Vajad kellegagi rääkida?
Küsi julgelt abi LasteAbi
Logi sisse
✍🏽 Avalikusta oma sahtlis olevad luuletused! Luuletus.ee Sulge

"Matemaatika " - 2340 õppematerjali

thumbnail
1
txt

Matemaatika

Matemaatika (kreekakeelsest snast mathma 'pitu, teadus') on teadusharu, mis uurib mitmesuguseid hulki arvuhulki, punktihulki ehk kujundeid, funktsioonihulki jms. Peathelepanu ei osutata seejuures hulkade sisulisele thendusele, vaid nende elementide seostele ja omadustele. Palju matemaatika misteid, niteks arv, geomeetriline kujund ja funktsioon, on tekkinud tegelike hulkade, esemete vi seoste krvutamisel ja vrdlemisel, kusjuures on jetud krvale kik need omadused, mis matemaatika seisukohast pole olulised. Niteks arv 5 pole seoses hegi tegeliku hulgaga, kuid teda saab seada vastavusse he ke srmedega, 5 unaga jne. Kigil sellistel hulkadel on elementide sisulisest thendusest olenemata ks hine omadus - nende elemente saab seada kshesesse vastavusse. Matemaatika eripra teiste teadustega vrreldes on, et matemaatikas ei saa pidada htki videt (peale aksioomide ja definitsioonide) teseks, kui seda pole loogiliselt jreldatud varem teada olnud vi...

Matemaatika → Matemaatika
3 allalaadimist
thumbnail
2
docx

Matemaatika

1.Määramispiirkond = katkevuskohad 2.Nullkohad X 0 : y=0 murru korral mõlemad osad 0-ga võrduma -¿ <0 murru korral korrutiseks ¿ 3.Pos/neg piirkond +¿ : y >0 X + joonis X¿ 4.Ekstr.kohad X e : y ´ =0 , murru korral ülemine osa nulliga võrduma 5.Ekst.punktid- asendad ekstr. kohad alg v-sse 6.Kasvamine/kahanemine X : y ´ > 0 X : y ´ < 0 murru korral korrutiseks+ joonis ,max,min ekstr. 7. Käänukoht X K = y ´ ´ =0 murru korral ülemine osa 0-ga võrduma 8.Käänup. asendad käänukohad algv-sse 9.Kumerus/nõgusus X : y ´ ´ < 0 X : y ´ ´ > 0 murru korral korrutiseks + joonis pos-nõgus, neg- kumer 10.Asümptoodid: PA-katkevuskohad f (x ) b1,2 = lim [ f ( x )-kx ] KA- y=kx+b k =xlim ± x x ± Määramisp...

Matemaatika → Kõrgem matemaatika
6 allalaadimist
thumbnail
19
ppt

Vektor - Tehted vektoritega

Vektor Tehted vektoritega Vektori mõiste  Suurusi, mida saab esitada ühe arvuga, nimetatakse skalaarseteks suurusteks  Suurust, mille täielikuks määramiseks on peale arvväärtuse vaja ka sihti ja suunda, nimetatakse vektoriaalseks suuruseks Vektor  Vektoriks nimetatakse suunatud sirglõiku  sellist sirglõiku iseloomustavad siht, suund ja pikkus:  siht näitab, kuidas vektor asetseb  suund näitab, kummale poole on vektor sihil suunatud  pikkus on vektori arvväärtuseks Vektorite tähistamisest B  a  AB  b a A L B LK A BA K Vektorite võrdsus  Vektorid on samasihilised, kui nad on paralleelsed  samasihilisi vektoreid nimetatakse kollin...

Matemaatika → Matemaatika
17 allalaadimist
thumbnail
1
pdf

Determinant

KAHEREALINE JA KOLMEREALINE DETERMINANT Avaldist kujul a · d ­ b · c nimetatakse kaherealiseks determinandiks ja kirjutatakse tabelina, milles on kaks rida ja kaks veergu a b = a·d - c·b c d Näited: 3 5 = 3·7 - 4·5 = 21 - 20 = 1 4 7 -2 5 = (­2)·(­7) - 4·5 = 14 - 20 = -6 4 -7 Avaldist kujul a1b2c3 + c1a2b3 + b1c2a3 ­ c1b2a3 ­ a2c3b1 ­ b3a1c2 nimetatakse kolmerealiseks determinandiks ja kirjutatakse tabelina, milles on kolm rida ja kolm veergu a1 b1 c1 a2 b2 c2 a3 b3 c3 Kolmerealise determinandi arvutamiseks kasutatakse n.n. Sarruse reeglit, kuid võib kasutada ka lihtsamat skeemi, kus determinandi järele kirjutatakse täiendavalt juurde kaks esimest veergu ning arvutatakse nagu skeemilt näha: a b c a b a b c a b d e f d e d e f d e g h k g h g h k g h Punaste noolte suunas võetud korrutised jäetakse sama märgiga nagu nad on ja siniste n...

Matemaatika → Matemaatika
56 allalaadimist
thumbnail
2
pdf

Matemaatika valemid

Hulkliikmete korrutamine Tehted Arvu ruutjuur Funktsioonide graafikud Ring (a+b)2 =a2+2ab+b2 astmetega a, kui a > 0 Võrdeline seos : y=ax d (a-b)2=a2-2ab+b2 (a : b)n=an : bn a>0 d = 2r r= a = a = - a, kui a p 0 2 2 (a-b)(a+b)=a2-b2 (ab)n=an bn 0, kui a = 0 (a...

Matemaatika → Algebra I
165 allalaadimist
thumbnail
4
doc

Niels Abel referaat

Jakob Westholmi Gümnaasium NIELS ABEL Matemaatika referaat Kaspar Kütt 7.a klasss Tallinn 2010 Elulugu Niels Henrik Abel sündis Norras Nedstrandi linnas 5. augustil aastal 1802. Tema vanemad olid Søren Georg Abel ja Anne Marie Simonsen. Ta isa andis talle ja ta vennale koolitunde. Niels'i isa oli sageli kontaktis paljude Norra koolidega ja otsustas saata oma vanema poja, Hans Mathiase, Oslo Katedralskole'sse. Kahjuks oli Hans Mathiasel suur masendus ja kurbus kodust lahkuda üksinda ning sellepärast otsustas isa aastal 1815 saata 13-aastase Nielsi koos Hansuga Oslo Katedralskole'sse. Niels Abel oli noorest east peale huvitatud matemaatikast ja kuigi Hans sai varem Nielsist paremaid hindeid, tuli kooli varsti uus matemaatikaõpetaja Bernt Michael Holmboe. Temast sai Nielsi eeskuju ja tihti aitas ta Nielsi...

