Vajad kellegagi rääkida?
Küsi julgelt abi LasteAbi
Logi sisse

Trigonomeetria valemid (5)

4 HEA
Punktid
Trigonomeetria valemid #1
Punktid 50 punkti Autor soovib selle materjali allalaadimise eest saada 50 punkti.
Leheküljed ~ 1 leht Lehekülgede arv dokumendis
Aeg2010-01-15 Kuupäev, millal dokument üles laeti
Allalaadimisi 159 laadimist Kokku alla laetud
Kommentaarid 5 arvamust Teiste kasutajate poolt lisatud kommentaarid
Autor Taavo Allik Õppematerjali autor
Kogusin kokku kõik trigonomeetriaga seostuva (valemeid ning sin, cos, tan väärtust tabeli) ning koostasin väga kompaktse trigonomeetria lehe, väga hästi loetav, kui prindid A6 suurusena (A4le pahub 4 tükki). Sisaldab: sin, cos, tan täpseid väärtusi levinumate nurkade puhul, trigonomeetria põhivalemid, kahekordse nurga, poolnurga valemid, summa ja vahe tegemine korrutiseks, korrutise tegemine summaks siinuteoreem, koosinusteoreem, arc funktsioonide valemeid, trigonomeetriliste võrrandite lahendi valemid

Sarnased õppematerjalid

thumbnail
2
pdf

Kolmnurk; trigonomeetria; funktsioonide valemid

'],' fi i s li'k rr e il,"q rin c. E ii'ira ig u r:- r' !,,. C{ * pr =Y11' .-^{) u -ta ={-: "a )--) SlnA = -. = cos,6' * fi) = eosex ft'=fr h'=Gr- (, sira(900 t2

Matemaatika
thumbnail
2
doc

Trigonomeetria

Ande Andekas-Lammutaja Matemaatika ­ Trigonomeetria Teravnurga puhul on sin vastaskaateti ja hüpotenuusi suhe, tan vastaskaateti ja lähiskaateti suhe ning cos lähiskaateti ja hüpotenuusi suhe. Nurga veerand võetakse lõpphaara asukoha järgi ning on vastupäeva positiivne, päripäeva negatiivne. Taandamisvalemid võimaldavad taandada mistahes nurga radiaanideks. ja on teineteise täiendusnurgad 90°-ni, kui + = 90°. Siinusfunktsiooniks nimetatakse funktsiooni y=sinx. Tegu on paarisfunktsiooniga, periood on 2

Matemaatika
thumbnail
2
docx

Valemileht 10.klass

KORRUTAMISE ABIVALEMID (a+b)(a-b)=a²-b² - ruutude vahe valem (a+b)²=a²+2ab+b² - summa ruudu valem (a-b)²=a²-2ab+b² - vahe ruudu valem a³+b³=(a+b)(a² -ab+b²) - kuupide summa valem a³-b³=(a-b)(a² +ab+b²) - kuupide vahe valem (a+b)³=a³+3a²b+3ab²+b³ - summa kuubi valem (a-b)³=a³-3a²b+3ab²-b³ - vahe kuubi valem RUUTVÕRRAND x2 + px + q = 0 - taandatud ruutvõrand ; lahend ax2 + bx + c = 0 ­ taandamata ruutvõrrand ; lahend x1 + x2 = -p ; x1 · x2 = q - viete valemid. Kus x1 ja x2 on taandatud ruutvõrrandi lahendid. ax2 + bx + c ( ruutkolmliikme lahutamine teguriteks) : ax2 + bx + c = a(x-x1)(x-x2). x1 ja x2 ruutvõrrandi lahendid. DETERMINANDID = a ·d - c·b. = aei + cdh +bfg ­ gec ­ ahf ­dbi. TRIGONOMEETRIA PÕHISEOSED sin2 + cos2 = 1 1 + cot2 a = tan = tan a cot a =1 1+ tan2 a = TÄIENDUSNURGA VALEMID sin (90 - a) =cos a cos (90 - a) = sin a tan (90 - a) = 1/tan a = cot a cot (90 - a) = 1/cot a = tan a

Matemaatika
thumbnail
2
doc

Trigonomeetria

1. (Nurgakraad) 10 on 1/90 osa täisnurgast ehk 1/360 osa täispöördest. 2. (Nurgaminut) 1' on 1/60 kraadist. 3. Teravnurga sin,cos,tan täisnurkses kolmnurgas- sin=a/c, cos=b/c, tan=a/b 4. Seosed ühe nurga sin,cos, tan jaoks- sin2+cos2=1, tan=sin/cos, 1+tan2=1/cos2 5. Täiendusnurga tri. funkt. sin=cos(90º-), cos=sin(90º-), tan=1/tan(90º-) 0o 30 o 45 o 60 o 90 o sin 0 1/2 2 /2 3 /2 1 cos 1 3 /2 2 /2 1/2 0 tan 0 3 /3 1 3 ­ 6. 7. nurga sin nim nurga lõpphaara mistahes punkti ordinaadi suhet selle punkti kaugusesse koordinaatide alguspunktist s.t. sin=y/r 8. nurga cos nim nurga lõpphaara mistahes punkti abstsissi suhet selle punkti kaugusesse koordinaatide alguspunktist s.t. cos=x/r 9. nurga tan n

