tan = tan(180 - ) = - tan sin = sin(180 + ) = - sin cos = cos(180 + ) = - cos tan = tan(180 + ) = tan sin = sin(360 - ) = - sin cos = cos(360 - ) = cos tan = tan(360 - ) = - tan sin(-) = - sin cos(-) = cos tan(-) = - tan VERTIKAALTELJE JUURES TAANDAMINE sin(90 - ) = cos cos(90 - ) = sin tan(90 - ) = cot sin(90 + ) = cos cos(90 + ) = - sin tan(90 + ) = - cot sin(270 - ) = - cos cos(270 - ) = - sin tan(270 - ) = cot sin(270 + ) = - cos cos(270 + ) = sin tan(270 + ) = - cot VALEMID sin2 + cos2 = 1 tan*cot = 1 sin( + )=sin*cos + cos*sin sin( - )=sin*cos - cos*sin cos( + )=cos*cos - sin*sin cos( - )=cos*cos + sin*sin < a2 = b2 + c2 2bc cos ++-+-+ ---++- sin cos tan
Ande Andekas-Lammutaja Matemaatika Trigonomeetria Teravnurga puhul on sin vastaskaateti ja hüpotenuusi suhe, tan vastaskaateti ja lähiskaateti suhe ning cos lähiskaateti ja hüpotenuusi suhe. Nurga veerand võetakse lõpphaara asukoha järgi ning on vastupäeva positiivne, päripäeva negatiivne. Taandamisvalemid võimaldavad taandada mistahes nurga radiaanideks. ja on teineteise täiendusnurgad 90°-ni, kui + = 90°. Siinusfunktsiooniks nimetatakse funktsiooni y=sinx. Tegu on paarisfunktsiooniga, periood on 2. Arkussiinuseks nimetatakse funktsiooni y=arcsinx. Tegu on siinusfunktsiooni pöördväärtusega, absoluutväärtuselt vähim nurk, mille sin on x, paarisfunktsioon. Koosinusfunktsiooniks nimetatakse funktsiooni y=cosx. Tegu on paarisfunktsiooniga (sümmeetriline y telje suhtes), perioodiks 2
PÕHISEOSED tan cot = 1 sin 2 + cos 2 = 1 + y + - y + - y + sin 1 tan = 1 + tan 2 = cos cos 2 x x x cot = cos 1 + cot 2 = 1 - - - + + - sin sin 2 +sin +cos
Trigonomeetria valemid! Trigonomeetriliste funktsioonide väärtuste märgid Trigonomeetriliste funktsioonide väärtusi 0 1 0 -1 1 0 -1 0 0 1 - 0 - - 1 0 - 0 Taandamisvalemid Negatiivse nurga Trigonomeetrilised põhivalemid!!! trigonomeetrilised funktsioonid Kahe nurga summa ja vahe valemid Kahekordse nurga valemid
Trigonomeetria valemid kõik ühel lehel. Põhiseosed Täiendusnurga trigonomeetrilised Negatiivse nurga trigonomeetrilised sin sin 2 + cos 2 = 1 = tan tan cot = 1 funktsioonid funktsioonid cos 1 1 1 + tan 2 = 1 + cot 2 = cos 2 sin 2 Põhilised taandamisvalemid Nurkade summa ja vahe trigonomeetrilised Kahekordse nurga trigonomeetrilised funktsioonid funktsioonid
Põhiseosed : Funktsioonid: sin + cos = 1 2 2 sin sin(180° - )=sin tan = cos(180° - )=-cos cos tan · cot = 1 tan(180° - )=-tan cot(180° - )=-cot 1 1 + tan 2 = cos 2 sin(180° + )=-sin Liitmisvalemid : cos(180° + )=-cos sin( ± ) = sin cos ± cos sin tan(180° + )=tan cos( ± ) = cos cos sin sin cot(180° + )=cot tan ± tan sin( ± ) tan( ± ) = = 1 tan · tan cos( ± ) sin(360° - )=-sin Kahekordse _ nurga _ ja _ poo ln urga _ valemid : cos(360° - )=cos
Trigonomeetria põhivalemid ja nende järeldused: sin 2 + cos 2 = 1 2 2 2 sin = 1 - cos sin = 1 - cos 2 2 2 cos = 1 - sin cos = 1 - sin sin = cos( 90° - ) ; cos = sin ( 90° - ) sin sin tan = sin = cos tan cos = cos tan 1 1 tan = ; cot = cot tan 1 1 + tan 2 = cos 2 Kahekordse nurga valemid: sin 2 = 2 sin cos cos 2 = cos 2 - sin 2 2 tan tan 2 = 1 - tan 2 Liitmisvalemid: cos( ) = cos cos sin sin + tan tan tan ( ) = 1 tan tan + + + + sin ( ) = sin cos cos sin
Täiendusnurga valemid. sin (90 - ) =cos cos (90 - ) = sin tan (90 - ) = 1/tan = cot cot (90 - ) = 1/cot = tan Negatiivse nurga siinus, koosinus, tangens ja kootangens. sin (- ) = -sin cos (- ) = cos tan (- ) = -tan cot (- ) = -cot Trigonomeetria põhivalemid ja nende järeldused. sin 2 + cos2 = 1 tan =sin /cos cot =cos /sin tan cot =1 1+ tan 2 = 1/cos2 1 + cot2 = 1/sin2 sin 4 + cos4 = 1 - 2 sin2 cos2 sin 6 +cos6 = 1 - 3sin 2 cos2 Kahe nurga summa ja vahe siinus, koosinus, tangens ja kootangens. sin ( + ) =sin cos + cos sin tan ( + ) = tan + tan / (1 - tan tan ) sin ( - ) = sin cos - cos sin tan ( - ) = tan - tan / (1 + tan tan ) cos ( + ) = cos cos - sin sin cot ( + ) = cot cot -1/ (cot + cot ) cos ( - ) = cos cos + sin sin cot ( - ) = cot cot + 1 /( cot - cot ) Kahekordse nurga siinus, koosinus, tangens ja kootangens.
Autori kodulehekülg www.abiks.pri.ee
Kõik kommentaarid