Vajad kellegagi rääkida?
Küsi julgelt abi LasteAbi
Logi sisse
Ega pea pole prügikast! Tõsta enda õppeedukust ja õpi targalt. Telli VIP ja lae alla päris inimeste tehtu õppematerjale LOE EDASI Sulge

Energiamajandus - sarnased materjalid

reaktor, kütus, gaas, nafta, uraan, reaktorit, tuumaelektrijaam, aeglusti, elektrienergia, maardla, tuumaelektrijaama, reaktoris, tuumakütus, maavara, tehnoloogia, taastuvenergia, energiatarbe, tuumaelektrijaamade, barrel, fossiilse, pumbata, 235u, kontuuris, survetoru, energiamajandus, tuumaenergia, years, turg, keskkonnakaitse, kahandamine
thumbnail
30
doc

Tuumareaktorid - kordamisküsimused

tootmiseks, aga seega ka eeldused reaktorikütuste valmistamiseks. Katsetati erinevaid reaktoritüüpe - sõjalaevade ning Pu-tootmise reaktoritest arenesid välja hilisemad energiatootmise reaktorid. 1940-1950-ndatel aastatel jõuti tuumasünteesini (kergete tuumade fusioon). Esimene tuumaelektri tootmine eksperimentalreaktorig toimus 1951. aastal USA-s. Esimene riigi elektrivõrku ühendatud 5 MWe võimsusega tuumaelektrijaam avati 1954. aastal NL-s. Reaktorid jaotatakse nelja põlvkonda. Enamus kasutusel olevatest jaamadest kuulub kas teisse või kolmandasse põlvkonda. Põlvkondasid eristavad peamiselt nõuded turvalisusele, efektiivsusele ning säästvale käidule. Tänapäevaste tuumareaktorite arendajate peamiseks sihiks on vähendada kõikvõimalikke tuumajaamaga kaasneda võivaid riske ning optimeerida nende tööd. Nii on näiteks

Tuumareaktorid
21 allalaadimist
thumbnail
3
docx

Tuumaenergia referaat

eraldub , nii nagu teistestki elektrijaamadest, suurtes kogustes (mitteradioaktiivset) veeauru ja alati on energia saamisega seotud kaudsed emissioonid. Kuidas tuumaenergia tekib? Tuumaelektrijaamades kasutatakse ära tuumade lõhustumise tagajärjel vabanev energia. Reaktoris luuakse tuumaenergia tootmiseks kontrollitud ahelreaktsioon, kus energia vabaneb soojusena. Viimast rakendatakse vee kuumutamiseks ja auru tekitamiseks, auru abil pannakse tööle elektrienergia tootmiseks kasutatavad turbogeneraatorid. Kontrollitud ahelreaktsiooni käigus pommitatakse suure massiarvuga tuumi aeglustatud neutronitega, protsessi tulemusel liitub neutron tuumaga põhjustades viimase ergastatud oleku.. Tuumajõudude tõttu lõhustub ergastunud tuum kaheks erineva massiga osaks (kildtuumaks), põhjustades nii kahe uue isotoobi tekke. Lisaks

Geograafia
36 allalaadimist
thumbnail
28
rtf

Tuumaenergeetika uurimistöö

Lisa 3............................................................................................................................ 2 SISSEJUHATUS Tuumaenergiat on kasutatud elektri tootmisel juba 50 aastat. Selle aja jooksul on tuumaenergeetika läbinud pika arengutee. Praeguseks on ehitatud ligi pooltuhat erineva konstruktsiooniga tuumajaama. [1] Elektrienergiat vajatakse üha enam. Tuumaenergia on üks suuremaid elektrienergia allikaid, 443 tuumajaamas üle maailma toodetakse 17% kogu elektrienergiast ja seda kasutab umbes miljard inimest. [2] Tuumaenergia kasutamine on elektri tootmiseks paratamatu mitmel põhjusel. Esiteks, ei saa lõputult jätkuda seni domineerinud fossiilsete kütuste põletamine nende ammendumise tõttu. Samuti kaasneb sellega lubamatult suurte nn kasvuhoonegaaside koguste paiskumine atmosfääri, mis põhjustab kliima soojenemist. Teiseks, alternatiivsed ehk nn