Matemaatika → Matemaatika
4 allalaadimist
thumbnail
1
doc

Matemaatika mõisted - Üldkogum ja Valim

Matemaatika mõisted: Üldkogum ja Valim Variatsioonrida -väärtuse kasvamise või kahanemise järgi järjestatud valim Sagedustabel ­ andmete kogumise tabel, mille esimesse ritta paigutatakse mõõdetavad suurused ja teise ritta iga väärtuse esinemise sagedus Mood ­ rea kõige rohkem esinev liige Mediaan - variatsioonirea keskmine liige. Üldkogum ­ kõik taimed, inimesed või asjad mida uuritakse Valim ­ üldkogumist võetud uurimisgrupp Diskreetne tunnused ­ tohivad olla ainult üksteisest eraldatud väärtused. Pidev tunnus ­ pidevalt muutuvad suurused Kvalitatiivne tunnus - mittearvuline tunnus Kvantitatiivne tunnus -arvuline tunnus Kuidas moodustatakse klasse ­ Kui tunnuseid on väga palju ja väga erinevaid siis jaotatakse tulemused klassidesse.

Matemaatika → Matemaatika
26 allalaadimist
thumbnail
3
doc

Matemaatika valemid

sin2 + cos2 = 1 tan = sin /cos 1+tan2 = 1/cos2 sin2 = 1 ­ cos2 sin = tan *cos cos2 = 1/tan2 +1 cos2 = 1 ­ sin2 cos = sin /tan cos2 ­ 1 = - sin2 cot = cos /sin cot =1/tan sin2 ­ 1 = - cos2 cos = cot *sin tan *cot =1 sin = cos /cot 1+cot2 = 1/sin2 sin = cos (90o ­ ) sin = vastas kaatet/hüpotenuus cos = sin (90o ­ ) cos = lähis kaatet/hüpotenuus tan = 1/tan (90o ­ ) tan = vastas kaatet/lähis kaatet cot =tan (90o ­ ) cot = lähis kaatet/vastas kaatet tan = cot (90o ­ ) Kolmnurga pindala Koosinusteoreem Siinusteoreem S=a*h/2 a2=b2+c2-2bc*cos ...

Matemaatika → Matemaatika
1763 allalaadimist
thumbnail
18
odt

Matemaatika referaat

Antsla Gümnaasium DEVIA PAAP MARILIN NIILUS 8A klass KOLMNURKADE LIIGITAMINE Referaat Juhendaja: õpetaja SIGNE KINNAS Antsla 2008 1 Sisukord Sissejuhatus..........................................................................................................................................3 1. Kolmnurk..........................................................................................................................................4 1.1. Kolmnurga nurgad.........................................................................................................................5 1.2. Kolmnurga küljed..........................................................................................................................6 2. Täisnurkne kolmnurk.....................................

Matemaatika → Matemaatika
105 allalaadimist
thumbnail
7
doc

Matemaatika riigieksam

23.05.1998 a matemaatika riigieksam Lehe haldamist toetavad Topauto ja meelespea.net Põhivariant 1. rida 1998 aasta matemaatika riigieksami ülesannete lahendused 8 - x 12 x +2 1. (5p) Lihtsustage avaldist ning näidake, et selle väärtus ei sõltu x väärtusest. 6 2- x 18 x 21-x Lahendus: Valemid, mida lihtsustamisel kasutati: 1 a n ; ( ab ) = a n bn ; ( a n ) = a n m n m a - n = n ; a m+ n = a m a Vastus: Avaldise väärtus ei sõltu x väärtusest, lihtsustatud avaldises x puudub. Vastus on 2. 2. (10p) Ühistu maast 80% on põldude all ja 51 ha on ...

Matemaatika → Matemaatika
558 allalaadimist
thumbnail
0
zip

Matemaatika valemid

docstxt/122703085226304.txt

Matemaatika → Matemaatika
322 allalaadimist
thumbnail
1
doc

Matemaatika valemid

Sin2+cos2=1 tan=sin/cos 1+tan2=1/cos2 1+cot2=1/sin2 cot=cos/sin Tan*cot=1 sin=cos(90°-) tan=1/tan(90°-)=cot(90°-) cos=sin(90°-) cot=1/cot(90°-)=tan(90°-) 0° 30° 45° 60° 90° 180° 270° 360° sin 0 ½ 2/2 3/2 1 0 -1 0 cos 1 3/2 2/2 ½ 0 -1 0 1 tan 0 3/3 1 3 p. 0 p. 0 cot p. 3 1 3/3 0 p. 0 p. sin(180°-)=sin sin(180°-)=-sin cos(180°-)=-cos cos(180°-)=-cos tan(180°-)=-tan tan(180°-)=tan cot(180°-)=-cot cot(180°-)=cot sin(360°-)=-sin sin(-)=-sin cos(360°-)=cos cos(-)=cos tan(360°-)=-tan tan(-)=-tan cot(360°-)=-cot cot(-)=-cot

Matemaatika → Matemaatika
123 allalaadimist
thumbnail
5
doc

"Matemaatika" - Referaat

Toila Gümnaasium Matemaatika Koostas:Tanel Seli Toila 2009 Matemaatika Sõna matemaatika tuleb kreekakeelsest sõnast mathma seetähendab õpitu, teadus. Matemaatika on teadusharu, mis uurib mitmesuguseid hulki ­ arvuhulki, punktihulki ehk kujundeid, funktsioonihulki jms. Peatähelepanu ei osutata seejuures hulkade sisulisele tähendusele, vaid nende elementide seostele ja omadustele. Palju matemaatika mõisteid, näiteks arv, geomeetriline kujund ja funktsioon, on tekkinud tegelike hulkade, esemete või seoste kõrvutamisel ja võrdlemisel, kusjuures on jäetud kõrvale kõik need omadused, mis matemaatika seisukohast pole olulised. Matemaatika eripära teiste teadustega võrreldes on, et matemaatikas ei saa pidada ühtki väidet (peale aksioomide ja definitsioonide) tõeseks, kui seda pole loogiliselt järeldatud varem teada olnud väiteist. Loogiline järeldamine on uute matemaatiliste tõdede sa...

