Vajad kellegagi rääkida?
Küsi julgelt abi LasteAbi
Logi sisse
✍🏽 Avalikusta oma sahtlis olevad luuletused! Luuletus.ee Sulge

Geomeetilise jada harjutused - sarnased materjalid

neljanda, kümnes, paiguta
thumbnail
1
doc

Jada

Kordamisülesanded 1. Geomeetrilise jada esimene liige on 96 ja kuues on -3. Leia jaga tegur. 2. Kas antud jada on geomeetriline jada? Kui on leia tegur, üldliikme valem ja kaks järgnevat liiget: a) 3;6;12;24;... b) 2;4;6;8;.... c) 8;-4;2;-1;... d) c 6 ; c 4 ; c 2 ; c 0 ;.. e) a; a 2 b; a 3b 2 ; a 4 b 3 ;... f) 1; 2 ;2;2 2 ;... 3. Geomeetrilise jada esimene liige on 3, jada tegur on 2. Leia jada kümnes liige ja kümne liikme summa. [ a10 = 1536; S10 = 3069] 4. Leia geomeetriline jada, mille kolmas liige on 12 ja kolme liikme summa on 21. a1 + a1q + 12 = 21 [3,6,12,.... ja 27,-18,12,...] Vihje: 2 12 Asenda teine esimesse. 1a q = 12 a1 = q2 5. Paiguta arvude 2 ja 162 vahele kolm arvu nii, et need

Matemaatika
72 allalaadimist
thumbnail
25
ppt

Jadad

JADAD 11. klass Aili Hollak Arvuti koolis lõputöö Koolitaja E. Tarro, 5. kursus JADAD Jada ­ teatud reegli järgi saadud arvude hulk, kus igale naturaalarvule n (alates 1-st) seatakse vastavusse üks kindel arv n. Jada liikmed - 1, 2, ..., n, ... Jada üldliige - n Jada üldliikme valem - n= f(n) Näiteid jadadest Ruudu 1 2 3 4 5 6 nr. Pindala 1 4 9 16 25 36 Nii võib jätkata ruutude joonistamist ja leida ka igal sammul vastava ruudu pindala. Näiteks 11. ruudu pindala on 121, 30. ruudu pindala 900, n-nda ruudu pindala on n² JADADE LIIGITUS Jadad Tõkestatud Tõkestamata Hääbuvad Muud Lõpmata suured Muud Tõkestamatult kasvavad Muud Tõkestamatult kahanevad JADAD

Matemaatika
80 allalaadimist
thumbnail
3
doc

Geomeetriline jada

Lahendus: Tähistame jada teguri tähega q. Üldliikme valemi järgi saame: 5 1 = 9q 5 , 27 millest 32 q5 = ; 27 9 32 2 q =5 = . 243 3 2 Vastus: Geomeetrilise jada tegur on . 3 3. Geomeetrilise jada esimese ja kolmanda liikme summa on 15, teise ja neljanda liikme summa on 30. Leia jada. Lahendus: Ülesande tingimuste kohaselt: a1 + a3 = 15 ja a2 + a4 = 30. Olgu jada tegur q ja esimene liige a. Avaldades kõik liikmed esimese liikme ja teguri kaudu, saame võrrandisüsteemi: a + aq 2 = 15 3 . aq + aq = 30 Toome esimesest võrrandist sulgude ette a, teisest võrrandist aq ning jagame teise võrrandi esimesega: ( a 1 + q 2 = 15 ) ( aq 1 + q 2 = 30, )

Matemaatika
414 allalaadimist
thumbnail
6
doc

Aritmeetiline ja geomeetriline jada

 13,1 2 25. (2008) Kuulike lükatakse veerema mööda kaldpinda allapoole. Alates teisest sekundist veereb kuulike iga sekundiga eelmise sekundi jooksul läbitud teepikkusest ühe ja sama pikkuse võrra rohkem. Teise sekundi lõpuks oli kuulikese kaugus lähtepunktist l 2 = 9 cm ja neljanda sekuni lõpuks oli kuulike kaugusel l 4 = 30 cm. Mitmenda sekundi lõpuks jõuab kuulike kaldpinna lõppu, mis asub lähtepunktist kaugusel L = 900 cm? 24sekundiga 26. (2009) Kaks kiirabiautot alustavad üheaegselt sõitu teineteise poole – üks auto haiglast sündmuskohale, teine sündmuskohalt haiglasse. Esimese minutiga läbivad mõlemad autod