Füüsika
121 allalaadimist
thumbnail
20
pdf

Tuumaenergia

SISSEJUHATUS Rahvastiku kasvu, majanduse arengu ja industrialiseerimise kombineerumine maailmas tähendab globaalse energiatarbimise kasvu. Jätkub soojusjaamadest saadava energia tarbimine ja seda tõusvas joones. Elektritarbimine on praktiliselt sünonüümne moodsa eluga industrialiseeritud maailmas. Meie kommunikatsioonid, transport, toiduvarud ja kaasaegsete kodude mugavused, bürood ja tehased sõltuvad kindlast elektrienergia varustusest. Mida rohkem on maa industrialiseeritud, seda enam energiat tarbitakse. Ülemaailmne energiatarbimine on alates 19. sajandist kasvanud 25- kordselt. Elektritarbimine industrialiseeritud maades on keskmiselt umbes kümme korda suurem kui arengumaades, kuid ka viimastes kasvab nõudlus elektri järele järgmise 15 aasta jooksul iga aasta 5%. Maailma energianõudlus kasvab 2030. aastaks eelduste kohaselt umbes 60% võrra. Näiteks

Ökoloogia ja keskkonnakaitse
20 allalaadimist
thumbnail
38
docx

Tuumaenergiauus (1)

. 21 2 SISSEJUHATUS Rahvastiku kasvu, majanduse arengu ja industrialiseerimise kombineerumine maailmas tähendab globaalse energiatarbimise kasvu. Jätkub soojusjaamadest saadava energia tarbimine ja seda tõusvas joones. Elektritarbimine on praktiliselt sünonüümne moodsa eluga industrialiseeritud maailmas. Meie kommunikatsioonid, transport, toiduvarud ja kaasaegsete kodude mugavused, bürood ja tehased sõltuvad kindlast elektrienergia varustusest. Mida rohkem on maa industrialiseeritud, seda enam energiat tarbitakse. Ülemaailmne energiatarbimine on alates 19. sajandist kasvanud 25- kordselt. Elektritarbimine industrialiseeritud maades on keskmiselt umbes kümme korda suurem kui arengumaades, kuid ka viimastes kasvab nõudlus elektri järele järgmise 15 aasta jooksul iga aasta 5%. Maailma energianõudlus kasvab 2030. aastaks eelduste kohaselt umbes 60% võrra. Näiteks

6 allalaadimist
thumbnail
9
doc

Tuumajaamad

laviinitaoliselt paljuneda. Varraste järkjärgulise reaktorist väljatõmbamise teel oli võimalik väga kindlalt ja täpselt reguleerida ahelreaktsiooni algusmomenti ja kiirust ning automaatselt hoida seda mistahes soovitaval tasemel. Peale selle olid reaktoris kanalid mõõteriistade ning neutronitega pommitamiseks aktiivtsooni viidavate ainete jaoks. Reaktori töö käigus tekkis väga ohtlik, suure läbimisvõimega neutron- ja gammakiirgus, seepärast tuli reaktor ümbritseda kahe-kolme meetri paksuse betoonkestaga, nn bioloogilise kaitsega. Tuumareaktoreid kasutatakse elektrienergia tootmiseks, teaduslikel uurimistöödel rakendavate võimsate neutronivoogude tekitamiseks, mitmesuguse kiirgusintensiivsuse ja poolestusajaga radioaktiivsete tehisisotoopide valmistamiseks, ainete kiiritamiseks nende füüsikaliste ja 3

Füüsika
82 allalaadimist
thumbnail
8
docx

Tuumaelektrijaam

Tuumaelektrijaam Sissejuahtus Tuumaelektrijaam on elektrijaam, kus elektrienergiat saadakse aatomituuma lõhustumisest. Esimest korda toodeti tuumareaktori abil elektrienergiat 20. detsembril 1951 USAs Idahos. Esimene tuumaelektrijaam oli Obninski tuumaelektrijaam mis alustas tööd 27. juunil 1954 NSV Liidus Kaluga oblastis Obninskis. Esimene, mis oli tööstusliku võimsusega oli Calder Halli tuumaelektrijaam Sellafieldis. 2011. aasta mai seisuga oli maailma tuumaelektrijaamades 440 tegutsevat reaktorit, mis kokku tootsid 17% maailma elektrienergiast. Kõige rohkem on reaktoreid USAs arvuga 104, järgmisena Prantsusmaa arvuga 58, Jaapan arvuga 50ja Venemaa arvuga 32 reaktorit.

Füüsika
20 allalaadimist
thumbnail
10
odt

Energiamajandus ja keskkonnaprobleemid

Energiaressursid ja maailma energiavajadus. Energiaressurss ehk energiaallikas on ressurss, mida saab kasutada elektri-, soojus-ja muud liiki energia saamiseks. Energiaressursse saab jagada kaheks rühmaks: taastuvad ja taastumatud energiaressursid. Taastuvad energiaressursid on biokütus, hüdroenergia, päikeseenergia, tuuleenergia, geotermaalenergia, aga ka Maa pöörlemise energia ja gravitatsiooni energia. Taastumatud energiaressursid on fossiilkütused, näiteks nafta, maagaas, kivi-ja pruunsüsi, põlevkivi ning turvas, samuti tuumakütu Nafta :Tõhusam kasutamine, eriti transpordi valdkonnas. Kivisüsi: Tootmistehnoloogia arendamine, et vähendada õhusaastet. Tuumaenergia: Arendada avalikku arvamust Vesinik Luua tehnoloogia, mis nõuab vesiniku loomiseks vähem energiat Taastuvenergia: Vaja paremini integreerida olemasolevasse energiavõrgustikku Luua efektiivsemad tootmisprotsessid: biomass, etanool, biodiisel Viimase 20..