Matemaatika → Matemaatika
81 allalaadimist
thumbnail
33
doc

Matemaatika riigieksam

Tiia Toobal 2008 II osa Pärnu Koidula Gümnaasium Test nr. 1. a 0,5 - 16b 0, 5 1. Leia avaldise - 4b 0, 25 , kui a = 16. a 0, 25 - 4b 0, 25 1) 6 2) -2 3) 4 4) 2 2. Leia antud arvudest suurim ( 2) ( 2) 3, 2 3 1 4, 7 1) 2) 3) 4) 3 4 5 2 3 1- log 3 6 - log 4 0 ,125 3. Arvuta avaldise 27 -4 väärtus. 1) 0 2) 7,875 3) ­ 7,875 4) ­ 3,8...

Matemaatika → Matemaatika
532 allalaadimist
thumbnail
2
doc

Matemaatika eksamiks

Tehted maatriksitega: Liitmine [aij]+-[bij]=[aij+-bij], Skalaariga korrutamine k[aij]=[kaij], Korrutamine Am·n·Bn·p=Cm·p, Reaalarve, milledest maatriks koosneb, nimetatakse maatriksi elementideks. Maatriksiks nimetatakse ¨umarsulgudesse paigutatud reaalarvude tabelit, milles on ristatavad read ja veerud. Maatriksit, mille ridade arv on v~ordne veergude arvuga, s.t. m = n, nimetatakse ruutmaatriksiks. Maatriksit, mille ridade arv erineb veergude arvust, s.t. m 6= n, nimetatakse ristk¨ulikmaatriksiks. Ruutmaatriksit m~o~otmetega (n, n) nimetatakse ka n-j¨arku maatriksiks. nimetame (m, n)-maatriksit nullmaatriksiks, kui selle maatriksi k~oik elemendid on nullid. Maatriksi A transponeeritud maatriksiks nimetatakse maatriksit, mis saadakse maatriksi A ridade ja veergude ¨aravahetamisel. Maatriksi A transponeeritud maatriksi t¨ahiseks on AT. Pöördmaatriks esineb ainult maatriksil mille ridade arv = veergude arvuga Determinant- Determinant: Ru...

Informaatika → Informaatika1
76 allalaadimist
thumbnail
3
doc

Matemaatika KT

Õiged lahendused 1. Ettevõttes puudus augustikuus 8% töölistest , toodangu maht oli 180 000 kr. Kui suur oleks toodangu maht olnud , kui töölt oleks puudunud 2% töölistest? 100% - 8% = 92 % ( alguses kui puudus 8% töölistest , siis 92 % oli tööl) 100% - 2% = 98% (teisel juhul puudus 2% ja tööl oli 98% töölistest ) 92% - 180 000 ( tehakse ristkorrutis leidmaks summat , mida teeniti siis kui tööl 98% - X oli 98 % töölistest) X = ( 98 *180 000 ) : 92 = 191 739 , kr Vastus: kui töölt puudus 2 % , siis oli toodangu maht 191 739 , kr 2. Eestisse imporditakse sõiduautosid impordihinnaga 230 000 kr auto kohta. Kui palju maksab auto eest ostja , kui tollimaks on 15 % , aktsiisimaks on 8% , kaubanduslik juurdehindlus on 22% ja käibemaks on 18% eelnevast hinnast? · 230 000 + 15% + 8% = 230 000 + 0,15*230 000 + 0,08*230 000 = 282 900 kr ( leitakse hinnad millele on lisatud tollimaks ja aktsiisimaks ­ alat...

Majandus → Micro_macro ökonoomika
253 allalaadimist
thumbnail
5
doc

Matemaatika valemid

Suur valik erinevaid valemeid- nii gümnaasiumis kui ka ülikoolis kasutamiseks. N: astmed, juured, integraalid, jada, trigonomeetria, setereomeetria, tõenäosus, võrrandid, logaritmid, statistika, vektorid jne.

Matemaatika → Matemaatika
592 allalaadimist
thumbnail
2
doc

Matemaatika valemid

Õppematerjalide loomist toetab AS Topauto/autod, markide Seat, Suzuki, Hyundai ning kasutatud autode müüja üle Eesti 3. Vektor tasandil. Joone võrrand Põhiteadmised · Punkti koordinaadid; · vektor, vektori koordinaadid; · vektorite summa ja vahe; · vektori korrutamine arvuga; · kahe vektori skalaarkorrutis; · vektori pikkus ja nurk vektorite vahel; · vektorite ristseisu ja kollineaarsuse tunnused; · joone võrrandi mõiste; · sirge võrrand tasandil; · kahe sirge vastastikused asendid; · ringjoone võrrand; · parabooli võrrand. Põhioskused · Tehete sooritamine vektoritega geomeetriliselt ja koordinaatkujul; · vektorite kasutamine geomeetriaülesannete lahendamisel; · sirge võrrandi koostamine, kui sirge on määratud punkti ja tõusuga, tõusu ja algordinaadiga, kahe punktiga, punkti ja sihivektoriga; · sirge tõusu määramine; · kahe sirge vahelise nurga...

Matemaatika → Matemaatika
114 allalaadimist
thumbnail
8
doc

Diskreetne matemaatika

IAY0010 DISKREETNE MATEMAATIKA ( 1-2) : , 2009 : x2 x4 x1 x3 00 01 11 10 00 - - 0 1 10 0 1 - 1 11 0 0 - 0 x1 01 1 1 0 1 x3 x4 x2 I. 1) - - 0 1 (0) (1) (5) (4) 0 1 ...

Matemaatika → Diskreetne matemaatika
37 allalaadimist
thumbnail
5
doc

Diskreetne matemaatika

1. Loogika funktsiooni leidmine f(x1 ,x2 ,x3, x4 ) = (1,7,8,9,10,12,15)1 (5,11,13,14)- (0,2,3,4,6)0 2. MDNK ja MKNK leidmine MDNK Karnaugh' kaardiga x3x4 x1x2 00 01 11 10 00 0 1 0 0 01 0 - 1 0 11 1 - 1 - 10 1 1 - - MDNK: x1 x2 x4 x3 x4 2. MKNK McCluskey' meetodiga f(x1 ,x2 ,x3, x4 ) = (0,2,3,4,6)0 (5,11,13,14)- Ind. Nr. Märge Ind. Nr.-d Vahe Märge Ind. Nr.-d Vahe Märge 0 0 x 0-1 0-2 2 x 0-1-1-2 0-2-4-6 2,4 A1 1 2 x 0-4 4 x 4 x 1-2 2-3 1 A2 2 3 x ...

