Vajad kellegagi rääkida?
Küsi julgelt abi LasteAbi
Logi sisse

Valemid trigonomeetriliste avaldiste lihtsustamiseks (9)

3 KEHV
Punktid

Lõik failist

Ande Andekas-Lammutaja
Matemaatika – Valemid trigonomeetriliste avaldiste lihtsustamiseks
I.

II.
III.
IV.

Valemid trigonomeetriliste avaldiste lihtsustamiseks #1
Punktid 10 punkti Autor soovib selle materjali allalaadimise eest saada 10 punkti.
Leheküljed ~ 1 leht Lehekülgede arv dokumendis
Aeg2007-11-27 Kuupäev, millal dokument üles laeti
Allalaadimisi 268 laadimist Kokku alla laetud
Kommentaarid 9 arvamust Teiste kasutajate poolt lisatud kommentaarid
Autor Rain Ungert Õppematerjali autor

Autori kodulehekülgkool.spikriladu.net:

Sarnased õppematerjalid

thumbnail
3
doc

Trigonomeetriliste funktsioonide valemid

· trigonomeetrilised põhiseosed; · trigonomeetriline avaldis; · taandamisvalemid nurkade 90o , 180 o ja 360 o puhul; · kahe nurga summa ja vahe siinus, koosinus, tangens; · kahekordse ja poolnurga siinus, koosinus, tangens; · siinus- ja koosinusteoreem; · trigonomeetrilised funktsioonid, nende graafikud ja omadused; · trigonomeetrilised põhivõrrandid. Põhioskused · Täis-, terav- ja nürinurksete kolmnurkade lahendamine; · trigonomeetriliste avaldiste teisendamine; · taandamisvalemite kasutamine; · trigonomeetriliste funktsioonide graafikute skitseerimine ja lugemine; · lihtsamate trigonomeetriliste võrrandite lahendite leidmine etteantud piirkonnas; · trigonomeetria valemite kasutamine geomeetriaülesannete lahendamisel. Valemid · Trigonomeetriliste funktsioonide väärtuste märgid Funktsioon I veerand II veerand III veerand IV veerand

Matemaatika
thumbnail
3
doc

Kõik Trigonomeetrilised valemid

· trigonomeetrilised põhiseosed; · trigonomeetriline avaldis; · taandamisvalemid nurkade 90o , 180 o ja 360 o puhul; · kahe nurga summa ja vahe siinus, koosinus, tangens; · kahekordse ja poolnurga siinus, koosinus, tangens; · siinus- ja koosinusteoreem; · trigonomeetrilised funktsioonid, nende graafikud ja omadused; · trigonomeetrilised põhivõrrandid. Põhioskused · Täis-, terav- ja nürinurksete kolmnurkade lahendamine; · trigonomeetriliste avaldiste teisendamine; · taandamisvalemite kasutamine; · trigonomeetriliste funktsioonide graafikute skitseerimine ja lugemine; · lihtsamate trigonomeetriliste võrrandite lahendite leidmine etteantud piirkonnas; · trigonomeetria valemite kasutamine geomeetriaülesannete lahendamisel. Valemid · Trigonomeetriliste funktsioonide väärtuste märgid Funktsioon I veerand II veerand III veerand IV veerand

Trigonomeetria
thumbnail
2
odt

Trigonomeetria valemid

Trigonomeetrilised funktsioonid. Trigonomeetrilised võrrandid Valemid · Trigonomeetriliste funktsioonide väärtuste märgid Funktsioon I veerand II veerand III veerand IV veerand y = sin + + ­ ­ y = cos + ­ ­ + y = tan + ­ + ­ y = cot + ­ + ­ · Trigonomeetriliste funktsioonide väärtusi

Trigonomeetria
thumbnail
13
ppt

Trigonomeetriliste avaldiste teisendamine

Trigonomeetriliste avaldiste teisendamine Trigonomeetria põhivalemid sin 2 + cos 2 = 1 sin tan = cos 1 1 + tan = 2 cos 2 cos cot = sin Taandamisvalemid Taandamisvalemite rakendamiseks piisab järgmise reegli teadmisest: nurkade - , + ja 2 - korral teiseneb nende siinus avaldiseks sin , koosinus avaldiseks cos ja tangens avaldiseks tan , mille ees olev märk ("+" või "-") sõltub sellest, milline on vastavalt siinuse, koosinuse või tangensi märk veerandis, kuhu kuulub esialgne nurk - , + ja 2 - Märgi määramisel loetakse nurk teravnurgaks. Kui nurk on kirjutatud kujul / 2 ± või 3 / 2 ± , siis muutub, sin cos tan cot cos sin cot tan. märgi määramise reegel jääb endiseks. Trigonomeetriliste funktsioonide märgid + + _ + _ _