Matemaatika
140 allalaadimist
thumbnail
6
odt

Jadad

Jadad Aritmeetiline jada Aritmeetilise jada üldliikme valem on an = a1 + d(n – 1), kus d on jada vahe ja n jada liikmete arv. Aritmeetilise jada esimese n liikme summa valem on . a1  a n Sn  n 2 Teades, et an = a1 + d(n – 1), võime eelnevale valemile anda ka teise kuju: . 2a 1   n  1 d Sn  n 2 Viimane valem võimaldab arvutada esimese n liikme summat vaid jada esimese liikme ja jada vahe järgi.

Matemaatika
26 allalaadimist
thumbnail
2
doc

Aritmeetiline jada

Kui kõik töölised oleksid asunud tööle üheaegselt oleksid nad sooritanud ettenähtud töö 7 tunniga. Nad asusid tööle üksteise järel võrdsete ajavahemike järel ja töötasid siis kõik kuni töö lõpetamiseni. Esimesena tööle asunud tööline töötas 10 tundi. Mitu korda töötas ta kauem viimasena tööle asunud töölisest? (2,5 korda) 5 23. Aritmeetilise jada esimese ja viienda liikme summa on . Kolmanda ja neljanda liikme 3 65 119 korrutis aga . Leia jada esimese 17 liikme summa. ( ) 72 3 24. Laskevõistlusel koosnes seeria 25 lasust. Möödalasude eest sai karistuspunkte järgnevalt: esimene möödalask üks karistuspunkt ja iga järgneva möödalasu eest 0,5 karistuspunkti rohkem kui eelneva eest

Matemaatika
45 allalaadimist
thumbnail
5
rtf

Aritmeetiline jada

Aritmeetiline jada ------------------------------------------------------- Aritmeetilise jada üldliikme valem a n = a1 + n - 1 d ( ) Aritmeetilise jada esimese n-liikme summa valem a + an 2a + ( n - 1) d Sn = 1 n Sn = 1 n 2 2 ------------------------------------------------------- 1. Leia aritmeetilise jada 2; 9; 16; ... kaheteistkümnes liige. Lahendus: Antud on a1 = 2; a2 = 9, millest järeldub, et vahe on d = 9 ­ 2 = 7; n = 12. Leiame a12 ( ) Kasutades aritmeetilise jada üldliikme valemit a n = a1 + n - 1 d , saame a12 = 2 + (12 - 1) 7 = 2 + 11 7 = 79 2. Arvuta aritmeetilise jada n-is liige. a) a1 = 2; d = -2; n = 12; a12 = ??? ( ) L

Matemaatika
672 allalaadimist
thumbnail
2
doc

11. klass matemaatika eksamiks kordamine

1. Antud on funktsioonid f(x) = logx ja g(x) = -1 1.1. Skitseeri ühes ja samas teljestikus nende funktsioonide graafikud; 1.2. Leia millistes punktides on nende funktsioonide väärtused võrdsed; 1.3. Leia milliste argumendi x väärtuste korral on funktsiooni f(x) väärtused väiksemad funktsiooni g(x) väärtustest; 1.4. Leia funktsiooni f(x) väärtus, kui x = 10 cos 4 2. On antud funktsioon y =x 3 -5x 2 . Leia selle funktsiooni 2.1. nullkohad; 2.2. positiivsus- ja negatiivsusvahemikud; 2.3. ekstreemumkohad, nende liik ning ekstreemumpunktid; 2.4. kasvamis- ja kahanemisvahemikud; 2.5. skitseeri selle funktsiooni graafik; 2.6. graafikule puutuja punktis, mille abstsiss on 5. 3. Antud on funktsioonid f(x) = sin2x ja g(x) = sinx. 3.1. lahenda võrrand f(x) = g(x) lõigul [0;2] ; 3.2. joonesta ühes ja samas teljestikus funktsioonide f(x) ja g(x) graafikud lõigus [0;2] ; 3.3. leia