Matemaatika → Diskreetne matemaatika
165 allalaadimist
thumbnail
7
doc

Kõrgem matemaatika

Kõrgema matemaatika kordamisküsimused eksamiks 1. Kahe vektori skalaar- ja vektorkorrutis Vektoriks nim suunaga ja pikkusega sirglõiku. Tähistatakse , kus A ja B tähistavad vastavalt vektori algus- ja lõpp-punkti. Vektori mooduliks nim vektori pikkust. Tähistatakse . Ühikvektoriks nim vektorit, mille pikkus võrdub ühega. . Nullvektoriks nim vektorit, mille alguspunkt ja lõpppunkt ühtivad. . Vabavektoriks nim vektorit, mille alguspunkt ei ole fikseeritud, st vektori asendit võib paralleellükke abil muuta. Kahte vektorit nim võrdseks, kui nad on võrdsete moodulitega ning samasuunalised. Vektorite võrdsus erineb lõikude võrdsusest. Vektoreid nim kollineaarseteks, kui nad pärast ühisesse alguspunkti viimist asuvad ühel ja samal sirgel. Võivad olla sama või vastassuunalised. . Vektoreid nim komplanaarseteks, kui nad pärast ühisesse alguspunkti viimist asuv...

Matemaatika → Kõrgem matemaatika
477 allalaadimist
thumbnail
2
doc

Matemaatika valemid

Ring ­ S=r2 ; P=2r Rööpkülik ­ S=ah ; P=2(a+b) Ruut ­ S=a ; P=4a 2 Romb ­ S=d1*d2/2 = a*h Ristkülik ­ S=a*b ; P=2(a+b) Trapets ­ S=a+b/2*h = k*h ; P=a+b+c+d Kolmnurk ­ S=a*h:2 ; P=a+b+c Täisnurkne kolmnurk ­ S=1/2*ah ; Risttahukas ­ S=2(ab+ac+bc) ; V=abc Viete teoreem: X1+X2 = -p Püstprisma ­ Sk=P*h ; St=Sk+2Sp; V=Sp*h X1*X2 = q Kuup ­ Sp=a ; Sk=4*a 2 2 Silinder ­ Sp=r2 ; St=2r ; Sk=2rh ; V=r2h Kera ­ S=4r2 ; V= 4/3 r3 Koonus ­ Sp=r2 ; Sk=rm ; St=r ; V= 1/3 r2h Korrapärane püramiid ­ Sk=P*h ; St=Sk+2Sp ; V=Sp*h Püramiid ­ Sk=Pm/2 ; St =Sk+Sp ; V=1/3Sp*h · (a+b)(a-b)= a²- b² · (a-b)³=a³-3a²b+3ab²-b³ · (a+b)²= a²+2ab+b² · (a+b)(a²-ab+b²)= a³+b³ · (a-b)²= a²-2ab+b² · (a-b)(a²+ab+b²)= a³-b³ · (a+b)³= a³+3a²b+3ab²+b³ Sin = a/c a = c*sin c = a/sin Sin = b/c Cos = b/c b = c*cos ax2 + bx + c = 0 -b +- b2 ...

Matemaatika → Matemaatika
208 allalaadimist
thumbnail
1
doc

Matemaatika Reeglid

Algarv- algarvuks nimetatakse ühest suuremat naturaalarvu, mis jagub vaid arvuga 1 ja iseendaga. Kordarv- positiivne naturaalarv,mis jagub peale 1 ja iseenda veel mõne naturaalarvuga. Murru taandamine- murru lugeja ja nimetaja jagamine ühe ja sama arvuga. Murru laiendamine- murru lugeja ja nimetaja korrutamine 1 ja sama arvuga. Liigmurd- harilik murd mille lugeja on suurem või võrdne kui nimetaja. Lihtmurd- harilik murd. Mille lugeja on väiksem, kui nimetaja. Sirgnurk- on nurk, mille haarad moodustavad sirge. Kõrvunurgad- on nurgad, millel on 1 ühine haar ja teised haarad moodustavad sirge. Tippnurgad- on nurgad, millel on ühine tipp ja haarad moodustavad sirged. Täisnurk- on pool sirgunurgast väiksemad nurgad. Teravnurgad- on täisnurgast väiksemad nurgad. Nürinurk- on täisnurgast suuremad nurgad. Lõikuvad sirged- on tasandil asuvad sirged, millel on ühine punkt. Ristuvad sirged- on lõikuavd sirged, mille lõikumisel tekivad täisnurgad. ...

Matemaatika → Matemaatika
96 allalaadimist
thumbnail
4
doc

Matemaatika mõisted

1. Absoluutväärtus ­ reaalarvuga x määratud mittenegatiivne reaalarv 2. Abstsisstelg ­ x ­ telg 3. Aksioom ­ lause, mida loetakse õigeks ilma põhjenduseta. Aksioomid võetakse aluseks teiste väidete põhjendamisel. 4. Algarv ­ Ühest suurem naturaalarv, mis jagub vaid ühe ja iseendaga. 5. Algebraline murd ­ murd, mille lugejaks ja / või nimetajaks on muutujaid sisaldav avaldis. 6. Algebraline ruutjuur ­ arv, mille ruut on antud arv a. 7. Algkoordinaat ­ antud sirge ja ordinaattelje lõikepunkti ordinaat. 8. Algtegur ­ naturaalarvu algarvuline tegur. 9. Algteguriteks lahutamine ­ naturaalarvu esitamine algarvuliste tegurite korrutisena. 10. Alusnurk ­ võrdhaarse kolmnurga või trapetsi aluse ja haara vaheline nurk. 11. Apoteem ­ 1. korrapärase hulknurga keskpunktist küljele tõmmatud ristlõik. 12. 2. korrapärase püramiidi tipust külgtahule tõmmatud kõrgus. 13. Aritmeetiline keskmine ­ suuruste summa jagatis nende suuruste arvuga. 14. A...

Matemaatika → Matemaatika
149 allalaadimist
thumbnail
5
pdf

Diskreetne matemaatika

« » « » 16.11.2009 : Valeria Sükiläinen : IAPB 18 : 093743 : . Aleksander Sudnitsõn 2009 , : 17-1 X2, X4 00 01 11 10 X1, X3 00 --(0) 0 1 1 10 --(0) 0 0 0 X1 11 --(0) 1 1 0 X3 01 0 1 --(1) 1 X4 X2 1: . · ...