Geograafia
96 allalaadimist
thumbnail
113
doc

Energia ja keskkond konspekt

...........14 2.2 KÜTUSTE OMADUSED....................................................................................................................................15 2.2.1 Kütteväärtus....................................................................................................................................16 2.2.2 Tuha sulamiskarakteristikud...........................................................................................................17 2.3 NAFTA...........................................................................................................................................................18 2.4 NAFTA ÜMBERTÖÖTAMINE...........................................................................................................................21 2.5 MAAGAAS.....................................................................................................................................................21 2.6 KIVISÖED..

Energia ja keskkond
56 allalaadimist
thumbnail
11
doc

Tuumaenergia kasutamine

VII Varitsev oht lk 6 VIII Tuumaenergia kasutamine Eesti lähisriikides lk 7 IX Korduma kippuvad küsimused lk 8 X Kokkuvõte lk 10 Kasutatud materjalid lk 11 2 I. Tutvustuseks Tuumaenergia ehk aatomienergia on füüsika seisukohast aatomituuma moodustavate elementaarosakeste süsteemi seoseenergia, mis võib tuumareaktsioonides vabaneda. Energeetika seisukohast on see elektrienergia, mida saadakse tänu tuumareaktsioonidele tuumaelektrijaamades. Tuumaelektrijaamades on võimalik toota elektrienergiat suures koguses, ökonoomselt ja õhusaastevabalt. Uuringud näitavad, et tuumaenergiast saadud elekter on söest toodetust isegi odavam. Tänapäeval annavad tuumaelektrijaamad 17% kogu elektrienergiast, peaaegu sama palju kui hüdroelektrijaamad. Tuumaelektrijaamas kasutatakse kütusena uraani, mille varusid arvatakse jätkuvat umbes viiekümneks aastaks

Füüsika
134 allalaadimist
thumbnail
20
docx

Elektrijaamad - eksamiks kordamine

- Kondensatsioonturbiin (tüüp K) -Ühe või kahe termofikatsioon vaheltvõtuga turbiin (tüübid T1 ja T2) -Ühe tööstusliku vaheltvõtuga ja ühe või kahe termofikatsioonvaheltvõtuga turbiin (tüüp TVT1 ja TVT2) -Vasturõhuga turbiin (tüüp V) -Tööstusliku vaheltvõtuga ja vasturõhuga turbiin (tüüp TVV). Termofikatsioonturbiinid võivad töötada elektrilise ja soojusliku koormusgraafiku alusel. Talitlust elektrilise graafiku järgi iseloomustab elektrienergia ja soojuse sõltumatu tootmine ja on võimalik juhul, kui töötanud auru soojus antakse soojustarbijatele ja kondensaatori jahutusveele. Turbiini taliltus soojusgraafiku alusel on võimalik juhul kui T-i madalrõhu silindri reguleerimisorganid on suletud ja K-sse suundub minimaalne kogus auru, mis on vajalik madalrõhuastme jahutamiseks. Seda talitlust iseloomustab elektrilise koormuse jäik sõltuvus turbiini soojuskoormusest. Soojusgraafiku järgi talitluse erijuhtumiks on talitlus T-s

Elektrijaamad
60 allalaadimist
thumbnail
4
docx

Tuumaenergia kasutuselevõtu võimalustest Eestis

Tuumaenergia kasutuselevõtu võimalustest Eestis 1.Tuumajaamadest üldiselt 2.Eesti ajalooline seotus aatomienrgiaga 3.Tuuma reaktorid ja kütus 4.Ohud ja tuumakütuse jäägid 5.Majanduslik otstarbekus ja omanikud Viimastel ajal on hoogustunud debatt Eesti oma tuumajaama võimaliku ehitamise üle.Jaapanis asetleidnud 9 magnituudine maavärin, sellele järgnenud 38,5 m hiidlaine ja järgnenud avariid Fukushima Daiichi tuumajaamas on pannud inimesed muret tundma tuumaenergeetika tuleviku üle. Nagu ikka esineb nii poolt kui vastu käivaid seisukohti. Kahjuks pole tuumajaama vastastel eriti muid põhjendusi kui vaid see, kui ohtlik see on

Energeetika
37 allalaadimist
thumbnail
9
docx

Tuumaelektrijaam

2008 Referaat Tuumaelektrijaam Füüsika Juhendaja: Indrek Karo Mari Parts Pelgulinna Gümnaasium Sisukord Tuumaelektrijaam.......................................................................................