Matemaatika
212 allalaadimist
thumbnail
2
rtf

Mõisted suuliseks arvestuseks matemaatikas

Mõisted suuliseks arvestuseks 1. Arvjada ­ kui igale naturaalarvule n (alates 1-st) seatakse vastavusse üks kindel arv an, siis saadakse arvjada (arvude järjend, mis võib koosneda kas lõplikust või lõpmatust hulgast arvudest; selle saab kui seada ritta ükskõik mis arve). 2. Aritmeetiline jada ­ jada, milles teisest liikmest alates on iga liikme ja sellele eelneva liikme vahe konstante (jada, kus iga kahe järjestikuse liikme vahe on võrdne). *Jada nimetatakse hääbuvaks ehk nullile lähenevaks, kui jadas järjest kaugemale minnes selle jada liikmed erinevad arvust 0 kui tahes vähe. 3. Aritmeetilise jada üldliige ­ avaldub kujul an = a1 + d (n ­ 1), kus a 1 on aritmeetilise jada esimene liige, d on jada vahe ning n on liikmete arv jadas. 4. Aritmeetilise jada n esimese liikme summa ­ avaldub kujul Sn = (a1 + an) / 2 · n, kus a1 on aritmeetilise jada esimene liige, an on jada üldliige ning n on liikmete arv jadas. 5. Geomeetriline jada ­ ja

Matemaatika
4 allalaadimist
thumbnail
10
docx

JADAD

JADAD Aritmeetiline jada Olgu antud lineaarfunktsioon y=f(x)=ax+b Aritmeetilised jadad on näiteks: 1,3,5,7...2n-1 Selle aritmeetilise jada üldvalem 7,11,13,15,19...4n+3 Selle aritmeetilise jada üldvalem d=3-1=5-3=7-5=...=2 d-aritmeetilise jada vahe 1+5 3+ 7 Omadus: =3 ; =5 2 2 d=11-7=15-11=19-15=...-4 7 +15 11 +19 Omadus: =11 ; =15 2 2 Üldiselt avaldub aritmeetiline jada: a1 , a2, a3 … an −1, a n , a n+1 , … Üldliige avaldub valemiga: an =a1 + ( n−1 ) × d Avaldan sellest valmist: a1 , d ,n 1=¿ a n−( n−1 ) × d a¿ a n−a d= 1 n−1 a n−a n= 1 +1 d Aritmeetilise jada esimese n liikme summa 1. 1,3,5,7 Arvutan selle jada esimese nelj

Matemaatika
24 allalaadimist
thumbnail
8
doc

12. klass matemaatika kordamine

Leia trapetsi ümberringjoone pikkus. 16. Leia hüperbooli y = puutujad, mis on paralleelsed sirgega y = -x. 17. Sirge s läbib punkte A(1; 2; -3) ja B(0; -1; 1). Sirge t läbib punkti C(-1; 0; 1) ning sihivektoriks on a = (1; 0; 4). Koosta sirgete s ja t võrrandid ning tee kindlaks sirgete vastastikune asedn. 18. Lihtsusta ( sin + cos - 1)( sin + cos + 1) 4( sin 30° - sin 45° sin )( cos 60° + cos 45° cos tan ) 19. Aritmeetilise jada neljanda, kaheksanda, kaheteistkümnenda ja kuueteistkümnenda liikme summa on 500. Leia esimese 19 liikme summa. 20. Koosta ruutvõrrand, mille lahendid oleksid kolme võrra väiksemad ruutvõrrandi x 2 - 4 x - b 2 - 2b + 3 = 0 lahenditest. 21. Olgu r ringi raadius. Avalda ringi segmendi pindala, kui segmendi alus on r 3 ja kõrgus r/2. Tee joonis. 22. Tõesta võrratus cos2x + 2sinx < 1,5 23. Lahenda võrrand 10 log ( x ) =4 2

Matemaatika
328 allalaadimist
thumbnail
16
ppt

Aritmeetiline jada

Aritmeetiline jada Koostas: Margit Nuija Kool: Viljandi Paalalinna Gümnaasium Maakond: Viljandi Õppeaine: matemaatika Töö teema: aritmeetiline jada Klass: IV kooliaste, 11. klass Juhendas: Toomas Rähn Aritmeetilise jada mõiste Def. Aritmeetiliseks jadaks nim. arvujada, mille iga liige (alates teisest) võrdub eelneva liikme ja ühe jääva liidetava summaga. NB! Jääv liidetav (jada vahe) - d Esimene liige - a1 Liikmete arv - n Näide: On antud jada 5, 8, 11, 14, 17, 20. a1 = 5 d=3 n=6 Üldliikme valem Jada definitsioonist järeldub,et a2 = a1 + d a3 = a2 + d = (a1 + d) + d = a1 + 2d a4 = a3 + d =(a1 + 2d) + d = a1 + 3d ............................................ an = an-1 + d = .............a1 + (n-1) d an = a1 + (n-1)d Jada vahe · Kui d > 0, siis aritmeetiline jada on kasvav · Kui d < 0, siis aritmeetiline jada on kahan