Informaatika → Informaatika
41 allalaadimist
thumbnail
1
doc

Matemaatika põhivalemid

Kõik matemaatika põhivalemid

Matemaatika → Matemaatika
203 allalaadimist
thumbnail
3
doc

Matemaatika valemid

Püstprisma sin 0 1 2 3 1 2 tan tan 2 = Ruumala: V = S p h 2 2 1 - tan 2 2 Külgpindala: S k = PH sin cos 1 3 2 1 0 tan = Täispindala: S t = S k + 2 S p 2 1 + cos 2 2 2 1 - cos Korrapärane püramiid sin = ± 1 ...

Matemaatika → Matemaatika
231 allalaadimist
thumbnail
3
rtf

Matemaatika valemid

Põhikooli matemaatika abi Tasapinnalised kujundid Ruut Diagonaal: Pindala: S = a2 Ümbermõõt: P = 4·a Ruudu kõik küljed on võrdsed ja nurgad täisnurgad. Ristkülik Diagonaal: Pindala: S = a · b Ümbermõõt: P = 2(a + b) Ristkülikuks nimetatakse rööpkülikut, mille kõik nurgad on täisnurgad. Romb + = 180º Pindala: S = a · h Ümbermõõt: P = 4·a Rööpkülik + = 180º Pindala: S = a · h Ümbermõõt: P = 2(a + b) Rööpkülikuks nimetatakse nelinurka, mille vastasküljed on paralleelsed. Kolmnurk + + = 180º Pindala: Ümbermõõt: P = a + b + c Võrdkülgne kolmnurk Kõrgus: Pindala: Ümbermõõt: P = 3 · a Täisnurkne kolmnurk ...

Matemaatika → Matemaatika
90 allalaadimist
thumbnail
2
docx

Matemaatika mõisted

1. Ratsionaalarvud on need reaalarvud, mida saab esitada kahe täisarvu jagatisena. 2. Irratsionaalarvudeks nimetatakse mitteperioodilisi lõpmatuid kümnendmurde. 3. Reaalarvu absoluutväärtuseks nimetatakse mittenegatiivset reaalarvu, mis rahuldab tingimusi |x| = x,kui x0 ja |x| = -x,kui x< 0. 4. Reaalarvude hulk koosneb kõikidest ratsionaal- ja irratsionaalarvudest. 5. 6. Samasuseks nimetatakse matemaatikas tõest arvvõrdust sisaldavat võrdust, mis osutub tõeseks muutuja kõigi lubatud väärtuste korral. 7. Võrrand on võrdus, mis sisaldab ühte või mitut muutujat, mida vaadeldakse tundmatute suurustena. 8. Determinant on lineaaralgebras funktsioon, mis seab igale ruutmaatriksile vastavusse skalaari, ning on üks olulisemaid matemaatilisi konstruktsioone lineaarvõrrandsüsteemi uurimisel. 9. Juurvõrrand on võrrand, milles muutuja esineb juuritavas. 10. Kui punktid A(x1; y1) ja B(x2;y2) on lõigu otspunktid, siis selle ...

Matemaatika → Matemaatika
11 allalaadimist
thumbnail
2
docx

Matemaatika mõisted

Andmed ­ mingi tunnus või omadus. Tunnus ­ omadus, nt keskmine pikkus, kummas paralleelklassis läks matemaatika eksamitöö paremini jne. Arvuline tunnus ­ väärtuseks on arvud, nt pikkus, palk, hinne jne. Mittearvuline tunnus ­ väärtuseks ei ole arvud, nt sugu, rahvus, haridus, juuste värv. Järjestustunnus ­ tunnus, mille väärtusi saab sisu põhjal järjestada, nt matemaatika kt hinne, skaala küsitluses. Nominaaltunnus ­ tunnus, millel on rohkem kui kaks erinevat väärtust, kuid ei leidu ühtegi sisulist järjestust, mis haaraks kõik tunnuse väärtused, nt rahvus, silmade värv. Binaarne tunnus ­ ainult kaks teineteist välistavat tunnust, nt sugu. Pidev tunnus ­ võib omandada kõiki reaalarvulisi väärtusi mingist piirkonnast, nt kaal, kasv, aeg, temperatuur. Diskreetne tunnus - tunnus võib omandada vaid üksteisest eraldatud väärtusi, väärtused saadakse tavaliselt loendamise teel, nt elanike arv majas, õpilaste arv klassis vms. Statistiline rida ­...

Matemaatika → Matemaatika
23 allalaadimist
thumbnail
2
doc

Matemaatika valemid

Romb Rööpkülik Trapets Täisnurkne kolmnurk Sirge tasandil Siinusteoreem Vektor Silinder Püstprisma Kolmnurka pindala Koonus Korrapärane püramiid Aritmeetiline jada Geomeetriline jada Kera Hääbuv geomeetriline jada Liitprotsent

Matemaatika → Matemaatika
155 allalaadimist
thumbnail
1
doc

Matemaatika mõisted

¤Paralleelsed sirged- Kahte tasandil asuvat sirget nim. paralleelseteks kui neil ei ole ühiseid punkte ¤Kaasnurgad- Kahte nurka mis asuvad ühel pool lõikajat ja mille haarad lõikajal suunduvad ühtepidi nim. kaasnurkadeks. ¤Lähisnurgad- Kahte nurka, mis asuvad ühel pool lõikajat ja mille haarad lõikajal suunduvad vastamisi nim. lähisnurkadeks. ¤Põiknurgad- Kahte nurka, mis asuvad üks ühel ja teine teisel pool lõikajat ja mille haarad lõikajal suunduvad vastamisi nim. põiknurkadeks. ¤Kolmnurga välisnurk- kolmnurga välisnurgaks nim. kolmnurga sisenurga kõrvunurka. ¤Kolmnurga välisnurga teoreem- kolmnurga iga välisnurk on võrdne temaga mitte kõrvu olevate sisenurkade summaga. ¤Kolmnurga kesklõik- Lõiku, mis ühendab kahe külje keskpunkte, nim. selle kolmnurga kesklõiguks. ¤Kolmnurga kesklõigu teoreem- Kolmnurga kesklõik on paralleelne kolmnurga ühe küljega ja võrdub poolega sellest küljest. ¤Trapetsi kesklõik- Leitud haarade keskpunktid ja n...

