Vajad kellegagi rääkida?
Küsi julgelt abi LasteAbi
Logi sisse Registreeri konto

Trigonomeetriline võrrand (0)

1 Hindamata
Punktid
Trigonomeetriline võrrand #1 Trigonomeetriline võrrand #2
Punktid 50 punkti Autor soovib selle materjali allalaadimise eest saada 50 punkti.
Leheküljed ~ 2 lehte Lehekülgede arv dokumendis
Aeg2012-05-12 Kuupäev, millal dokument üles laeti
Allalaadimisi 22 laadimist Kokku alla laetud
Kommentaarid 0 arvamust Teiste kasutajate poolt lisatud kommentaarid
Autor AaSis Õppematerjali autor

Märksõnad

Sarnased õppematerjalid

thumbnail
9
ppt

Trigonomeetrilised võrrandid

Trigonomeetrilised võrrandid © T. Lepikult, 2010 Trigonomeetriline võrrand Trigonomeetriliseks võrrandiks nimetatakse võrrandit, milles muutuja esineb vaid trigonomeetriliste funktsioonide argumentides Näiteks võrrand 2 sin 2 x + cos x - 1 = 0 on trigonomeetriline võrrand, võrrand x sin 1 + x 2 cos = 0 aga ei ole trigonomeetriline võrrand. Võrrandeid sin x = a, | a | 1, tan x = a, cos x = a, | a | 1, cot x = a, nimetatakse trigonomeetrilisteks põhivõrranditeks. Trigonomeetriliste põhivõrrandite lahendamine sin x = a, | a | 1 x = (-1) n arcsin a + n , n Z ; cos x = a, | a | 1 x = ± arccos a + 2n , n Z ; tan x = a, x = arctan a + n , n Z ; cot x = a, x = arccot a + n , n Z . Näide Lahendada võrrand tan x = 3. Lahendus

Matemaatika
thumbnail
8
docx

Trigonomeetrilised võrrandid

Trigonomeetrilised võrrandid Kordamine (lai matemaatika) 1. Trigonomeetrilised põhivõrrandid Näide: sin x = 0,3342 arcsin 0,3342 = 19,5 0 Vastus : x = ( - 1) 19,5 0 + n 180 0 , n Z n Näide: Lahenda võrrand lõigul - 90 ;90 0 0 [ ] 2 cos 3 x + 2 = 0 3x = ±135 0 + n 360 0 , n Z : 3 n = 1 x = ±45 0 + 1 120 0 2 cos 3 x = - 2 : 2 x = ±45 0 + n 120 0 , n Z x3 = 165 0 (ei sobi ), x 4 = 75 0 2 Leian lahendid antud lõigus: n = -1 x = ±45 0 + ( - 1) 120 0 cos 3 x = - 2 n = 0 x = ±45 0 + 0 120 0 2 x5 = -75 0 , x6 = -165 0 (ei sobi

Matemaatika
thumbnail
2
doc

Trigonomeetria

2 Arkusfunktsioonid: arcsin(-x) = -arcsinx sin(arcsinx) = x arccos(-x) = ­ arccosx cos(arccosx) = x arctan(-x) = -arctanx tan(arctanx) = x Ande Andekas-Lammutaja Trigonomeetriline võrrand Trigonomeetriliseks võrrandiks nimetatakse võrrandit, mis sisaldab tundmatut ainult trigonomeetrilise funktsiooni argumendis. sinx = m: x = (-1)n arcsinm + n ; n Z x = (-1)n + n180° ;nZ Kontroll tehakse väärtustel n = 0 ja n = 1 cosx = m: x = ± arccosm + 2n ; n Z x = ± + n360° ;nZ Kontroll tehakse väärtustel + ja ­ tanx = m: x = arctanm + n ;nZ x = + n180° ;nZ

Matemaatika
thumbnail
3
doc

Trigonomeetriliste funktsioonide valemid

Õppematerjalide loomist toetab AS Topauto/autod, markide Seat, Suzuki, Hyundai ning kasutatud autode müüja üle Eesti 7. Trigonomeetrilised funktsioonid. Trigonomeetrilised võrrandid Põhiteadmised · Kraadimõõt; · radiaanimõõt; · suvalise nurga (ka negatiivse) trigonomeetrilised funktsioonid; · trigonomeetrilised põhiseosed; · trigonomeetriline avaldis; · taandamisvalemid nurkade 90o , 180 o ja 360 o puhul; · kahe nurga summa ja vahe siinus, koosinus, tangens; · kahekordse ja poolnurga siinus, koosinus, tangens; · siinus- ja koosinusteoreem; · trigonomeetrilised funktsioonid, nende graafikud ja omadused; · trigonomeetrilised põhivõrrandid. Põhioskused · Täis-, terav- ja nürinurksete kolmnurkade lahendamine; · trigonomeetriliste avaldiste teisendamine; · taandamisvalemite kasutamine;