Füüsika
108 allalaadimist
thumbnail
14
odt

Tuumaenergia kasutamine, füüsika

Referaat Virgo Ernesaks EÜ12 Tuumaenergia kasutamine Jaanuar 2015 Sissejuhatus Tuumaenergia ehk aatomienergia on füüsika seisukohast aatomituuma moodustavate elementaarosakeste süsteemi seoseenergia, mis võib tuumareaktsioonides vabaneda. Energeetika seisukohast on see elektrienergia, mida saadakse tänu tuumareaktsioonidele tuumaelektrijaamades. Tuumaelektrijaamades on võimalik toota elektrienergiat suures koguses, ökonoomselt ja õhusaastevabalt. Uuringud näitavad, et tuumaenergiast saadud elekter on söest toodetust isegi odavam. Tänapäeval annavad tuumaelektrijaamad 17% kogu elektrienergiast, peaaegu sama palju kui hüdroelektrijaamad. Tuumaenergia on tõestatud tehnoloogia, mis annab suure panuse maailma elektrivarustuses.

Füüsika
7 allalaadimist
thumbnail
7
doc

Tuumareaktorid

olemas neist nelja suhtes. Loodetavasti soodustab see asjaolu viimaste kiiremat väljatöötamist. Tööd on arendusjärgus ja pole selge, kas kõik valitud tüüpidest end praktikas õigustavad. Ehituskõlblikeks peaksid nad saama ajavahemikus 2010-2030. Muidugi peab GIF silmas ka teisi arenguid täiustatud reaktorikontseptsioonide väljatöötamisel. Arendatavad reaktoritüübid on · Gaasjahutusega kiire reaktor GFR - i.k. Gas-Cooled Fast Reactor · Pliijahutusega kiire reaktor LFR - Lead-Cooled Fast Reactor · Sulasoolareaktor MSR - Molten Salt Reactor · Naatriumjahutusega kiire reaktor SFR - Sodium-Cooled Fast Reactor · Ülekriitilise veega jahutatud reaktor SCWR - Supercritical-Water-Cooled Reactor · Ülikõrgtemperatuurne reaktor VHTR - Very-High-Temperature Reactor IV põlvkonna reaktoritüüpe iseloomustavad näitajad Neutron- Soojus- Temp Kütuse- Võimsu

Füüsika
47 allalaadimist
thumbnail
12
doc

Tuumaenergia materjal

Teist tüüpi termotuumareaktorites toimub nn. "inertsiaalne sulustamine". Näiteks: Shiva reaktoris (Lawrence Livermore Laboratories, USA) fokuseeritakse 20 võimsa neodüünlaseri kiired reaktsioonikambrile, et kutsuda esile termotuumasüntees deuteerium- triitiumi gaasiseguga täidetud mikroballoonides. 2005 a. leppisid suurriigid kokku ehitada tootmisotstarbeline Prantsusmaale fusioonreaktor, projekti koodnimetus ITER. Termotuumareaktorite kütus Deuteeriumi saamine ei valmista suuri probleeme, sest ca 1 molekul igast 5000-st merevees olevast vesiniku molekulist on deuteerium. Selle kokkukoguminel saaks 1015 tonni deuteeriumi. Termotuumareaktori kütusena kasutatud 1 liitrist mereveest võiks toota 300 l bensiinile vastava energiakoguse. Triitiumi kui kütuse hankimine tekitab hoopis suuremaid probleeme. Looduses ei leidu arvestatavates kogustes triitiumi, sest tema poolestumisaeg on ainult 10 aastat. Triitiumi

Füüsika
26 allalaadimist
thumbnail
13
doc

Ignalina tuumajaama ehitamise kohta, materjal väitluseks

Venemaa. Kuigi prantslased asuvad Balti riikidele tänu Euroopa Liidule administratiivselt ja ka lobi poolest kõige lähemal, ei saa pidada nende väljavaateid Ignalinas kõige paremateks. Prantsusmaa ettevõtted ehitavad praegu tuumareaktorit Soomes, kus nad on ehitusvigade tõttu varem kokku lepitud graafikust maha jäänud. Kuigi Euroopas kardetakse Venemaa energeetilist domineerimist nagu tuld, pole venelaste väljavaated Ignalinasse reaktorit ehitada sugugi kõige väiksemad. Tsernobõli katastroof seadis idanaabrite tehnoloogia kõva kahtluse alla, kuid nad on sellest ka kõvasti õppust võtnud ja projekteerinud senisest märkimisväärselt ohutumaid reaktoreid. Kuna praegu räägitakse maailmas rohkem kui paarisaja uue tuumareaktori ehitamisest, siis võib lähiaastatel tekkida Eesti kinnisvarabuumist tuttav olukord. Küsimus pole siis kardetavalt enam selles, kelle vahel valida, vaid kes on üleüldse kättesaadav.