Matemaatika → Matemaatika
21 allalaadimist
thumbnail
2
docx

Matemaatika kodune

Ülesanne 1 Linnas on bensiiniliitri hind 1.43 , maal on aga bensiin odavam, 1.33 liiter. Kuu aja jooksul oli autojuht ostnud 100 liitrit bensiini ja kokku kulutanud selle peale 140 . Mitu liitrit kallimat ja mitu liitrit odavamat bensiini oli ta kuu aja jooksul ostnud? Olgu linnast ostetud bensiini hulk x liitrit ning maalt ostetud bensiini hulk y liitrit. Siis kokku on ostetud x +y =100 liitrit ja kokku on kulutatud 1,43x + 1,33y = 140 . Lahendame võrrandisüsteemi. Saame, et x=70 ning y=30. Kontroll: 70*1,43+30*1,33=140. Vastus: Kuu aja jooksul osteti kallimat bensiini 70 liitrit ja odavamat 30 liitrit. Ülesanne 2 Hinnaga 7000 eurot müüdi toodet 40 tk, hinnaga 5700 eurot müüdi 65 tk. Kulud olid vastavate tootmismahtude juures 22 000 eurot ja 33 000 eurot. Eeldades, et nii kulufunktsioon kui nõudlusfunktsioon on lineaarsed, leida a) kulufunktsioon; b) nõudlusfunktsioon; c) kasumifunktsioon; d) optimaalne tootmismaht ja vastav kasum. ...

Matemaatika → Matemaatika
52 allalaadimist
thumbnail
1
pdf

Matemaatika abivalemid

Matemaatika abivalemid Tehete p~ ohiomadused Kommutatiivsus (vahetuvus) Assotsiatiivsus (¨ uhenduvus) Distributiivsus (jaotuvus) a+b=b+a a + (b + c) = (a + b) + c a(b + c) = ab + ac ab = ba a(bc) = (ab)c a(b - c) = ab - ac Sulgude avamine a + (b + c) = a + b + c a - (b + c) = a - b - c a + (b - c) = a + b - c a - (b - c) = a - b + c Tehted harilike murdudega a c a±c a c ac a c a d ad ± = · = : = · = b b b ...

Varia → Kategoriseerimata
48 allalaadimist
thumbnail
2
odt

Matemaatika definitsioonid

Matemaatika definitsioonid 1.Lõikuvad sirged on sirged, millel leidub ühine punkt. 2.Paralleelsed sirged on sirged, mis paiknevad ühel ja samal tasandil ning ei lõiku. 3.Ristuvad sirged on kaks lõikuvat sirget, mis lõikumisel moodustavad täisnurga. 4.Sirgnurk on sirge, mille haarad moodustavad sirge. 5.Täisnurk on sirge, mis on 90kraadi. 6.Teravnurk on nurk, mis mahub täisnurga sisse. 7.Nürinurk on nurk, mis mahub sirgnurga sisse, aga mitte täisnurga sisse. 8.Kõrvunurkadeks nimetatakse kaht nurka, millel üks haar on ühine ja mille teised haarad moodustavad sirge. 9.Kaht nurka nimetatakse tippnurkadeks, kui ühe nurga haarad on teise nurga haarade pikendused üle nende ühise tipu. 10.Täisnurkne kolmnurk on kolmnurk, mille üks nurk on täisnurk. 11.Teravnurkne kolmnurk on kolmnurk, mille kõik nurgad on teravnurgad. 12.Nürinurkne kolmnurk on kolmnurk, mille üks nurk on nürinurk. 13.Erikülgne kolmnurk on ko...

Matemaatika → Matemaatika
118 allalaadimist
thumbnail
3
doc

Matemaatika reegleid

Reeglid seitsmendale klassile Koostanud : Crazychil Tehted ratsionaalarvudega Ratsionaalarvude hulka kuuluvad positiivsed ja negatiivsed täisarvud ja murdarvud Kahe negatiivse arvu liitmine Arvu absoluutväärtus näitab kui kaugel on deda arvu kujutav punkt arvteljel 0 punktist Kahe erimärgilise arvu liitmine Vastandarvude summa on alati 0 Erumärgiliste arvude summa saamiseks lahutame suuremast absoluutväärtusest võiksema ja märgi võtame samasuguse nagu on suurema absoluutväärtuse ees Ratsionaalarvude lahutamine Lahutamine on vastandarvu liitmine Ratsionaalarvude liitmine lahutamine on vastandarvude liitmine. Posiiivse arvu B vastandarv on -B Negatiivse arvu -B vastandarvuks on positiivne arv B Seega vastandarvu vastandarv on arv ise Negatiivse arvu lahutamise asemel liidame vastandarvu Kahepunkti vaheline kaugus arvteljel Vähendatava ja vähendaja järjestuse muutmisel mmuutub vahemärk vastupidiseks ,ei muutu absoluutväärtus Ratsio...

Matemaatika → Matemaatika
89 allalaadimist
thumbnail
7
docx

Matemaatika Referaat

RAKVERE AMETIKOOL PROTSENT Referaat Juhendaja: Rakvere 2011 Sissejuhtatus - Protsendi mõiste Protsendiks saab nimetada seda kui tervikut saab jagada sajaks võrdseks osaks, siis iga osa on üks protsent. Üks protsent on üks sajandik osa tervikust. Protsendi märk on %. Sõna protsent tähendab saja kohta. Protsente kasutatakse erinevate ülesannete lahendamisel. 1) Osa leidmine tervikust 2) Terviku leidmine osa järgi 3) Suhte väljendamine protsentides 4) Muutuste väljendamine protsentides ehk kasv ja kahanemine Protsent ülessannete lahendamine: 1) Ülesanne tuleb hoolikalt läbi lugeda ja aru saada mis on ülesandes antud ja mida tuleb leida. 2) Parema ülevaate saamiseks oleks hea teha ülesande andmete põhjal joonis ning meeles tuleks pidada, et 1 tervik on 100% ! 3) Seejärel tuleb koostada lahendusplaan ning ülesanne lahendada. ...

Matemaatika → Matemaatika
29 allalaadimist
thumbnail
0
jpg

Matemaatika Valmeid

docstxt/1326538867157582.txt

Matemaatika → Matemaatika
12 allalaadimist
thumbnail
1
docx

Matemaatika valemid

Aritmeetiline jada: an = a1+(n-1)d d = an-an-1 Sn = Geomeetriline jada: an = a1qn-1 Sn = Hääbuv jada: S = Trigonomeetria: sin 2 2 2 = sin +cos = 1 1+tan = sin2 = 2cossin cos2 = 2cos2-1 tan2 = siinusteoreem: (ümberringjoone raadius) koosinusteoreem: a2=b2+c2-bccos erikülgne kolmnurk: S= n Põhivõrrandid: sinx= a x=(-1) +180n, n Z cox= a x=+360n, n Z tanx= a x= +180n, n Z Kaare pikkus: l= Sektori pindala: S= n Liitintress: c= a(1) a-algväärtus Vektorid: pikkus paralleelsus || ristseis X1X2+Y1Y2= 0 nurk vektorite vahel cos = Sirge võrrand: kahe punktiga tõusu ja algkoordinaadiga y= kx+b (lp y-teljega) tõusu ja punktiga y-y1=k(x-x1) Kahe sirge vastastikused asendid: paralleelsed...

