Vajad kellegagi rääkida?
Küsi julgelt abi LasteAbi
Logi sisse

Trigonomeetria taandamisvalemid (3)

3 KEHV
Punktid

Lõik failist

http://www.abiks.pri.ee
 
TAANDAMISVALEMID
sinβ = sin(180 - α) = sinα
cosβ = cos(180 - α) = - cosα
tanβ = tan(180 - α) = - tanα
sinβ = sin(180 + α) = - sinα
cosβ = cos(180 + α) = - cosα
tanβ = tan(180 + α) = tanα
sinβ = sin(360 - α) = - sinα
cosβ = cos(360 - α) = cosα
tanβ = tan(360 - α) = - tanα
sin(-α) = - sinα
cos(-α) = cosα
tan(-α) = - tanα
 
VERTIKAALTELJE JUURES TAANDAMINE
sin(90 - α) = cosα
cos(90 - α) = sinα
tan(90 - α) = cotα
sin(90 + α) = cosα
cos(90 + α) = - sinα
tan(90 + α) = - cotα
sin(270 - α) = - cosα
cos(270 - α) = - sinα
tan(270 - α) = cotα
sin(270 + α) = - cosα
cos(270 + α) = sinα
tan(270 + α) = - cotα
VALEMID
sin2α + cos2β = 1
 
 
tanα*cotα = 1
sin(α + β)=sinα*cosβ +  cosα*sinβ
sin(α - β)=sinα*cosβ -  cosα*sinβ
cos(α + β)=cosα*cosβ - sinα*sinβ
cos(α - β)=cosα*cosβ + sinα*sinβ
 
 
a2 = b2 + c2 – 2bc cosα
+    +            -    +            -    +
-     -           -    +            +   -
sinα              cosα             tanα
Trigonomeetria taandamisvalemid #1 Trigonomeetria taandamisvalemid #2
Punktid 50 punkti Autor soovib selle materjali allalaadimise eest saada 50 punkti.
Leheküljed ~ 2 lehte Lehekülgede arv dokumendis
Aeg2007-11-29 Kuupäev, millal dokument üles laeti
Allalaadimisi 422 laadimist Kokku alla laetud
Kommentaarid 3 arvamust Teiste kasutajate poolt lisatud kommentaarid
Autor Rain Ungert Õppematerjali autor

Autori kodulehekülg www.abiks.pri.ee


Sarnased õppematerjalid

thumbnail
1
wps

Trigonomeetria taandamisvalemid

Matemaatika ­ Trigonomeetria taandamisvalemid TAANDAMISVALEMID sin = sin(180 - ) = sin cos = cos(180 - ) = - cos tan = tan(180 - ) = - tan sin = sin(180 + ) = - sin cos = cos(180 + ) = - cos tan = tan(180 + ) = tan sin = sin(360 - ) = - sin cos = cos(360 - ) = cos tan = tan(360 - ) = - tan sin(-) = - sin cos(-) = cos tan(-) = - tan VERTIKAALTELJE JUURES TAANDAMINE sin(90 - ) = cos cos(90 - ) = sin tan(90 - ) = cot sin(90 + ) = cos cos(90 + ) = - sin tan(90 + ) = - cot sin(270 - ) = - cos cos(270 - ) = - sin tan(270 - ) = cot sin(270 + ) = - cos cos(270 + ) = sin tan(270 + ) = - cot VALEMID sin2 + cos2 = 1 tan*cot = 1 sin( + )=sin*cos + cos*sin sin( - )=sin*cos - cos*sin cos( + )=cos*cos - sin*sin cos( - )=cos*cos + sin*sin < a2 = b2 + c2 ­ 2bc cos ++-+-+ ---++- sin cos tan

Matemaatika
thumbnail
2
pdf

Trigonomeetria valemileht

cos 1 0 -1 0 2 2 2 3 tan 0 1 3 puudub 0 puudub 3 3 cot puudub 3 1 0 puudub 0 3 Kuus trigonomeetria põhiseost 1) sin2 + cos2 = 1 4) tan cot = 1 1 1 tan = cot = cot tan cos2 = 1 - sin2 sin2 = 1 - cos2 cos 5) cot =

Matemaatika
thumbnail
2
doc

Siinus - taandamisvalemid

TAANDAMISVALEMID sin = sin(180 ) = sin cos = cos(180 ) = cos tan = tan(180 ) = tan sin = sin(180 + ) = sin cos = cos(180 + ) = cos tan = tan(180 + ) = tan sin = sin(360 ) = sin cos = cos(360 ) = cos tan = tan(360 ) = tan sin() = sin cos() = cos tan() = tan VERTIKAALTELJE JUURES TAANDAMINE sin(90 ) = cos cos(90 ) = sin tan(90 ) = cot sin(90 + ) = cos cos(90 + ) = sin tan(90 + ) = cot sin(270 ) = cos cos(270 ) = sin tan(270 ) = cot sin(270 + ) = cos cos(270 + ) = sin tan(270 + ) = cot

Matemaatika
thumbnail
2
docx

TRIGONOMEETRIA VALEMID

Sin2 + cos2 = 1 tan = cot = 1 + tan2 = 1 + cot2 = tan * cot =1 2 Cos = sin( 90- ) cot = 1+ cot = sin2 = 1- cos2 2 2 Cot = tan(90- ) tan = 1+ tan = cos = 1- sin2 2 Tan = cot(90- ) cot = sin(180- ) = sin tan (180 ­ ) = - tan sin(180+ ) = - sin tan (180 + ) = tan sin(360- ) = - sin tan (360 ­ ) = - tan sin( - ) = - sin tan (­ ) = - tan cos (180- )= - cos cot (180 ­ ) = - cot cos (180+ )= - cos cot (180 + ) = cot cos (360 ­ ) = cos cot (360 ­ ) = - cot cos( -) = cos cot (­ ) = - cot cos = sin (90 -

