Vajad kellegagi rääkida?
Küsi julgelt abi LasteAbi
Logi sisse

Siinused ja Coosinused (4)

5 VÄGA HEA
Punktid

Lõik failist

(a±b)³=a³±3a²b+3ab²±b³ Sin/cos=tan
(a±b)(a²-+ab+b²)=a³±b³ Sin²+cos²=1
1+tan²=1/cos²
c=a²+b²-2ab*cos cost tan*cot=1
cos=(b²+c²-a²)/2bc sint cot=cos/sin
S=[p(p-a)(p-b)(p-c)] 1+cot²=1/sin²
p=P/2_S=p*r_S=abc/4R a/sin=b/sin=c/sin=2R
Sin(±)=sin*cos±sin*cos S=(ab*sin)/2
Cos(±)=cos*cos-+sin*sin
Tan(±)=(tan±tan)/(1-+tan*tan)
sin2=2sin*cos sin/2=±[(1-cos)/2]
cos2=cos²-sin² cos/2=±[(1+cos)/2]
tan2=2tan/(1-tan²) tan/2=±(1-cos)/(1+cos)
tan/2=(1-cos)/sin l=xr l=/360°*2r
tan/2=sin/(1+cos) S=xr²/2 S=/360°*r²
030°45°60°90°180°270°360°Sin00,52:23:21
0-10Cos13:22:20,50-101Tan03:313-0-
0Cot-313:30-0-

Siinused ja Coosinused #1
Punktid 5 punkti Autor soovib selle materjali allalaadimise eest saada 5 punkti.
Leheküljed ~ 1 leht Lehekülgede arv dokumendis
Aeg2008-11-11 Kuupäev, millal dokument üles laeti
Allalaadimisi 187 laadimist Kokku alla laetud
Kommentaarid 4 arvamust Teiste kasutajate poolt lisatud kommentaarid
Autor mukkel Õppematerjali autor
Sin ja Cos valemid jne spikker

Sarnased õppematerjalid

thumbnail
3
doc

Matemaatika valemid

välisringjoone raadius Kui on antud kaks külge ja nendest väiksem vastasnurk tuleb Koosinusteoreem lahendada kaks kolmnurka. a2=b2+c2-2bc*cos Nürinurgast on b2=a2+c2-2ac*cos miinusega. Kõige suuremale küljele vastab kõik pikem külg jne. c2=a2+b2-2ab*cos 30o 45o 60o 90o Siinus on + I ja II veerandis sin 1/2 2/3 3/2 1 Koosinus on + I ja IV veerandis Tangens on + I ja III veerandis cos 3/2 2/2 1/2 0 tan 3/3 1 3 - II veerand: 180o ­ antud nurk III veerand: antud nurk - 180o cot 3 1 3/3 -

Matemaatika
thumbnail
3
doc

Matemaatika valemid

Püstprisma sin 0 1 2 3 1 2 tan tan 2 = Ruumala: V = S p h 2 2 1 - tan 2 2 Külgpindala: S k = PH sin cos 1 3 2 1 0 tan = Täispindala: S t = S k + 2 S p 2 1 + cos 2 2 2 1 - cos Korrapärane püramiid sin = ± 1 t

Matemaatika
thumbnail
1
doc

Trigonomeetria valemid

0 30 45 60 90 180 270 360° ° ° ° ° ° ° ° 1 2 3 sin 0 /2 /2 /2 1 0 -1 0 3 2 1 cos 1 /2 /2 /2 0 -1 0 1 3 tan 0 /3 1 3 - 0 - 0 sin cos tan II:+ I:+ II: - I: + II: - I: + III:- IV:- III: - IV:+ III:+ IV: - · sin= cos(90°-) · sin·sin= -1/2[cos(+)-cos(-)] · cos= sin(90°-) · cos·cos= 1/2[cos(+)+cos(-)] · sin(-x)= -sinx · sin·cos= 1/2[sin(+)+sin(-)] · cos(-x)= cosx · SII

Matemaatika
thumbnail
2
docx

Valemileht 10.klass

ax2 + bx + c ( ruutkolmliikme lahutamine teguriteks) : ax2 + bx + c = a(x-x1)(x-x2). x1 ja x2 ruutvõrrandi lahendid. DETERMINANDID = a ·d - c·b. = aei + cdh +bfg ­ gec ­ ahf ­dbi. TRIGONOMEETRIA PÕHISEOSED sin2 + cos2 = 1 1 + cot2 a = tan = tan a cot a =1 1+ tan2 a = TÄIENDUSNURGA VALEMID sin (90 - a) =cos a cos (90 - a) = sin a tan (90 - a) = 1/tan a = cot a cot (90 - a) = 1/cot a = tan a NEGATIIVSE NURGA SIINUS,KOOSINUS,TANGENS JA KOOTANGENS. sin (- a) = -sin a cos (- a) = cos a tan (- a) = -tan a cot (- a) = -cot a KAHEKORDSE NURGA SIINUS, KOOSINUS, TANGENS JA KOOTANGENS. sin 2a =2sin a cos a cos 2a =cos2 a - sin2 a cos 2a = 2 cos2 a -1 cos 2a = 1- 2 sin2 a tan 2a = 2 tan a/ (1 - tan2 a) cot 2a = cot2 a - 1/ (2cot a) NURKADE TRIGONOMEETRILISTE FUNKTSIOONIDE VÄÄRTUSED. 0 30 45 60 90 sin 0 0.5 1

