuste järjestamata rida
Statistika on teadus, mis käsitleb arvandmete kogumist, töötlemist ja analüüsimist. Matemaatiline statistika uurib statistika teoreetilisi aluseid, ta uurib statistiliste andmete põhjal järelduste tegemise meetodeid. Üldkogum on kas looduse või ühiskonna nähtus või objektide hulk, mille kohta soovime teha teaduslikult põhjendatud järeldusi(Populatsioon).Valimiks nimetatakse mõõtmiseks võetud üldkogumi osa. Juhuslik valim, valimisse kuuluvad objektid valitakse välja täiesti juhuslikult üldkogumi kõigi objektide hulgast. Planeeritud valim valimisse kuuluvad
Tallinna Lilleküla Gümnaasium 14-18 AASTASTE TÜDRUKUTE JALANUMBER AASTAL 2011 Uurimustöö Juhendaja: Tallinn 2011 Sissejuhatus Uurisin 14-18 aastaste tüdrukute jalanumbreid 2011. aastal. Tüdrukuid oli kokku 16 ja nad olid valitud juhuslikult. 1. Statistiline kogum 39; 39; 40; 38; 39; 40; 37; 38; 38; 36; 41; 36; 38; 38; 40; 37 2. Variatsioonirida 36; 36; 37; 37; 38; 38; 38; 38; 38; 39; 39; 39; 40; 40; 40; 41 3. Sagedustabel 2 realine tabel, mille ühes reas on tunnuse (x) erinevad väärtused ja teises reas nende esinemise sagedused (f) Jalanumber (x) 36 37 38 39 40 41 Sagedus (f) 2 2 5 3 3 1 Sageduste summa n=16 Tulpdiagramm 4. Suhteline sagedus (w) Tunnuse väärtuse esinemise arvu f suhe väärtuste koguarvu n f w
Kõik kommentaarid