Väitlus
30 allalaadimist
thumbnail
7
docx

R. Munteri keemiatehnoloogia 3. kontrolltöö

1.Toornafta puhastamine liivast ja sooladest. Toornafta sisaldab vett, muda, liiva ja mineraalsooli. Viimased põhjustaks rafineerimise seadmete ummistust ja korrosiooni. Kasutatakse kahte soolärastuse meetodit. Esimese meetodi järgi lisatakse toornaftale vett ja väävelhapet või leelist pH reguleerimiseks.Segu kuumutatakse ning lastakse läbi segamisventiili, et saavutada homogeensust. Seejarel lahutatakse segu setitis, kus nafta kui kergem faas pinnale kerkib ning soolane vesi pohja settib. Teine meetod põhineb elektrostaatilisel soolärastusel. Nafta-vesi süsteem lahutatakse elektrostaatilises kõrgepinge väljas. Soolane vesi koaguleerub kiiresti ja settib, nafta kerkib "koorekihina" pinnale. 2.Naftast toodetavate mootorkütuste omadused. Bensiin Põhiosa bensiinist moodustavad süsivesinikud C4-C12. Osa neist on ohtlikud: benseen.,tolueen.;naftaleen jne. Bensiin ujub veepinnal. Vett ei saa kasutada bensiini

Keemiatehnoloogia
32 allalaadimist
thumbnail
3
docx

Keemiatehnoloogia esimene KT

1)Väävel ja väävelhape Tavalistes tingimustes esineb vähendab väävli (SO2) emissiooni korstna kaudu. Selle gaasi vahel peab tagama optimaalse temperatuuri. Kolonni väävel helekollases tahkes vormis rombiliste voi meetodi puhul võetakse 4-kihilises kolonnis gaas välja ülemises osas asub restil katalüsaatori kiht. Kolonni monokliinsete kristallidena või tumeda, amorfse massina kolmanda katalüsaatori kihi järel ning suunatakse nn alumises osas on soojusvaheti. Gaasi liikumine kolonnis on (nn plastiline väävel). Üleminek rombilise ja vahepealsesse absorberisse, sealt aga läbi organiseeritud selliselt, et kindlustada optimaalne

Keemia ja säästev...
37 allalaadimist
thumbnail
5
docx

Keemiatehnoloogia II K.T

1.Kivisüsi, koksistamine, produktid, töötlus Piisavalt suure vesiniku saagise puhul esimesest generaatorgaas põletati soojuskandja kambris (3) õhuga Kivisüsi on olulisim tahke kütus. Väävli sisaldus kahest reaktsioonist ja suure rõhu all toimub osa ning kuumad põlemisgaasid juhiti risti läbi ülalt alla kivisöes (2-6%) põhjustab tema töötlemisel tõsiseid süsiniku metaneerimine: langeva tükilise põlevkivi (d = 10-15 cm) kihi. Põlevkivi keskkonna probleeme

Keemia ja säästev...
33 allalaadimist
thumbnail
71
docx

Ökoloogia konspekt

põlemisprotsessi kaasprodukt. Süsihappegaasi hulk õhus sõltub vulkaanilise tegevuse intensiivsusest, kivimite murenemisest, organismide kõdunemisest, taimestiku arengustaadiumist ja liigilisest koosseisust, metsatulekahjudest ning viimasel ajal üha enam inimese majandustegevusest (peamiselt energia tootmisest). CO2 vabaneb fossiilsete kütuste põletamisel. o Metaan (CH4) on värvusetu, lõhnatu ja õhust kergem gaas. Suur osa metaani eraldub märgaladest, soodest ja rabadest. Metaan on tähtsuselt teine kasvuhoonegaas, mis arvatakse tekitavat 20% kasvuhooneefektist. Metaani põhilised antropogeensed allikad on põllumajandus, olmeprügilad, heitvesi ja heitvee töötlemine ning loodusliku gaasi (maagaasi) tootmine ja jaotamine. o Dilämmastikoksiidi (N2O) osatähtsust kasvuhooneefekti tekitamisel globaalse kliimamuutuse tasandil hinnatakse 6% le