Matemaatika
48 allalaadimist
thumbnail
16
ppt

Aritmeetiline jada

Aritmeetiline jada Koostas: Margit Nuija Kool: Viljandi Paalalinna Gümnaasium Maakond: Viljandi Õppeaine: matemaatika Töö teema: aritmeetiline jada Klass: IV kooliaste, 11. klass Juhendas: Toomas Rähn Aritmeetilise jada mõiste Def. Aritmeetiliseks jadaks nim. arvujada, mille iga liige (alates teisest) võrdub eelneva liikme ja ühe jääva liidetava summaga. NB! Jääv liidetav (jada vahe) - d Esimene liige - a1 Liikmete arv - n Näide: On antud jada 5, 8, 11, 14, 17, 20. a1 = 5 d=3 n=6 Üldliikme valem Jada definitsioonist järeldub,et a2 = a1 + d a3 = a2 + d = (a1 + d) + d = a1 + 2d a4 = a3 + d =(a1 + 2d) + d = a1 + 3d ............................................ an = an-1 + d = .............a1 + (n-1) d an = a1 + (n-1)d Jada vahe · Kui d > 0, siis aritmeetiline jada on kasvav · Kui d < 0, siis aritmeetiline jada on kahan

Matemaatika
59 allalaadimist
thumbnail
10
docx

11. klass kordamine EKSAMIKS vastustega

Kordamisülesanded 11 klass 1. Kombinatoorika ja tõenäosus a) Ühes klassis õpitakse 14 õppeainet. Mitmel erineval viisil saan nendest koostada ühe päeva tunniplaani, kui selles peab olema 7 erinevat õppeainet? Vastus: 17297280 b) Martinil on taskus viis viiekroonist ja neli kümnekroonist rahatähte. Kui suur on tõenäosus, et kahe kupüüri juhuslikul võtmisel on mõlemad viiekroonised? Vastus: 20/72 c) Tõenäosus leida pliiats kirjutuslaua esimesest sahtlist on 0,5, teisest sahtlist 0,7 ja kolmandast 0,4. Kui suur on tõenäosus , et pliiats on olemas a) täpselt ühes sahtlis b) vähemalt ühes sahtlis c) mitte üheski sahtlis

Matemaatika
105 allalaadimist
thumbnail
22
docx

Matemaatika eksami kordamine KEVAD 2015

-1- - 1.Leia funktsiooni määramispiirkond. 3 x 3 x y y b) y  17  15 x  2 x log( 1  x ) 2 a) 4x  8 c) 2x  2 3 9 x y d) y = log( x2 + x -20 ) - 6x e) log 2 ( x  4) f) y = log x-1 x2

Matemaatika
179 allalaadimist
thumbnail
16
docx

Matemaatika kursused

Matemaatika Riiklik õppekava: https://www.riigiteataja.ee/aktilisa/1140/1201/1002/VV2_lisa3.pdf# Gümnaasium ­ matemaatika 1.-5 kursus Õppeaine: Matemaatika (lai kursus) Klass: 10. klass 1. Õppekirjandus: l.Lepmann, T.Lepmann, K.Velsker Matemaatika 10.klassile 2. Õppeaine ajaline maht: 5 kursust (175 tundi) 3. Õppeaine eesmärgid:õpilane 1) saab aru matemaatika keeles esitatud teabest; 2) tõlgendab erinevaid matemaatilise informatsiooni esituse viise; 3) kasutab matemaatikat igapäevaelus esinevates olukordades; 4) väärtustab matemaatikat, tunneb rõõmu matemaatikaga tegelemisest; 5) arendab oma intuitsiooni, arutleb loogiliselt ja loovalt; 6) kasutab matemaatilises tegevuses erinevaid teabeallikaid; 7) kasutab arvutiprogramme matemaatika õppimisel. Õppeaine sisu: Käsitlevad teemad Käsitlevad Õpitulemused