Matemaatika → Matemaatika
334 allalaadimist
thumbnail
1
docx

Matemaatika Eksam

1.(8p) Lihtsusta avaldis ja arvuta seejärel kirjalikult saadud avaldise väärtus kui x=3 2.(8p) Lahenda murdvõrrand ja kontrolli selle lahendeid kirjalikult : 3.(8p) Joonisel on kujutatud silindrikujuline veemahuti, mille mõõtmed on meetrites. 1) Kui suur on selle mahuti kogupindala? 2) Arvuta ja otsusta, kas 1,5 kg värvist piisab mahuti välispinna värvimiseks, kui igale ruutmeetrile kulub 200 g värvi. 3) Arvuta mahuti ruumala kuupmeetrites. Mitu liitrit see on? 4) Mitu ämbritäit vett on mahutis, kui mahuti on täidetud 100% ulatuses ja ämbrisse mahub 8 liitrit? 4.(8p) Laos oli 1230 kg aedvilju. Nendest 10% olid tomatid, 21% kurgid, 29% peedid ning ülejäänud olid kapsad. Mitu kg oli laos igat aedvilja? 5. (8p) Talumees Toomasel on talumaad 2100m2. Ta soovis istutada oma maale metsa (48%), harida põllumaaks (22%), istutada maasikaid (10%) ning jätta heinam...

Matemaatika → Algebra ja analüütiline...
71 allalaadimist
thumbnail
2
rtf

Matemaatika valemid

Ruutude vahe valem (a + b)(a - b) = a2 - b2 (a + b)(a - b) = a2 - ab + ab - b2 = a2 - b2 Summa ruudu valem (a + b)2 = a2 + 2ab + b2 (a + b)2 = (a + b)(a + b) = a2 + ab + ba + b2 = a2 + 2ab + b2 Vahe ruudu valem (a - b)2 = a2 - 2ab + b2 (a - b)2 = (a - b)(a - b) = a2 - ab - ba + b2 = a2 - 2ab + b2 Kuupide summa valem (a + b)(a2 - ab + b2) = a3 + b3 (a + b)(a2 - ab + b2) = a3 - a2b + ab2 + ba2 - ab2 + b3 = a3 + b3 Kuupide vahe valem (a - b)(a2 + ab + b2) = a3 - b3 (a - b)(a2 + ab + b2) = a3 + a2b + ab2 - ba2 - ab2 - b3 = a3 - b3 Summa kuubi valem (a + b)3 = a3 + 3a2b + 3ab2 + b3 (a + b)3 = (a + b)(a + b)2 = (a + b)(a2 + 2ab + b2) = a3 + 2a2b + ab2 + a2b + 2ab2 + b3 = a3 + 3a2b + 3ab2 + b3 Vahe kuubi valem (a - b)3 = a3 - 3a2b + 3ab2 - b3 (a - b)3 = (a - b)(a - b)2 = (a - b)(a2 - 2ab + b2) = a3 - 2a2b + ab2 - a2b + 2ab2 - b3 = a3 - 3a2b + 3ab2 - b3

Matemaatika → Matemaatika
19 allalaadimist
thumbnail
2
xlsx

Matemaatika statistika

NIMI SUGU VANUS PIKKUS SILMAD JALANR Joonathan Mees 18 179 Pruunid 44 Matis Mees 20 190 Pruunid 44 Taur Mees 18 170 Sinised 42 Hendry Mees 17 180 Sinised 46 Fredy Mees 19 179 Pruunid 43 Danel Mees 18 178 Sinised 43 Keskmine: Mees 18.333333 179.33333 Pruunid-sinised 43.6666667 Diagramm 200 180 160 140 120 100 80 60 40 20 0 Joonathan Matis Taur Hendry Fredy Danel Keskmine: ...

Matemaatika → Statistika
4 allalaadimist
thumbnail
2
doc

Matemaatika funktsioonid

Funktsioonid I Kordamine. 1. Leia määramispiirkond. a. y  4 x 3  3 x  1 X=R 3x  6 b. y   x  1 x 2  4   X=R{-2, 1, 2} c. y x 2  6x  8 X    ;2   4;  x3 d. y  X    4;0   4;  x 3  16 x 2. Leia nullkohad, pos., neg. piirkonnad. a. y  x 3  6 x 2  9 x  54 X     3;3   6;  ; X     ;3  3;6 4 ...

Matemaatika → Matemaatika
45 allalaadimist
thumbnail
11
docx

Diskreetne Matemaatika

Tallinna Tehnikaülikool Diskreetne Matemaatika KAUGÕPE KODUTÖÖ 1. Leida oma matriklinumbrile vastav 4-muutuja loogikafunktsioon Matriklinumber: 184974 7-kohaline 16-nd süsteemi arv: 3C81C42 Ühtede piirkond: f(x1 x2 x3 x4) = (1,2,3,4,8,12)1 9-kohaline 16-nd süsteemi arv: 5111DDC6E Määramatuspiirkond: f(x1 x2 x3 x4) = (5,6,13,14)_ Nullide piirkond: 0,7,9,10,11,15 Minu funktsioon: f(x1 x2 x3 x4) = (1,2,3,4,8,12)1 (5,6,13,14)_ 2. Esitada oma loogikafunktsiooni tõeväärtustabel x1 x2 x3 x4 0000 0 0001 1 0010 1 0011 1 0100 1 0101 - ...

Matemaatika → Diskreetne matemaatika
87 allalaadimist
thumbnail
2
docx

Matemaatika põhivalemid

Põhivalemid sin cos tan = cot = sin + cos = 1 2 2 cos sin 1 1 1 1 sec = cos ec = 1 + tan 2 = 1 + cot 2 = cos sin cos 2 sin 2 Kahekordse ja poolnurga valemid 2 tan tan 2 = sin 2 = 2 sin cos cos 2 = cos 2 ­sin 2 1 - tan 2 1 - cos = 2 sin 2 1 + cos = 2 cos 2 ...