Keskkonnakaitse ja säästev...
7 allalaadimist
thumbnail
125
pdf

Rakendusenergeetika

kohta. Mõõtühik vastvalt J/kg ja J/m3 Erisoojus: mass-, maht ja molaarerisoojus ühikud vastavalt J/(kg*K), J/(m3*K) ja J/(mol*K). Temperatuur 0°C = 273,15K K = 273,15+°C Rõhk: 1Pa = 1N/m2 = m-1*kg*s-2 Järgnev loeng on koostatud põhiliselt ,,A. Paist, A. Poobus. Soojusgeneraatorid. TTÜ Kirjastus, 2008" põhjal. Soojuse genereerimine, põlemisteooria alused, tahkete, vedelate ja gaasiliste kütuste põletamine. Kütused Kütus on energeetilises mõttes aine, mille keemilisel ühinemisel hapendajaga, milleks on tavaliselt hapnik, eraldub suurel hulgal soojust. Kütusteks (kütteaineteks) loetakse aineid, mis täidavad järgmisi põhilisi tingimusi: küllaldane varu või taastuvus looduses, hea kättesaadavus ja suhteliselt lihtne tootmine, reageerimine oksüdeerijaga toimub kiiresti ja suure kasuteguriga, põlemissaadused ei saasta ohtlikult keskkonda.

Füüsika
16 allalaadimist
thumbnail
34
pdf

Rahvusvaheline metsapoliitika ja säästev areng

Toornafta tööstuslikul töötlemisel saadakse muude naftasaaduste kõrval mitmeid vedelaid energeetilise kütusena kasutatavaid kütuseid. Maailma naftavarude suurust on hinnatud kuni 3 triljonile barrelile, sellest 24 % on hinnanguliselt kasutatud (barrel = 0,16 m3; barrel=42 gallonit). 2 Maagaasi päritolu on üsna lähedane nafta päritolule. See on tekkinud samuti miljoneid aastaid tagasi mereloomade ja -taimede ning alamate organismide lagunemise tulemusel eraldunud gaasilise osana ning koosneb põhiliselt metaanist. Gaasileiukohtades täidab maagaas poorseid kivimeid ja tühemikke maakoores. Naftatooted Bensiin on kerge naftasaadus, mida kasutatakse valdavalt transpordis. On ette nähtud kasutamiseks sisepõlemismootorites. Diiselkütus kuulub samuti kergete naftasaaduste hulka, kuid teda kasutatakse

Rahvusvaheline metsapoliitika...
150 allalaadimist
thumbnail
304
doc

ELEMENTIDE RÜHMITAMISE PÕHIMÕTTED

2CH4 + O2 → 2CO + 4H2 CH4 + 2H2O → CO2 + 4H2 3. Tööstuslikes vee elektrolüüsiprotsessides (kõrvalproduktina leeliste tootmisel jm.): katoodil - : 4H2O + 4e → 2H2 + 4OH- anoodil + : 2H2O - 4e → 4H+ + O2 4. Laboris kõige sagedamini: Zn + 2HCl → ZnCl2 + H2 (sisaldab lisandina HCl ja happe aerosooli) 5) Välitingimustes mõnikord hüdriididest: CaH2 + 2H2O → Ca(OH)2 + 2H2 1 mol = 42 g 2 . 22,4 l 2.1.3. Omadused  Kergeim gaas (ja üldse aine), 14,5 korda õhust kergem  Molekul kaheaatomiline: H2  Parim gaasiline soojusjuht  Difundeerub kergesti läbi paljude materjalide, väga “liikuv” kõrgemal temp-l läbib ka metalle  Lahustub halvasti vees ja org. lahustites, hästi mõnedes metallides (Pd, Pt)  Aatomi H ja molekuli H2 mõõtmed väga väikesed, molekulis sidemeenergia kõrge: raskesti polariseeritav

Keemia
72 allalaadimist
thumbnail
34
doc

Jäätmemajandus- ja käitlus

· Kaudne tulu- prügilate rajamise edasilükkamine, prügilate alla mineva maa säästmine, looduse kaitsmine, loodusvarade säästmine · Kulu- kogumine, vedu soritmine Teisese toorme liigid: 1. Tootmisjäägid ja praaktoodang 2. Kasutatud materjalid Korduvkasutus- samaks otstarbeks, materjali ei pea ümber töötlema Taasakasutus- samaks või muuks otstarbeks, materjali peab ümber töötlema Jäätmete kasutamisvõimalused: Materjal või kütus. Otsene taaskasutus: jäätmeid kasuttatakse toormena Kaudne taaskasutus: jäätmeid kasutatakse energia saamiseks, mullaomaduste parendamiseks Teise toorme mooduatvad ka tootmis ja tarbe ehk olmejäätmed. Tootmisjäätmed on tavaliselt puhtad, ühetaolised, sorditud, tekib samas kohas suurtes kogustes, kogumist ja taaskasutamist on lihtne korraldada · Tootmisjäätmete taaskasutamine sõltub: - kasumlikkus - seaduse nõuded - ettevõtte mainekujundus