Matemaatika
thumbnail
1
doc

Matemaatika valemid

Sin2+cos2=1 tan=sin/cos 1+tan2=1/cos2 1+cot2=1/sin2 cot=cos/sin Tan*cot=1 sin=cos(90°-) tan=1/tan(90°-)=cot(90°-) cos=sin(90°-) cot=1/cot(90°-)=tan(90°-) 0° 30° 45° 60° 90° 180° 270° 360° sin 0 ½ 2/2 3/2 1 0 -1 0 cos 1 3/2 2/2 ½ 0 -1 0 1 tan 0 3/3 1 3 p. 0 p. 0 cot p. 3 1 3/3 0 p. 0 p. sin(180°-)=sin sin(180°-)=-sin cos(180°-)=-cos cos(180°-)=-cos tan(180°-)=-tan tan(180°-)=tan cot(180°-)=-cot cot(180°-)=cot sin(360°-)=-sin sin(-)=-sin cos(360°-)=cos cos(-)=cos tan(360°-)=-tan tan(-)=-tan cot(360°-)=-cot cot(-)=-cot

Matemaatika
thumbnail
3
doc

TRIGONOMEETRIA VALEMID

Täiendusnurga valemid. sin (90 - ) =cos cos (90 - ) = sin tan (90 - ) = 1/tan = cot cot (90 - ) = 1/cot = tan Negatiivse nurga siinus, koosinus, tangens ja kootangens. sin (- ) = -sin cos (- ) = cos tan (- ) = -tan cot (- ) = -cot Trigonomeetria põhivalemid ja nende järeldused. sin 2 + cos2 = 1 tan =sin /cos cot =cos /sin tan cot =1 1+ tan 2 = 1/cos2 1 + cot2 = 1/sin2 sin 4 + cos4 = 1 - 2 sin2 cos2 sin 6 +cos6 = 1 - 3sin 2 cos2 Kahe nurga summa ja vahe siinus, koosinus, tangens ja kootangens. sin ( + ) =sin cos + cos sin tan ( + ) = tan + tan / (1 - tan tan ) sin ( - ) = sin cos - cos sin tan ( - ) = tan - tan / (1 + tan tan ) cos ( + ) = cos cos - sin sin cot ( + ) = cot cot -1/ (cot + cot ) cos ( - ) = cos cos + sin sin cot ( - ) = cot cot + 1 /( cot - cot ) Kahekordse nurga siinus, koosinus, tangens ja kootangens. sin 2 =2sin cos cos 2 =cos2 - sin 2

Matemaatika
thumbnail
1
doc

Siinused ja Coosinused

(a±b)³=a³±3a²b+3ab²±b³ Sin/cos=tan (a±b)(a²-+ab+b²)=a³±b³ Sin²+cos²=1 1+tan²=1/cos² c=a²+b²-2ab*cos cost tan*cot=1 cos=(b²+c²-a²)/2bc sint cot=cos/sin S=[p(p-a)(p-b)(p-c)] 1+cot²=1/sin² p=P/2_S=p*r_S=abc/4R a/sin=b/sin=c/sin=2R Sin(±)=sin*cos±sin*cos S=(ab*sin)/2 Cos(±)=cos*cos-+sin*sin Tan(±)=(tan±tan)/(1-+tan*tan) sin2=2sin*cos sin/2=±[(1-cos)/2] cos2=cos²-sin² cos/2=±[(1+cos)/2] tan2=2tan/(1-tan²) tan/2=±(1-cos)/(1+cos) tan/2=(1-cos)/sin l=xr l=/360°*2r tan/2=sin/(1+cos) S=xr²/2 S=/360°*r² 030°45°60°90°180°270°360°Sin00,52:23:21 0-10Cos13:22:20,50-101Tan03:313-0- 0Cot-313:30-0-

Matemaatika
thumbnail
4
docx

TAANDAMISVALEMID

TAANDAMISVALEMID X-TELJEST I veerand II veerandist I veerandisse Sin(90®-α)=cosα Sin(180®-α)=sin α Cos(90®-α)=sinα Cos(180®- α)= -cosα Tan(90®-α)=cotα Tan(180®-α)= -tanα Sin(π/2-α)=cosα Cot(180®-α)= - cotα Cos(π/2-α)=sinα Sin(π- α)=sin α Tan(π/2-α)=cotα Cos(π- α)= - cos α Tan(π- α)= -tan α II veerandist I veerandisse Cot(π- α)= -cot α Sin(90®+α)=cosα Cos(90®+α)= -sinα III veerandist I veerandisse Tan(90®+α)= -cotα Sin(180®+ α)= -sin α Sin(π/2+α)=cosα Cos(180®+α)= -cosα Cos(π/2+α)= -sinα Tan(180®+α)= tanα Tan(π/2+α)= -cotα Cot(180®+α)=cotα Sin(π+α)= -sinα III veerandist I veerandisse Cos(π+α)= - cosα Sin(270®-α)= -cosα Tan(π+α)=tanα Cos(270®-α)= -sinα Cot(π+α)=cotα Tan(270®-?

Matemaatika




Kommentaarid (3)

CrimMxXx profiilipilt
Chrimera Smithereens: Piece of f sith...
16:29 11-03-2010
birx009 profiilipilt
birx009: mõtetu
19:49 23-08-2009
TheBlackPearl profiilipilt
20:36 26-05-2009



Sellel veebilehel kasutatakse küpsiseid. Kasutamist jätkates nõustute küpsiste ja veebilehe üldtingimustega Nõustun