2 2 2 cos = 1 - sin cos = 1 - sin sin = cos( 90° - ) ; cos = sin ( 90° - ) sin sin tan = sin = cos tan cos = cos tan 1 1 tan = ; cot = cot tan 1 1 + tan 2 = cos 2 Kahekordse nurga valemid: sin 2 = 2 sin cos cos 2 = cos 2 - sin 2 2 tan tan 2 = 1 - tan 2 Liitmisvalemid: sin ( + ) = sin cos +cos sin cos( + ) = cos cos +sin sin tan + tan tan (+ ) = 1 +tan tan Summa teisendamine korrutiseks: + - sin + sin = 2 sin cos 2 2 + - sin - sin = 2 cos sin
Täiendusnurga valemid. sin (90 - ) =cos cos (90 - ) = sin tan (90 - ) = 1/tan = cot cot (90 - ) = 1/cot = tan Negatiivse nurga siinus, koosinus, tangens ja kootangens. sin (- ) = -sin cos (- ) = cos tan (- ) = -tan cot (- ) = -cot Trigonomeetria põhivalemid ja nende järeldused. sin 2 + cos2 = 1 tan =sin /cos cot =cos /sin tan cot =1 1+ tan 2 = 1/cos2 1 + cot2 = 1/sin2 sin 4 + cos4 = 1 - 2 sin2 cos2 sin 6 +cos6 = 1 - 3sin 2 cos2 Kahe nurga summa ja vahe siinus, koosinus, tangens ja kootangens. sin ( + ) =sin cos + cos sin tan ( + ) = tan + tan / (1 - tan tan ) sin ( - ) = sin cos - cos sin tan ( - ) = tan - tan / (1 + tan tan ) cos ( + ) = cos cos - sin sin cot ( + ) = cot cot -1/ (cot + cot ) cos ( - ) = cos cos + sin sin cot ( - ) = cot cot + 1 /( cot - cot ) Kahekordse nurga siinus, koosinus, tangens ja kootangens. sin 2 =2sin cos cos 2 =cos2 - sin 2
· siinus- ja koosinusteoreem; · trigonomeetrilised funktsioonid, nende graafikud ja omadused; · trigonomeetrilised põhivõrrandid. Põhioskused · Täis-, terav- ja nürinurksete kolmnurkade lahendamine; · trigonomeetriliste avaldiste teisendamine; · taandamisvalemite kasutamine; · trigonomeetriliste funktsioonide graafikute skitseerimine ja lugemine; · lihtsamate trigonomeetriliste võrrandite lahendite leidmine etteantud piirkonnas; · trigonomeetria valemite kasutamine geomeetriaülesannete lahendamisel. Valemid · Trigonomeetriliste funktsioonide väärtuste märgid Funktsioon I veerand II veerand III veerand IV veerand y = sin + + y = cos + + y = tan + +
· siinus- ja koosinusteoreem; · trigonomeetrilised funktsioonid, nende graafikud ja omadused; · trigonomeetrilised põhivõrrandid. Põhioskused · Täis-, terav- ja nürinurksete kolmnurkade lahendamine; · trigonomeetriliste avaldiste teisendamine; · taandamisvalemite kasutamine; · trigonomeetriliste funktsioonide graafikute skitseerimine ja lugemine; · lihtsamate trigonomeetriliste võrrandite lahendite leidmine etteantud piirkonnas; · trigonomeetria valemite kasutamine geomeetriaülesannete lahendamisel. Valemid · Trigonomeetriliste funktsioonide väärtuste märgid Funktsioon I veerand II veerand III veerand IV veerand y = sin + + y = cos + + y = tan + +
Liitmisvalemid : cos(180° + )=-cos sin( ± ) = sin cos ± cos sin tan(180° + )=tan cos( ± ) = cos cos sin sin cot(180° + )=cot tan ± tan sin( ± ) tan( ± ) = = 1 tan · tan cos( ± ) sin(360° - )=-sin Kahekordse _ nurga _ ja _ poo ln urga _ valemid : cos(360° - )=cos tan(360° - )=-tan sin 2 = 2 sin cos cot(360° - )=-cot cos 2 = cos 2 - sin 2 2 · tan sin(-)=sin(360° - )=-sin tan 2 = 1 - tan 2 cos(-)=cos(360° - )=cos 1 - cos tan(-)=tan(360° - )=-tan sin = ±
tan = cot = sin + cos = 1 2 2 cos sin 1 1 1 1 sec = cos ec = 1 + tan 2 = 1 + cot 2 = cos sin cos 2 sin 2 Kahekordse ja poolnurga valemid 2 tan tan 2 = sin 2 = 2 sin cos cos 2 = cos 2 sin 2 1 - tan 2 1 - cos = 2 sin 2 1 + cos = 2 cos 2 2 2 tan Liitmisvalemid ) = sin ) = sin
cos 1 0 -1 0 2 2 2 3 tan 0 1 3 puudub 0 puudub 3 3 cot puudub 3 1 0 puudub 0 3 Kuus trigonomeetria põhiseost 1) sin2 + cos2 = 1 4) tan cot = 1 1 1 tan = cot = cot tan cos2 = 1 - sin2 sin2 = 1 - cos2 cos 5) cot =
Trigonomeetriliste avaldiste teisendamine Trigonomeetria põhivalemid sin 2 + cos 2 = 1 sin tan = cos 1 1 + tan = 2 cos 2 cos cot = sin Taandamisvalemid Taandamisvalemite rakendamiseks piisab järgmise reegli teadmisest: nurkade - , + ja 2 - korral teiseneb nende siinus avaldiseks sin , koosinus avaldiseks cos ja tangens avaldiseks tan , mille ees olev märk ("+" või "-") sõltub sellest, milline on vastavalt siinuse, koosinuse või tangensi märk veerandis, kuhu kuulub esialgne nurk - , + ja 2 - Märgi määramisel loetakse nurk teravnurgaks. Kui nurk on kirjutatud kujul / 2 ± või 3 / 2 ± , siis muutub, sin cos tan cot cos sin cot tan. märgi määramise reegel jääb endiseks. Trigonomeetriliste funktsioonide märgid + + _ + _ _
Kõik kommentaarid