Jäätmekäitlus
141 allalaadimist
thumbnail
64
pdf

Jäätmemajanduse loengumaterjalid

LOKT.04.023 Jäätmemajandus ja jäätmekäitlus (3 EAP) Ajakava, teemad ja õpieesmärgid Aeg (esialgne!) Teema 1.sept Sissejuhatus. Jäätmete liigid, koostis ja käitlemise põhimõtted. 8.sept Seadusandlus: Jäätmeseadus ja nimistu 15.sept Jäätmekavade koostamine ja keskkonnajaamade rajamine.. 22.sept AS Kuusakoski/Keskkonnajaam/Epler ja Lorents 29.sept Aardlapal

Jäätmekäitlus
39 allalaadimist
thumbnail
33
doc

Konspekt 2 vaheeksami küsimused ja vastused

R - gaasijoa pöörlemisraadius, m. Tegur 2/R on tsentrifugaaltegur, mis iseloomustab osakese sadenemiskiiruse suurenemist võrreldes gravitatsioonilise sadenemidega. Tsükloni arvutuse lähteandmed on: - gaasi mahtkiirus ja füüsikalised omadused - tolmu sisaldus ja osakeste suuruse jaotus - vajalik puhastusaste. Arvutuste alusel määratakse tsükloni diameeter D ja selle alusel valitakse tsükloni tüüp ülejäänud standardmõõtmetega. Tolmune gaas siseneb tsüklonisse suure kiirusega (15-25 m/s) puutuja suunas ja liigub spiraalset trajektoori mööda alla. Tolmuosakesed paiskuvad tsentrifugaaljõu mõjul vastu tsükloni seinu ja kaotanud kiiruse, vajuvad mööda tsükloni alumist koonilist osa alla. Puhastatud gaas tõuseb üles ja väljub kesktoru kaudu. Tsükloni puhastusaste oleneb tolmuosakestele mõjuva tsentrifugaaljõu suurusest ja kasvab viimase kasvades.

Ökoloogia ja...
309 allalaadimist
thumbnail
288
pdf

Keemiakursuse kokkuvõte

sisaldavad võrdsel temperatuuril ja võrdsel rõhul võrdse arvu gaasi molekule. Avogadro seadust saab tuletada kahest eeldusest: 1. Kõikide gaaside molaarruumalad standardtingimustel on 22,7 dm3/mol. 2. Üks mool gaasi sisaldab NA gaasi molekuli. 88 Gaaside tihedused suhtuvad teineteisesse nii nagu nende molaarmassid. Kahe gaasi molaarmasside suhe näitab, mitu korda on üks gaas teisest raskem või kergem ehk milline on ühe gaasi tihedus teise suhtes. Praktikas hinnatakse sageli gaasi tihedust õhu suhtes. Sel juhul on õhu M arvväärtus 29. CO2 on õhust raskem 44/29 = 1,5 korda. Õhk on veeaurust 29/18 = 1,61 korda raskem. 89 Vesi Vesi ehk divesinikmonooksiid ehk vesinikoksiid ehk oksidiaan on keemiline ühend keemilise valemiga H2O.

Rekursiooni- ja...
16 allalaadimist
thumbnail
67
txt

Konspekt aastast 2005

KESKKONNAMIKROBIOLOOGIA konspekt Koostanud Jaak Truu (T molekulaar-ja rakubioloogia instituut) e-mail: [email protected] 1. MIKROORGANISMIDE MITMEKESISUS Traditsiooniliselt phineb koosluste mitmekesisuse hindamine liigilise koosseisu mramisel, konkreetsete liikide arvukuse hindamisel ja iga liigi funktsiooni teadmisel. Mikroorganismide puhul on kigi nende nitajate usaldusvrne mramine hetkel veel vimatu. Miste mitmekesisus kasutamine mikroorganismide puhul on erinev kui makro-organismide korral. Mikroorganismide puhul ei ole vimalik mitmekesisuse hindamiseks kasutada ksnes organismi morfoloogilisi ja anatoomilisi tunnuseid, vaid tuleb kasutada lisaks veel spetsiifilisi fsioloogilisi tunnuseid. Rohkem kui 100 aastat phineski mikroobide mitmekesise hindamine fenotbilistel tunnustel ning mikroobide sarnasuse hindamiseks kasutati numbrilist taksonoomiat. 20 aastat tagasi arvati, et ca 40% prokarootidest on teada, praegusel hetkel on isegi 5 % vga optimistlik hinnang. Hetkel hinnatakse bak

Mikrobioloogia
42 allalaadimist
thumbnail
38
docx

Keskkonnakaitse ja säästev areng (õppejõud Ülle Leisk)