Matemaatika
31 allalaadimist
thumbnail
8
doc

Matemaatika praktikumi töö

Matemaatika 11. klassi praktikumi töö 1. Kirjalik arvutamine m Tehted astmetega (a:b)n = an : bn Tehted juurtega a n n am (ab)n = an * bn a b a b an am = an+m n m a n m a a a an : am = an-m b b n m n*m (a ) = a

Matemaatika
23 allalaadimist
thumbnail
9
docx

Fibonacci jada

MIS ON JADA? Jada on matemaatikas kujutus, mille määramispiirkonnaks on naturaalarvude hulk N või selle mõni alamhulk. Määramispiirkonna fikseeritud elemendi kujutist nimetatakse selle jada elemendiks ehk liikmeks. Kui kujutuse määramispiirkonnaks on naturaalarvude hulk või selle mõni lõpmatu alamhulk, siis räägitakse lõpmatust jadast. Lõpliku määramispiirkonna korral räägitakse lõplikust jadast ehk järjendist. Lõplike jadade puhul on võimalik kõnelda jada pikkusest ehk selle jada liikmete arvust. Jada pikkusega n määramispiirkonnaks valitakse sageli hulk {1,2,3,...,n} Tähistused: Lõplikke jadasid pikkusega n tähistatakse loetlemise teel või lühemalt pealiikme kaudu või . Lõpmatuid jadasid võib tähistada samuti loetlemise teel.. , ..või pealiikme kaudu või või lühemalt . FIBONACCI JADA

Matemaatika
9 allalaadimist
thumbnail
16
doc

Matemaatiline analüüs 2, kollokvium 2

Contents Contents.................................................................................................................................. 1 1. Arvrea mõiste. Arvrea osasumma ja koonduvus. Näiteid koonduvate ja hajuvate arvridade kohta. Geomeetrilise rea osasumma ja summa valemite tuletamine....................................... 2 2. Integraaltunnus. Näidata, mis tingimustel rida ja vastav päratu ingegraal koonduvad samaaegselt. Muutujavahetus päratus integraalis ()............................................................... 3 3. Positiivsete arvridade võrdlustunnused. Üks tunnustest tuletada........................................ 3 4. D'Alemberti ja Cauchy tunnused. Üks neist tuletada........................................................... 4 6. Vahelduvate märkidega read. Leibnizi tunnus..................................................................... 5 5. Arvridade absoluutne ja tingimisi koonduvus. Absoluutselt koonduva rea ümberjärjestuse koonduvus.

Matemaatiline analüüs 2
693 allalaadimist
thumbnail
16
doc

Matemaatiline analüüs 2 kollokvium 2

Contents Contents.................................................................................................................................. 1 1. Arvrea mõiste. Arvrea osasumma ja koonduvus. Näiteid koonduvate ja hajuvate arvridade kohta. Geomeetrilise rea osasumma ja summa valemite tuletamine....................................... 2 2. Integraaltunnus. Näidata, mis tingimustel rida ja vastav päratu ingegraal koonduvad samaaegselt. Muutujavahetus päratus integraalis ()............................................................... 3 3. Positiivsete arvridade võrdlustunnused. Üks tunnustest tuletada........................................ 3 4. D'Alemberti ja Cauchy tunnused. Üks neist tuletada........................................................... 4 6. Vahelduvate märkidega read. Leibnizi tunnus..................................................................... 5 5. Arvridade absoluutne ja tingimisi koonduvus. Absoluutselt koonduva rea ümberjärjestuse koonduvus.

Matemaatiline analüüs 2
219 allalaadimist
thumbnail
17
doc

Valemid ja Mõisted

1. Ristkülik Mõiste: Ristkülik on nelinurk, mille kõik nurgad on täisnurgad. Pindala: S=ab Ümbermõõt: Ü=2(a+b) Omadused: 1. Ristkülikul on kõik rööpküliku omadused. 2. Kõik nurgad on täisnurgad 3. Diagonaalid on võrdsed 4. Ristkülikul on ümberringjoon, mille keskpunktiks on diagonaalide lõikepunkt (O) ning raadiuseks pool diagonaali. 5. Ristkülikul on kaks sümmeetriatelge ja sümmeetriakeskpunkt. Ruut: Mõiste: Ruutu võib defineerida, kui a) ristkülikut, mille lähisküljed on võrdsed b) rombi, mille üks nurk on täisnurk c) rööpkülikut, mille lähisküljedon võrdsed ja üks nurk on täisnurk. Pindala: S=a² Ümbermõõt: Ü=4a Omadused: 1. Ruudul on nii ristküliku kui ka rombi omadused 2. Ruudu küljed on võrdsed 3. Ruudu nurgad on täisnurgad 4. Ruut on korrapärane nelinurk 5. Ruudul on siseringjoon, mille keskpunktiks on diagonaalide lõikepunkt (O) ning raadiusekspool külje pik