Matemaatika
thumbnail
6
doc

11. klassi materjal matemaatikas

Aritmeetiline jada-Jada, mille iga liige alates teisest on võrdne eelneva liikme ja selle jada jaoks mingi kindla arvu summaga nimetatakse aritmeetiliseks jadaks. Seda kindlat arvu nimetatakse aritmeetilise arvu jadaks ja tähistatakse tähega d. an=a1+(n-1)d an+1=an+d » an+1-an=d sn= a1+an/2 x n või sn=2a1+(n-1)d/2 Geomeetriline jada- Jada, mille iga liige alates teisest on võrdne eelneva liikme ja antud jada jaoks mingi kindla arvu korrutisega nimetatakse geomeetriliseks jadaks. Seda kindlat arvu nimetatakse teguriks ja tähistatakse tähega q n-1 n an=a1 x q q=an+1/n sn=a1(q -1)/q-1 Lõpmatult kahaneva geomeetrilise jada summa- S=a1/1-q Arvu ,,A" nimetatakse jada ,,an" tõkestamatul kasvamisel ja tähistatakse sümboliga liman=A n lim1/n=0 Piirväärtus n (tõkestamatul kasvamisel) läheneb nullile. n Piirväärtust

Matemaatika
thumbnail
3
doc

Matemaatika valemid

sin2 + cos2 = 1 tan = sin /cos 1+tan2 = 1/cos2 sin2 = 1 ­ cos2 sin = tan *cos cos2 = 1/tan2 +1 cos2 = 1 ­ sin2 cos = sin /tan cos2 ­ 1 = - sin2 cot = cos /sin cot =1/tan sin2 ­ 1 = - cos2 cos = cot *sin tan *cot =1 sin = cos /cot 1+cot2 = 1/sin2 sin = cos (90o ­ ) sin = vastas kaatet/hüpotenuus cos = sin (90o ­ ) cos = lähis kaatet/hüpotenuus tan = 1/tan (90o ­ ) tan = vastas kaatet/lähis kaatet cot =tan (90o ­ ) cot = lähis kaatet/vastas kaatet tan = cot (90o ­ ) Kolmnurga pindala Koosinusteoreem Siinusteoreem S=a*h/2 a2=b2+c2-2bc*cos a/sin=b/sin=c/sin=2R S=1/2a*b*

Matemaatika
thumbnail
2
doc

Trigonomeetria

Trigonomeetria Teravnurga puhul on sin vastaskaateti ja hüpotenuusi suhe, tan vastaskaateti ja lähiskaateti suhe ning cos lähiskaateti ja hüpotenuusi suhe. y sin = r x cos = r y tan = x x cot = y Taandamisvalemid: II sin ( - ) = sin cos ( - ) = -cos tan ( - ) = -tan III sin ( + ) = -sin cos ( + ) = -cos tan ( + ) = tan IV sin (2 - ) = -sin cos (2 - ) = cos tan (2 - ) = -tan - sin (-) = -sin cos (-) = cos tan (-) = -tan Täiendusnurgad: sin = cos = cos (90° - ) cos = sin (90° - ) 1 tan = cot (90° - ) = tan(90°-) Eriväärtuste tabel: 0 30 45 60 90 180 270 360° ° ° ° ° ° °

Matemaatika
thumbnail
3
doc

TRIGONOMEETRIA VALEMID

Täiendusnurga valemid. sin (90 - ) =cos cos (90 - ) = sin tan (90 - ) = 1/tan = cot cot (90 - ) = 1/cot = tan Negatiivse nurga siinus, koosinus, tangens ja kootangens. sin (- ) = -sin cos (- ) = cos tan (- ) = -tan cot (- ) = -cot Trigonomeetria põhivalemid ja nende järeldused. sin 2 + cos2 = 1 tan =sin /cos cot =cos /sin tan cot =1 1+ tan 2 = 1/cos2 1 + cot2 = 1/sin2 sin 4 + cos4 = 1 - 2 sin2 cos2 sin 6 +cos6 = 1 - 3sin 2 cos2 Kahe nurga summa ja vahe siinus, koosinus, tangens ja kootangens. sin ( + ) =sin cos + cos sin tan ( + ) = tan + tan / (1 - tan tan ) sin ( - ) = sin cos - cos sin tan ( - ) = tan - tan / (1 + tan tan ) cos ( + ) = cos cos - sin sin cot ( + ) = cot cot -1/ (cot + cot ) cos ( - ) = cos cos + sin sin cot ( - ) = cot cot + 1 /( cot - cot ) Kahekordse nurga siinus, koosinus, tangens ja kootangens. sin 2 =2sin cos cos 2 =cos2 - sin 2

Matemaatika




Kommentaarid (5)

ottovonmattas profiilipilt
ottovonmattas: Konkreetselt kompaktne materjal.
22:42 03-05-2010
_sweetkity_ profiilipilt
helena nulk: Väga hea materjal. Aitäh:D
06:59 12-11-2010
Taivotar profiilipilt
Taivotar: kõik mis vaja, oli olemas
09:46 20-02-2013



Sellel veebilehel kasutatakse küpsiseid. Kasutamist jätkates nõustute küpsiste ja veebilehe üldtingimustega Nõustun