Loodusvarasid võib ka liigitada: esinemispaiga järgi: õhu-, vee-, mulla ja aluspõhja varad kasutusviis (toiduained, jõuvarad) tootmistegevus: põllumajandus, rasketööstus tootmisaste : põhi- ehk primaarselt toodetud hüved ja töödeldud Maavarad energeetilised mitteenergeetilised o metallid o mittemetallid XX sajandi 90 aastaga on tööstuslik tootmine suurenenud ligi 18 korda energiatarbimine 11 korda nafta tarbimine üle 100 korra terase tarbimine 25 korda alumiiniumi tarbimine ligi 2000 korda. Ökoloogiline jalajälg iseloomustab inimese survet keskkonnale arvestatakse arvestuslikes pinnaühikutes inimese kohta ressursi- ja jäätmevoogudele arvutatakse võrdne bioloogiliselt tootlik ala, mis suudab neid ressursse taastada ja jäätmeid ohutuks teha inimeste poolt nende vajaduste rahuldamiseks kasutatavat territooriumi, st summaarset survet keskkonnale

Keskkonnakaitse ja säästev...
406 allalaadimist
thumbnail
73
doc

Konteinerveod

ISO-seeria vastavalt pikkusele märgitakse: 1A 40 jalga (12,19 m); 1D 10 jalga (3,05 m); 1B 30 jalga (9,14 m) VII peatükk 7. Vedellastide vedu tankeritel. 7.1. Sissejuhatus Naftat (maaõli) ja naftasaadusi veetakse tänapäeval meritsi aastas umbes 1 miljard tonni. Aastal 1972 veeti meritsi 2,7 miljardit tonni toornaftat. 1970-ndate aastate suure kütusekriisi järel langes meritsi veetava nafta kogus üle kahe korra ja on viimase kümne aasta jooksul jäänud 1 miljardi tonni piiresse. Nafta ja temast toodetav gaas katab praegu 60 % kogu maailma energiavajadusest. Suurimaks nafta tarbijaks on USA 780 miljoni tonniga aastas. Lääne-Euroopa tarbib 620 miljonit tonni ja Jaapan 245 miljonit tonni aastas, Eesti aastatarbimine on 330 000 tonni vedelkütust. Kütuse tarbimisel on toimunud nihe kergemate produktide suunas. Ikka enam ja enam kasutatakse bensiini, lennukikütust

Laevandus
54 allalaadimist
thumbnail
28
docx

Ökoloogia teise vaheeksami/kontrolltöö

organisatsioonil pidevalt tõhustada oma keskkonna- ja majandustegevust. Efektiivse keskkonnajuhtimise eesmärk on kindlustada loodusvarade ratsionaalne kasutamine ning säästev areng erinevatel tasemetel. Maailma tulevik sõltub otseselt meie tegevusest tänasel päeval 2. Olulisemad õhu saasteained ning nende omadused Süsinikmonooksiid (CO): sisepõlemismootorites tekkiv värvitu ja lõhnatu äärmiselt mürgine gaas. Väikestes kogustes tekitab peavalu, nõrkustunnet ja peapööritust. Kõrge kontsentratsioon on surmav. Osoon (O3): mürgine gaas, mis tekib keerulise fotokeemilise protsessi käigus päikesevalguse mõjul teistest saasteainetest. Tekitab hingamisteede ja silmade ärritust. Vääveldioksiid (SO2): värvitu, terava lõhnaga ja ärritusi tekitav gaas, tekib esmajoones kütteseadmetes, tööstuslike protsesside käigus ja diiselmootorites

Keskkond
3 allalaadimist
thumbnail
20
docx

Ökoloogia ja keskkonnakaitse 2. kontrolltöö

jt.) tugeva ebameeldiva lõhnaga mürgised gaasid: väävelvesinik (H2S), metüülmerkaptaan (CH3SH), dimetüülsulfiid (CH3)2S) jt Olenevalt konkreetsest olukorrast rakendatakse heitgaaside puhastamisel mitmesuguse ehitusega vastas- ja pärisuunalisi absorbereid: täidiskolonne, taldrikkolonne, pihustustorne, Venturi pesureid, mehaanilisi segureid jt. Absorptsioontehnikas on väga levinud täidiskolonnid (skraberid). Nendes juhitakse puhastatav gaas alt üles läbi täidise kihi . Täidise materjal (keraamika, portselan, süsi, plast jt.) valitakse olenevalt korrosioonikindlusest. Absorbent piserdatakse täidisele ülevalt, ta voolab kelmena üle täidise ning väljub alt. Puhastatav gaas juhitakse kolonni altpoolt, läbi gaasijaotusresti. Taldrikkolonnides kasutatakse paljusid vahepõhjasid (nn. taldrikuid), mis on varustatud avadega või kuplitega alt üles liikuva gaasi läbilaskmiseks

Ökoloogia ja...
90 allalaadimist


Sellel veebilehel kasutatakse küpsiseid. Kasutamist jätkates nõustute küpsiste ja veebilehe üldtingimustega Nõustun