Matemaatika
thumbnail
2
doc

Trigonomeetria

Ande Andekas-Lammutaja Matemaatika ­ Trigonomeetria Teravnurga puhul on sin vastaskaateti ja hüpotenuusi suhe, tan vastaskaateti ja lähiskaateti suhe ning cos lähiskaateti ja hüpotenuusi suhe. Nurga veerand võetakse lõpphaara asukoha järgi ning on vastupäeva positiivne, päripäeva negatiivne. Taandamisvalemid võimaldavad taandada mistahes nurga radiaanideks. ja on teineteise täiendusnurgad 90°-ni, kui + = 90°. Siinusfunktsiooniks nimetatakse funktsiooni y=sinx. Tegu on paarisfunktsiooniga, periood on 2. Arkussiinuseks nimetatakse funktsiooni y=arcsinx. Tegu on siinusfunktsiooni pöördväärtusega, absoluutväärtuselt vähim nurk, mille sin on x, paarisfunktsioon. Koosinusfunktsiooniks nimetatakse funktsiooni y=cosx. Tegu on paarisfunktsiooniga (sümmeetriline y telje suhtes), perioodiks 2. Arkuskoosinu

Matemaatika
thumbnail
2
doc

Trigonomeetria põhiseosed

sin 3 - cos 3 cos17 0 28. - sin cos = sin - cos cos cos 2 29. - + = 1 + cos 1 - cos tan 2 30. sin 4 + sin 2 cos 2 + cos 2 = ( ) sin 90 0 - = cos cos(90 0 - ) = sin Täiendusnurga valemid: tan (90 0 - ) = cot cot (90 0 - ) = tan

Matemaatika
thumbnail
3
doc

TRIGONOMEETRIA VALEMID

Täiendusnurga valemid. sin (90 - ) =cos cos (90 - ) = sin tan (90 - ) = 1/tan = cot cot (90 - ) = 1/cot = tan Negatiivse nurga siinus, koosinus, tangens ja kootangens. sin (- ) = -sin cos (- ) = cos tan (- ) = -tan cot (- ) = -cot Trigonomeetria põhivalemid ja nende järeldused. sin 2 + cos2 = 1 tan =sin /cos cot =cos /sin tan cot =1 1+ tan 2 = 1/cos2 1 + cot2 = 1/sin2 sin 4 + cos4 = 1 - 2 sin2 cos2 sin 6 +cos6 = 1 - 3sin 2 cos2 Kahe nurga summa ja vahe siinus, koosinus, tangens ja kootangens. sin ( + ) =sin cos + cos sin tan ( + ) = tan + tan / (1 - tan tan ) sin ( - ) = sin cos - cos sin tan ( - ) = tan - tan / (1 + tan tan ) cos ( + ) = cos cos - sin sin cot ( + ) = cot cot -1/ (cot + cot ) cos ( - ) = cos cos + sin sin cot ( - ) = cot cot + 1 /( cot - cot ) Kahekordse nurga siinus, koosinus, tangens ja kootangens. sin 2 =2sin cos cos 2 =cos2 - sin 2

Matemaatika
thumbnail
2
pdf

Trigonomeetria valemileht

cos = ±1 - sin2 cot 2 = sin2 sin = ±1 - cos2 1 6) 1 + cot 2 = sin2 sin 2) tan = cos 2 sin2 tan = cos2 1 3) 1 + tan2 = cos2 Nurga trigonomeetriliste 2 tan tan2 = funktsioonide märgid veerandites 1 - tan2 Korrutiseks teisendamise valemid + - sin + sin = 2 sin cos 2 2

Matemaatika




Kommentaarid (9)

raibe001 profiilipilt
raibe001: täpselt see mida ma otsisin.. thx
21:53 08-02-2010
kaarel3d profiilipilt
kaarel3d: Sama fail olemas R1im kodulehel.
15:37 18-11-2008
plika234 profiilipilt
plika234: Väga palju abi oli, aitähh!
23:43 08-01-2011



Sellel veebilehel kasutatakse küpsiseid. Kasutamist jätkates nõustute küpsiste ja veebilehe üldtingimustega Nõustun