Matemaatika
thumbnail
3
doc

Kõik Trigonomeetrilised valemid

Õppematerjalide loomist toetab AS Topauto/autod, markide Seat, Suzuki, Hyundai ning kasutatud autode müüja üle Eesti 7. Trigonomeetrilised funktsioonid. Trigonomeetrilised võrrandid Põhiteadmised · Kraadimõõt; · radiaanimõõt; · suvalise nurga (ka negatiivse) trigonomeetrilised funktsioonid; · trigonomeetrilised põhiseosed; · trigonomeetriline avaldis; · taandamisvalemid nurkade 90o , 180 o ja 360 o puhul; · kahe nurga summa ja vahe siinus, koosinus, tangens; · kahekordse ja poolnurga siinus, koosinus, tangens; · siinus- ja koosinusteoreem; · trigonomeetrilised funktsioonid, nende graafikud ja omadused; · trigonomeetrilised põhivõrrandid. Põhioskused · Täis-, terav- ja nürinurksete kolmnurkade lahendamine; · trigonomeetriliste avaldiste teisendamine; · taandamisvalemite kasutamine;

Trigonomeetria
thumbnail
6
ppt

Joone võrrand

Joone võrrand © T. Lepikult, 2010 Joone võrrand Joone C võrrandiks ristkoordinaatides nimetame niisugust seost F(x, y) = 0 kahe muutuja x ja y vahel, mida rahuldavad selle joone iga punkti ristkoordinaadid ja ainult need. Sirge, mille Parabool, mille võrrandiks on y võrrandiks on b d y + x -b = 0 y - 2 ( x - c) 2 = 0 c c d Ringjoon, mille võrrandiks on r b ( x - a) 2 + + ( y - b) 2 - r 2 = 0 a 0 c x Joone konstrueerimine tema võrrandi järgi Ülesandeks on konstrueerida joon (või funktsiooni graafik), kui on teada tema võrrand F(x, y) = 0 . Ülesande lahendami

Kehaline Kasvatus
thumbnail
816
pdf

Matemaatika - Õhtuõpik

Matemaatika õhtuõpik 1 2 Matemaatika õhtuõpik 3 Alates 31. märtsist 2014 on raamatu elektrooniline versioon tasuta kättesaadav aadressilt 6htu6pik.ut.ee CC litsentsi alusel (Autorile viitamine + Mitteäriline eesmärk + Jagamine samadel tingimustel 3.0 Eesti litsents (http://creativecommons.org/licenses/by-nc-sa/3.0/ee/). Autoriõigus: Juhan Aru, Kristjan Korjus, Elis Saar ja OÜ Hea Lugu, 2014 Viies, parandatud trükk Toimetaja: Hele Kiisel Illustratsioonid ja graafikud: Elis Saar Korrektor: Maris Makko Kujundaja: Janek Saareoja ISBN 978-9949-489-95-4 (trükis) ISBN 978-9949-489-96-1 (epub) Trükitud trükikojas Print Best 4 Sisukord osa 0 – SISSEJUHATUS . .................... 17 OSA 2 – arvud ..................................... 75 matemaatika meie ümber ................... 20 arvuhulgad ....................

Matemaatika
thumbnail
6
doc

11. klassi materjal matemaatikas

Tangensfunktsioon on perioodiline funktsioon perioodiga Arkusfunktsioon Siinusfunktsiooni pöördfunktsioon y=arcsinx Arkussiinus x on nurk, mille siinus on x y=arcsin(-x)=-arcsin n X=(-1)arcsinm+n Koosinusfunktsiooni pöördfunktsioon y=arccosx Arkuskoosinus x on nurk, mille koosinus on x arccos(-x)=-arccosx x=±arccosm+2 Tangensfunktsiooni pöördfunktsioon y=arctanx Arkustangens on nurk, mille tangens on x arctan(-x)=-arctanx x=arctanm+n Homogeenne trigonomeetriline võrrand võib olla järgmisel kujul: 2 2 asinx+bsinx=0 asinx+bcosx+csinxcosx=0 Tuletis (x²)´=2x (u±v)´=u´±v´ (1/x)´=-1/x² (uv)´=u´v+uv´ c´=0 (u/v)´=u´v-uv´/v² x´=1 (x)=1/2x n n-1 (x)´=n x x Liitfunktsioon e. funktsiooni funktsioon y=f(x)-lihtfunktsioon y=sin(x-3)-liitfunktsioon. Liitfunktsioon koosneb sisemisest- ja välimisest funktsioonist.

Matemaatika



Lisainfo

sin x = m ; cos x = m ja tan x = m valemid

Ül:
1) Teisendan trigonomeetrilise võrrandi põhivõrrandiks:
a) kui võimalik, lahendan ruutvõrrandi sin x; cos x või tan x järgi
b) Kasutades trigonomeetrilisi valemeid teisendan vasakupoole korrutiseks, kui parem pool on 0 (null).
c) Kui on käes trigonomeetriline põhivõrrand, kasutan üldlahendi valemeid.


Kommentaarid (0)

Kommentaarid sellele materjalile puuduvad. Ole esimene ja kommenteeri





Sellel veebilehel kasutatakse küpsiseid. Kasutamist jätkates nõustute küpsiste ja veebilehe üldtingimustega Nõustun