Matemaatika
196 allalaadimist
thumbnail
19
odt

Fibonacci jada

Rakvere Ametikool Sten Taklaja Al10 Fibonacci jada Referaat Juhendaja: Riho Kokk Rakvere 2013 SISUKORD Sissejuhatus....................................................................................................1 Fibonacci Arvud.............................................................................................2 Fibonacci side kuldlõikega.............................................................................3 Pilte................................................................................................................5 Videod...........................................................................................................18 Kokkuvõte.....................................................................................................19 Sissejuhatus Fibonacci jada on arvude jada, mille kaks esimest liiget on vastavalt F1= 0 ja F2=1 ning iga järgnev liige on kahe eelneva liikme summa. Fibonac

Matemaatika
11 allalaadimist
thumbnail
230
pdf

Programeerimise algkursus 2005-2006

TARTU ÜLIKOOLI TEADUSKOOL PROGRAMMEERIMISE ALGKURSUS 2005-2006 Sisukord KURSUSE TUTVUSTUS: Programmeerimise algkursus.........................................6 Kellele see algkursus on mõeldud?..................................................................6 Mida sellel kursusel ei õpetata?.......................................................................6 Mida selle kursusel õpetatakse?......................................................................6 Kuidas õppida?.................................................................................................7 Mis on kompilaator?.............................................................................................8 Milliseid kompilaatoreid kasutada ja kust neid saab?......................................8 Millist keelt valida?...........................................................................................8 ESIMENE TEEMA: sissejuhatav sõnavõtt ehk 'milleks on v

Programmeerimine
31 allalaadimist
thumbnail
8
pdf

Kompleksarvud gümnaasiumiõpikus

tan = -4 = -1. i Kuna tangensi väärtus on negatiivne, siis võib olla kas Q Q a teise või neljanda veerandi nurk (135° või 315°). -4 O x O 1 Q x Selleks, et määrata, kumba nurgaga on tegemist, leiame cos väärtuse: Kujutagu punkt P kompleksarvu z = a + bi (vt joonist). Siis OQ = a ja PQ = b.

Matemaatika
16 allalaadimist
thumbnail
3
doc

Kordamine III(sirge, ringjoon, parabool, vektor)

Kordamine III(sirge, ringjoon, parabool, vektor) 1. On antud kolmnurk tippudega A(1;2), B(4;3) ja C(2;5). Leidke sirgete AB ja AC võrrandid ning lõikepunktid koordinaattelgedega; 2) Leidke läbi tipu C joonestatud küljega AB paralleelse sirge võrrand; 3) Leidke läbi tipu C joonestatud küljega AB ristuva sirge tõus. 2. Lõik otspunktidega on ringjoone diameetriks. Leidke: 1) ringjoone võrrand; 2) sellele ringjoonele punktides (2,5; 4,5) ja (0;2) joonestatud puutujate võrrandid ja nende puutujate lõikepunkt. 3. Tuletage joone võrrand, kui joone iga punkti kaugused punktidest M(0;-3) ja N(2;3) on võrdsed. Näidake, et otsitav joon on lõigu MN keskristsirge. 4. Parabool läbib punkte (-1;0), (5;0) ja (0;-10). Leidke parabooli võrrand ja tema haripunkti koordinaadid ning puutuja võrrand punktis (0;-10). 5. Leidke parabooli y = x2 ­ 2x haripunkti koordinaadid. 1) Vektori v =(a;9) alguspunkt asetseb antud parabool

Matemaatika
45 allalaadimist
thumbnail
9
docx

Matemaatiline analüüs II KT teooria

1. Kahekordne integraal: põhjalik selgitus (vastava piirkonna jaotus, integraalsumma definitsioon jne). Vaatleme xy-tasandil joonega L piiratud kinnist piirkonda D. Olgu antud pidev funktsioon z=f(x,y). Jaotame piirkonna D mingite joontega n osaks: s1, s2, s3,..., sn, mida nim. osapiirkondadeks. Uute sümbolite kasutuselevõtmise vältimiseks mõistame s1,... ,sn all mitte ainult vastavaid osapiirkondi, vaid ka nende pindasid. Võtame igas osapiirkonnas s1 (selle sees või rajajoonel) mingi punkti P1, saades nii n punkti: P1, P2, P3,..., Pn. Tähistame antud funktsiooni z=f(x,y) väärtusi valitud punktides sümbolitega f(P 1),...,f(Pn) ja moodustame korrutiste summa, mille liikmeteks on f(P1)s1: Summat nim. funktsiooni z=f(x,y) integraalsummaks üle piirkonna D. Kui piirkonna D igas punktis f0, siis saab iga liidetavat f(Pi)si