Matemaatika
thumbnail
4
doc

Gümnaasiumi I astme valemid

ARVUHULGAD 1. Naturaalarvude hulk N = {1;2;3; ...}. 2. Positiivsete täisarvude hulk Z + = N. 3. Negatiivsete täisarvude hulk Z - = { -1; -2; -3; . . . }. 4. Täisarvude hulk Z = Z Z { 0}. + - a 5. Ratsionaalarvude hulk Q = aZ bZ b 0 b 6. Irratsionaalarvude hulga I moodustavad lõpmatud mitteperioodilised kümnendmurrud. 7. Reaalarvude hulk R = Q I. KORRUTAMISE ABIVALEMID 8. (a + b)(a + b) = a 2 - b 2 . 9. ( a ± b) 2 = a 2 ± 2ab + b 2 . 10. ( a ± b) 3 = a 3 ± 3a 2 b + 3ab 2 ± b 3 . 11. a 3 ± b 3 = ( a ± b)(a 2 ab + b 2 ) . ASTMED JA JUURED 12. Korrutise aste ( a b) = a b . n n n n a an 13. Jagatise aste = b bn 14. Võrdsete alustega astmete

Matemaatika
thumbnail
4
doc

Valemid

ARVUHULGAD 1. Naturaalarvude hulk N = {1;2;3; ...}. 2. Positiivsete täisarvude hulk Z + = N. 3. Negatiivsete täisarvude hulk Z - = { -1; -2; -3; . . . }. 4. Täisarvude hulk Z = Z Z { 0}. + - a 5. Ratsionaalarvude hulk Q = aZ bZ b 0 b 6. Irratsionaalarvude hulga I moodustavad lõpmatud mitteperioodilised kümnendmurrud. 7. Reaalarvude hulk R = Q I. KORRUTAMISE ABIVALEMID 8. (a + b)(a + b) = a 2 - b 2 . 9. ( a ± b) 2 = a 2 ± 2ab + b 2 . 10. ( a ± b) 3 = a 3 ± 3a 2 b + 3ab 2 ± b 3 . 11. a 3 ± b 3 = ( a ± b)(a 2 ab + b 2 ) . ASTMED JA JUURED 12. Korrutise aste ( a b) = a b . n n n n a an 13. Jagatise aste = b bn 14. Võrdsete alustega astmete

Matemaatika
thumbnail
7
doc

Matemaatika valemid kl 10-11 12 tõenäosus

10.klass a1 b1 c1 1. Reaalarvude piirkonnad kui D = 0; D x = 0; D y = 0, siis = = a 2 b2 c 2 2. Astme mõiste üldistamine a m a n = a m +n c)pole lahendeid a1 b1 c a m : a n = a m -n , kui m > n kui D = 0; D x 0; D y 0, siis = 1 a 2 b2 c 2 ( a b) n = a n b n n 12. Ruutvõrrandi süsteemid a an 13. Kolmerealine determinant = n , kui b 0 b b 14. Kolme tundmatug

Matemaatika
thumbnail
2
docx

TRIGONOMEETRIA VALEMID

Sin2 + cos2 = 1 tan = cot = 1 + tan2 = 1 + cot2 = tan * cot =1 2 Cos = sin( 90- ) cot = 1+ cot = sin2 = 1- cos2 2 2 Cot = tan(90- ) tan = 1+ tan = cos = 1- sin2 2 Tan = cot(90- ) cot = sin(180- ) = sin tan (180 ­ ) = - tan sin(180+ ) = - sin tan (180 + ) = tan sin(360- ) = - sin tan (360 ­ ) = - tan sin( - ) = - sin tan (­ ) = - tan cos (180- )= - cos cot (180 ­ ) = - cot cos (180+ )= - cos cot (180 + ) = cot cos (360 ­ ) = cos cot (360 ­ ) = - cot cos( -) = cos cot (­ ) = - cot cos = sin (90 -

Matemaatika




Kommentaarid (4)

azdador profiilipilt
Sten Prangel: minujaoks halb , :(
16:12 30-03-2009
piip profiilipilt
piip: norm, saab hakkama
20:42 02-03-2010
topgirl17 profiilipilt
sigrid sild: väga hea:)
19:40 10-02-2009



Sellel veebilehel kasutatakse küpsiseid. Kasutamist jätkates nõustute küpsiste ja veebilehe üldtingimustega Nõustun