TRIGONOMEETRILISTE AVALDISTE LIHTSUSTAMINE. TÕESTA SAMASUSED. 2 cos 2 a 1 1 cos 2a 1 tan a 1. 2 tan a sin 2 a 2. 0 1 sin 2a 1 tan a 4 4 1 sin a cos a 4 4 2 1 sin a 1 sin a 3.. 4. 2 tan a cos a4 2 cos a 1 sin a 1 sin a sin a cos a 1 cos a cos 2a cos 3a 5. a =1 6. 2 cos a sin a cos a tan 2 cos 2 a cos a 1
Trigonomeetria põhiseosed Lihtsustamiseks kasutatakse 1. Trigonomeetria põhiseoseid: sin 2 + cos 2 = 1 1 - cos 2 = sin 2 sin 1 - sin 2 = cos 2 = tan cos cos tan = sin 1 1 + tan 2 = tan cot = 1 cos 2 1 cos
Trigonomeetrilised põhiseosed sin( + ) = sin cos + cos sin sin 2 = sin( + ) = sin cos + cos sin sin 2 + cos 2 = 1 sin 2 = 2 sin cos sin tan = cos( + ) = cos cos - sin sin cos cos cos 2 = cos( + ) = cos cos - sin sin cot = sin cos 2 = cos 2 - sin 2 1 tan + tan 1 + tan 2 = tan( + ) = cos 2 1 - tan tan 1 tan + tan 1 + cot 2 =
Põhiseosed : Funktsioonid: sin + cos = 1 2 2 sin sin(180° - )=sin tan = cos(180° - )=-cos cos tan · cot = 1 tan(180° - )=-tan cot(180° - )=-cot 1 1 + tan 2 = cos 2 sin(180° + )=-sin Liitmisvalemid : cos(180° + )=-cos sin( ± ) = sin cos ± cos sin tan(180° + )=tan cos( ± ) = cos cos sin sin cot(180° + )=cot tan ± tan sin( ± ) tan( ± ) = = 1 tan · tan cos( ± ) sin(360° - )=-sin Kahekordse _ nurga _ ja _ poo ln urga _ valemid : cos(360° - )=cos
PÕHISEOSED tan cot = 1 sin 2 + cos 2 = 1 + y + - y + - y + sin 1 tan = 1 + tan 2 = cos cos 2 x x x cot = cos 1 + cot 2 = 1 - - - + + - sin sin 2 +sin +cos
Täiendusnurga valemid. sin (90 - ) =cos cos (90 - ) = sin tan (90 - ) = 1/tan = cot cot (90 - ) = 1/cot = tan Negatiivse nurga siinus, koosinus, tangens ja kootangens. sin (- ) = -sin cos (- ) = cos tan (- ) = -tan cot (- ) = -cot Trigonomeetria põhivalemid ja nende järeldused. sin 2 + cos2 = 1 tan =sin /cos cot =cos /sin tan cot =1 1+ tan 2 = 1/cos2 1 + cot2 = 1/sin2 sin 4 + cos4 = 1 - 2 sin2 cos2 sin 6 +cos6 = 1 - 3sin 2 cos2 Kahe nurga summa ja vahe siinus, koosinus, tangens ja kootangens. sin ( + ) =sin cos + cos sin tan ( + ) = tan + tan / (1 - tan tan ) sin ( - ) = sin cos - cos sin tan ( - ) = tan - tan / (1 + tan tan ) cos ( + ) = cos cos - sin sin cot ( + ) = cot cot -1/ (cot + cot ) cos ( - ) = cos cos + sin sin cot ( - ) = cot cot + 1 /( cot - cot ) Kahekordse nurga siinus, koosinus, tangens ja kootangens. sin 2 =2sin cos cos 2 =cos2 - sin 2
Trigonomeetriliste avaldiste teisendamine Trigonomeetria põhivalemid sin 2 + cos 2 = 1 sin tan = cos 1 1 + tan = 2 cos 2 cos cot = sin Taandamisvalemid Taandamisvalemite rakendamiseks piisab järgmise reegli teadmisest: nurkade - , + ja 2 - korral teiseneb nende siinus avaldiseks sin , koosinus avaldiseks cos ja tangens avaldiseks tan , mille ees olev märk ("+" või "-") sõltub sellest, milline on vastavalt siinuse, koosinuse või tangensi märk veerandis, kuhu kuulub esialgne nurk - , + ja 2 - Märgi määramisel loetakse nurk teravnurgaks. Kui nurk on kirjutatud kujul / 2 ± või 3 / 2 ± , siis muutub, sin cos tan cot cos sin cot tan. märgi määramise reegel jääb endiseks. Trigonomeetriliste funktsioonide märgid + + _ + _ _
1. (Nurgakraad) 10 on 1/90 osa täisnurgast ehk 1/360 osa täispöördest. 2. (Nurgaminut) 1' on 1/60 kraadist. 3. Teravnurga sin,cos,tan täisnurkses kolmnurgas- sin=a/c, cos=b/c, tan=a/b 4. Seosed ühe nurga sin,cos, tan jaoks- sin2+cos2=1, tan=sin/cos, 1+tan2=1/cos2 5. Täiendusnurga tri. funkt. sin=cos(90º-), cos=sin(90º-), tan=1/tan(90º-) 0o 30 o 45 o 60 o 90 o sin 0 1/2 2 /2 3 /2 1 cos 1 3 /2 2 /2 1/2 0 tan 0 3 /3 1 3 6. 7. nurga sin nim nurga lõpphaara mistahes punkti ordinaadi suhet selle punkti kaugusesse koordinaatide alguspunktist s.t. sin=y/r 8. nurga cos nim nurga lõpphaara mistahes punkti abstsissi suhet selle punkti kaugusesse koordinaatide alguspunktist s.t. cos=x/r 9. nurga tan n
Kõik kommentaarid