Matemaatiline analüüs 2
211 allalaadimist
thumbnail
3
doc

Matemaatika valemid

sin2 + cos2 = 1 tan = sin /cos 1+tan2 = 1/cos2 sin2 = 1 ­ cos2 sin = tan *cos cos2 = 1/tan2 +1 cos2 = 1 ­ sin2 cos = sin /tan cos2 ­ 1 = - sin2 cot = cos /sin cot =1/tan sin2 ­ 1 = - cos2 cos = cot *sin tan *cot =1 sin = cos /cot 1+cot2 = 1/sin2 sin = cos (90o ­ ) sin = vastas kaatet/hüpotenuus cos = sin (90o ­ ) cos = lähis kaatet/hüpotenuus tan = 1/tan (90o ­ ) tan = vastas kaatet/lähis kaatet cot =tan (90o ­ ) cot = lähis kaatet/vastas kaatet tan = cot (90o ­ ) Kolmnurga pindala Koosinusteoreem Siinusteoreem S=a*h/2 a2=b2+c2-2bc*cos a/sin=b/sin=c/sin=2R S=1/2a*b*

Matemaatika
1753 allalaadimist
thumbnail
28
docx

ITT0030 Diskreetne matemaatika II - eksamikonspekt

Diskreetne matemaatika II Suulise eksami konspekt IABB 2011 [1]. Hulgad. Alam- ja ülemhulgad. Tehted hulkadega. [2]. Hulga võimsus. Kontiinumhüpotees. [3]. Järjendid. Permutatsioonid. Kombinatsioonid. [4]. Binoomi valem. Pascali kolmnurk. [5]. Liitmis- ja korrutamisreegel kombinatoorikas. [6]. Kordustega permutatsioonid. Multinoomkordajad. [7]. Elimineerimismeetod (juurde- ja mahaarvamise valem). [8]. Korratused ja subfaktoriaalid. [9]. Dirichlet` printsiip. [10]. Arvujadade genereerivad funktsioonid. Jadade ja genereerivate funktsioonide teisendamine. [11]. n objekti jaotamine k gruppi. [12]. Rekurrentsed võrrandid. Rekurrentsi lahendamine ad hoc meetodil ja iteratsioonimeetodil. [13]. Tasandi tükeldamine n sirgega ja n nurgaga. [14]. Lineaarsed rekurrentsed võrrandid. [15]. Rekurrentsete võrrandite lahendamine genereerivate funktsioonide meetodil. [16]. Fibonacci arvud. Üldliikm

Diskreetne matemaatika II
377 allalaadimist
thumbnail
816
pdf

Matemaatika - Õhtuõpik

Matemaatika õhtuõpik 1 2 Matemaatika õhtuõpik 3 Alates 31. märtsist 2014 on raamatu elektrooniline versioon tasuta kättesaadav aadressilt 6htu6pik.ut.ee CC litsentsi alusel (Autorile viitamine + Mitteäriline eesmärk + Jagamine samadel tingimustel 3.0 Eesti litsents (http://creativecommons.org/licenses/by-nc-sa/3.0/ee/). Autoriõigus: Juhan Aru, Kristjan Korjus, Elis Saar ja OÜ Hea Lugu, 2014 Viies, parandatud trükk Toimetaja: Hele Kiisel Illustratsioonid ja graafikud: Elis Saar Korrektor: Maris Makko Kujundaja: Janek Saareoja ISBN 978-9949-489-95-4 (trükis) ISBN 978-9949-489-96-1 (epub) Trükitud trükikojas Print Best 4 Sisukord osa 0 – SISSEJUHATUS . .................... 17 OSA 2 – arvud ..................................... 75 matemaatika meie ümber ................... 20 arvuhulgad ....................

