Jadad Geomeetriline jada Geomeetrilise jada üldliige avaldub kujul an = a1qn 1 , kus a1 on geomeetrilise jada esimene liige ja q jada tegur. Geomeetrilise jada esimese n liikme summa valem on kujul a ( q n - 1) Sn = 1 .
JADAD 11. klass Aili Hollak Arvuti koolis lõputöö Koolitaja E. Tarro, 5. kursus JADAD Jada teatud reegli järgi saadud arvude hulk, kus igale naturaalarvule n (alates 1-st) seatakse vastavusse üks kindel arv n. Jada liikmed - 1, 2, ..., n, ... Jada üldliige - n Jada üldliikme valem - n= f(n) Näiteid jadadest Ruudu 1 2 3 4 5 6 nr. Pindala 1 4 9 16 25 36 Nii võib jätkata ruutude joonistamist ja leida ka igal sammul vastava ruudu pindala. Näiteks 11. ruudu pindala on 121, 30
a1 - esimene liige an - n-es liige ehk üldliige d aritmeetilise jada vahe n liikmete arv Sn - liikmete summa q - geomeetrilise jada tegur Aritmeetiline jada Aritmeetiline jada on jada, mille teisest liikmest alates iga liikme ja talle eelneva liikme vahe on jääv. Aritmeetiline jada on jada, mille iga liige alates teisest on võrdne talle eelneva liikme ja jääva arvu summaga. Arvu mida me juurde liidame nimetame me vaheks. d=0 konstantne jada Aritmeetiline jada on vaadeldav lineaarfunktsiooni väärtuste jadana, kui argumendile anda täisarvulisi väärtusi alates 1'st. y=x+2 xe{1;2;3;...} Aritmeetilise jada omadus: Iga liige alates teisest on võrdne oma naaberliigete aritmeetilise keskmisega. a2=(a1+a3)/2 Aritmeetilise jada üldliikme valem an=a1+(n-1)d Aritmeetilise jada esimese n-liikme summa: esimesed n-liiget ehk jada lõige: a1;a2;a3;...;an Sn- esimese n-liikme summa ehk jada lõike summa Sn=a1+an n 2 Sn=2a1+(n-1)d n 2 Geomeetriline jada Geom
Mõisted suuliseks arvestuseks 1. Arvjada kui igale naturaalarvule n (alates 1-st) seatakse vastavusse üks kindel arv an, siis saadakse arvjada (arvude järjend, mis võib koosneda kas lõplikust või lõpmatust hulgast arvudest; selle saab kui seada ritta ükskõik mis arve). 2. Aritmeetiline jada jada, milles teisest liikmest alates on iga liikme ja sellele eelneva liikme vahe konstante (jada, kus iga kahe järjestikuse liikme vahe on võrdne). *Jada nimetatakse hääbuvaks ehk nullile lähenevaks, kui jadas järjest kaugemale minnes selle jada liikmed erinevad arvust 0 kui tahes vähe. 3. Aritmeetilise jada üldliige avaldub kujul an = a1 + d (n 1), kus a 1 on aritmeetilise jada esimene liige, d on jada vahe ning n on liikmete arv jadas. 4. Aritmeetilise jada n esimese liikme summa avaldub kujul Sn = (a1 + an) / 2 · n, kus a1 on aritmeetilise jada esimene liige, an on jada üldliige ning n on liikmete arv jadas. 5. Geomeetriline jada ja
ARITMEETILINE JA GEOMEETRILINE JADA 1. Aritmeetilise jada kolmas liige on 2 ja kaheksas liige on 17. Mitu jada liiget tuleb võtta, et nende summa oleks 95? n =10 2. Aritmeetilise jada esimese ja kuuenda liikme vahe on 10, nelja esimese liikme summa on 48. Leia see jada. a1 = 15, d = -2 3. Alustanud liikumist, läbib rong esimese sekundiga 0,3 m ja igas järgnevas sekundis 0,4 m rohkem kui eelmises. Leida 0,6 minutiga läbitud tee. 262,8 m 4. Aritmeetilise jada neljas liige on 9 ja üheksas liige on -6. Mitme liikme summa on 54? n1 = 4; n2 = 9 5. Leia kõigi niisuguste naturaalarvude summa, mis 9-ga jagades annavad jäägiks 4 ja arvud ise on suuremad 200 –st ning väiksemad 350-st. 4658 6. Geomeetrili
Aritmeetiline jada ------------------------------------------------------- Aritmeetilise jada üldliikme valem a n = a1 + n - 1 d ( ) Aritmeetilise jada esimese n-liikme summa valem a + an 2a + ( n - 1) d Sn = 1 n Sn = 1 n 2 2 ------------------------------------------------------- 1. Leia aritmeetilise jada 2; 9; 16; ... kaheteistkümnes liige. Lahendus: Antud on a1 = 2; a2 = 9, millest järeldub, et vahe on d = 9 2 = 7; n = 12. Leiame a12 ( ) Kasutades aritmeetilise jada üldliikme valemit a n = a1 + n - 1 d , saame a12 = 2 + (12 - 1) 7 = 2 + 11 7 = 79 2. Arvuta aritmeetilise jada n-is liige. a) a1 = 2; d = -2; n = 12; a12 = ??? ( ) L
Matemaatika 11. klassi praktikumi töö 1. Kirjalik arvutamine m Tehted astmetega (a:b)n = an : bn Tehted juurtega a n n am (ab)n = an * bn a b a b an am = an+m n m a n m a a a an : am = an-m b b n m n*m (a ) = a
TALLINNA TEHNIKAÜLIKOOL Nimi perenimi HARILIK ITERATSIOONIMEETOD REFERAAT Juhendaja: nimi Tallinn 2016 Sisukord Mis on iteratsioonimeetod?..............................................................................................................3 Harilik iteratsioonimeetod...............................................................................................................4 Meetodi realisatsioon.......................................................................................................................8 Näide 1)........................................................................................................................................8 Näide 2)........................................................................................................................................9 Allikad............................................................................................
Kõik kommentaarid