Matemaatika → Matemaatika
21 allalaadimist
thumbnail
2
rtf

Matemaatika mõisteid

Matemaatika mõisteid · Aarsus (inglise keeles arity) - matemaatikas tehte operandide arv, funktsiooni või operaatori argumentide arv. · Alamhulk- Matemaatikas nimetatakse hulka A hulga B alamhulgaks ehk osahulgaks ehk alamsüsteemiks, kui kõik hulga A elemendid on ühtlasi hulga B elemendid. Seda asjaolu tähistatakse A B või A B. Alamhulgaks olemist nimetatakse sisalduvuseks ja asjaolu A B kohta öeldakse ka, et hulk A sisaldub hulgas B. Hulkade vahelist binaarset seost nimetatakse seetõttu sisalduvusseoseks. · Harmooniline võnkumine- Harmooniliseks võnkumiseks ehk siinusvõnkumiseks nimetatakse mis tahes võnkumist, mida saab kirjeldada siinusfunktsiooni või koosinusfunktsiooni abil ja sellise võnkumise võrrandit nimetatakse harmoonilise võnkumise võrrandiks: x = A sin · Lõik- Lõik ehk sirglõik on sirge kaht punkti A ja B ühendav osa, punktid A ja B kaasa arvatud. ...

Matemaatika → Matemaatika
15 allalaadimist
thumbnail
3
docx

Matemaatika mõisted

Uued mõisted · Asendusvõte 1. Avaldan ühest võrrandist ühe tundamatu 2. Asendan saadud avaldise teise võrrandisse avaldatud tundmati kohale 3. Lahendan saadud võrrandi 4. Asendan saadud tundmatu väärtuse ühte võrrandisse 5. Teen kontrolli esialgse võrrandi süsteemi põhjal 6. Kirjutan vastuse · Defineerimine ja tõestamine 1. Kaht sirget, millel on ainult üks ühine punkt nimetatakse lõikuvateks sirgeteks. 2. Kolmnurga tipust vastasküljeni tõmmatud ristlõiku nimetatakse kolmnurga kõrguseks. 3. Ruuduks nimetatakse võrdsete lähiskülgedega ja võrdsete lähisnurkadega nelinurka. 4. Ringjoone diameetriks nimetatakse lõiku, mis läbib ringjoone keskpunkti ja ühendab ringjoone kaht punkti. 5. Ringjoone diameetriks nimetatakse lõiku, mis poolitab ringjoone. 6. Kolmnurk, mille üks nurk on täisnurk nimetatakse täisnurkseks kolmanurgaks. 7. Algarvuks nimetatakse naturaalar...

Matemaatika → Matemaatika
23 allalaadimist
thumbnail
2
odt

Matemaatika vastused

1)Võrdsete alustega astmete korrutamine: Võrdsete alustega astmete korrutamisel astendajad liidetakse. 2)Võrdsete alustega astmete jagamine: Võrdsete alustega astmete jagamisel astendajad lahutatakse. 3)Astme astendamine: Astme astendamisel astendajad korrutatakse. 4)Korrutise astendamine: Korrutise astendamisel võib astendada eraldi iga tegur ja tulemused korrutada. 5)Jagatise astendamine: Jagatise astendamisel võib enne astendada jagatav ja jagaja ning seejärel jagada esimene tulemus teisega. 6)Hulkliikme korrutamine üksliikmega: Hulkliikme korrutamisel üksliikmega tuleb hulkliikme iga liige korrutada selle üksliikmega (võimalisel koondame) a(b+c)=ab+ac 7)Hulkliikme jagamine üksliikmega: Hulkliike jagamisel üksliikmega tuleb hulkliikme iga liige jagada selle üksliikmega. 8)Hulkliikme korrutamine hulkliikmega: Hulkliikme korrutamisel hulkliikmega tuleb ühe hulkliikme iga liige läbi korrutada teise hulkliikme iga liikmega. (a+b)...

Matemaatika → Matemaatika
31 allalaadimist
thumbnail
22
doc

Kõrgem matemaatika

KORDAMISKÜSIMUSED 2015/2016 Kõrgem matemaatika MTMM. 00.145 (6EAP) 1. Maatriksi mõiste, järk, tähistused, liigid. Maatriks on ristkülikukujuline arvude tabel, milles on m-rida ja n-veergu ja mis on ümbritsetud ümarsulgudega. Maatriksit tähistatakse suure tähega. Kui aij on reaalarvud ning i = 1; 2;...;m ja j = 1; 2;...; n, siis tabelit: nimetatakse täpsemalt (m x n)-maatriksiks ja kasutatakse tähistusi Am x n või Amn. Arvupaari (m; n) nimetatakse maatriksi A mõõtmeteks. Tabelis paiknevaid arve aij nimetatakse maatriksi elementideks. i ­ reaindeks; j ­ veeruindeks. reamaatriks ­ (1 x n); veerumaatriks ­ (m x 1); ruutmaatriks ­ m = n Tähistused: maatriksi järk ­ naturaalarvude paar m x n (ridade ja veergude arv). ruutmaatriksi korral järk n (n = ridade arv = veergude arv). maatriksi liigid: nullmaatriks ­ kõik elemendid 0. tähistus teeta ...

Matemaatika → Kõrgem matemaatika
221 allalaadimist
thumbnail
4
docx

Kombinatoorika (matemaatika)

KOMBINATOORIKA k soodsate võimaluste arv P(A) = n = kõigi võimaluste arv Liitmislause – A või B, siis võimalusi n + m Korrutamislause – A ja B, siis võimalusi n  m Permutatsioonid – ühe hulga erinevate järjestuste arv Faktoriaal – n! = n  (n-1)  (n-2)  ... – 3  2  1 = n! nt 4! = 4  3  2  1 = 24 NB!  0! = 1, 1! = 1  3,7! – ei saa  (-8)! – ei saa ÜLESANDED 1. 8 õuna, 13 ploomi, 6 pirni Mitu võimalust on, kui võtta.. a) Üks õun või üks ploom või üks pirn? Liitmislause (või) – 8 + 13 + 6 = 27 võimalust b) Üks õun kui ka üks pirn kui ka üks ploom Korrutamislause (ja/kui ka) – 8  13  6 = 624 võimalust 2. Tähestikus on 27 täht, mitu võimalust on kahetähelise kombinatsiooni moodustamiseks? a) Sama ei saa olla. 26  27 = 702 b) Sama sa...

Matemaatika → Statistika
25 allalaadimist


Sellel veebilehel kasutatakse küpsiseid. Kasutamist jätkates nõustute küpsiste ja veebilehe üldtingimustega Nõustun