Matemaatika
200 allalaadimist
thumbnail
54
doc

Valemid ja mõisted

MATEMAATIKA TÄIENDÕPE VALEMID JA MÕISTED KOOSTANUD LEA PALLAS 1 2 SAATEKS Käesolev trükis sisaldab koolimatemaatika valemeid, lauseid, reegleid ja muid seoseid, mille tundmine on vajalik kõrgema matemaatika ülesannete lahendamisel. Kogumikus on ka mõned kõrgema matemaatika õppimisel vajalikud mõisted, mida koolimatemaatika kursuses ei käsitletud.. 3 KREEKA TÄHESTIK - alfa - nüü - beeta - ksii - gamma - omikron - delta - pii - epsilon - roo - dzeeta - sigma - eeta - tau - teeta - üpsilon - ioota - fii - kapa - hii - lambda - psii - müü - oomega

Matemaatika
1099 allalaadimist
thumbnail
13
doc

Kõrgema matemaatika eksam

1. Maatriksi mõiste, järk, tähistused, liigid. Maatriks on ristkülikukujuline arvude tabel, milles on m-rida ja n-veergu ja mis on ümbritsetud ümarsulgudega. Maatriksit tähistatakse suure tähega: Maatriksi järk tähistab maatriksi mõõtmeid: A on m*n järku maatriks. Liigid: · Ruutmaatriks (m=n) · Diagonaalmaatriks ­ ruutmaatriks, mille peadiagonaalis arvud, muud elemendid 0-d. · Ühikmaatriks ­ diagonaalmaatriksi erijuht. Peadiagonaali elemendid 1-d. Täh E. · Nullmaatriks ­ kõik nullid. Täh . 2. Tehted maatriksitega (korrutamine arvuga, liitmine, lahutamine, korrutamine). · Korrutamine arvuga: korrutades maatriksit reaalarvuga, muutuvad kõik elemendid, selle arvu korra suuremaks. · Maatriksite liitmine: mõõtmed peavad olema samad. Ühemaatriksi elemendid liidetakse teise maatriksi vastavate elementidega: A = (a ij) ja B = (bij) A+B =(cij) kus cij = aij + bij. ·

Kõrgem matemaatika
356 allalaadimist
thumbnail
26
pdf

Matemaatilise analüüsi kollokvium nr.1

1. Arvrea mõiste. Arvrea osasumma ja koonduvus. Näiteid koonduvate ja hajuvate arvridade kohta. Avaldist , kus on reaalarvud, nimetatakse arvreaks. Selle rea esimese liikme summat nimetatakse selle rea -ndaks osasummaks, st. Eeltoodud rida nimetatakse koonduvaks, kui selle rea osasummade jada { } on koonduv, st , kusjuures suurust S nimetatakse selle rea summaks. Kui ei eksisteeri lõplikku piirväärtust siis nimetatakse seda rida hajuvaks. Näide 1. Uurime rea koonduvust. Et siis , seega see rida on hajuv. Näide 2. Uurime rea koonduvust. Tegu on positiivse arvreaga, sest Võrdleme seda rida geomeetrilise reaga , see geomeetriline rida on koonduv, sest ja . Et

Matemaatiline analüüs 2
114 allalaadimist
thumbnail
108
doc

MATEMAATIKA TÄIENDÕPE: Valemid

MATEMAATIKA TÄIENDÕPE VALEMID JA MÕISTED KOOSTANUD LEA PALLAS 1 2 SAATEKS Käesolev trükis sisaldab koolimatemaatika valemeid, lauseid, reegleid ja muid seoseid, mille tundmine on vajalik kõrgema matemaatika ülesannete lahendamisel. Kogumikus on ka mõned kõrgema matemaatika õppimisel vajalikud mõisted, mida koolimatemaatika kursuses ei käsitletud.. 3 KREEKA TÄHESTIK Α α  alfa Ν ν  nüü Β β  beeta Ξ ξ  ksii Γ γ  gamma Ο ο  omikron Δ δ  delta Π π  pii Ε ε  epsilon Ρ ρ  roo Ζ ζ  dzeeta Σ σ  sigma Η η  eeta Τ τ  tau Θ θ  teeta Υ υ  üpsilon Ι ι  ioota Φ φ  fii Κ κ  kap

Algebra I
61 allalaadimist


Sellel veebilehel kasutatakse küpsiseid. Kasutamist jätkates nõustute küpsiste ja veebilehe üldtingimustega Nõustun