Vajad kellegagi rääkida?
Küsi julgelt abi LasteAbi
Logi sisse
✍🏽 Avalikusta oma sahtlis olevad luuletused! Luuletus.ee Sulge

SO2 ja Al2O3 - sarnased materjalid

oksiid, alumiinium, väävel, alumiiniumoksiid, vääveldioksiidi, gaas, alumiiniumoksiidi, creative, janno, doku, sissehingamisel, ladude, desinfitseerimine, väävelhappe, paberitööstus, vulkaanid, metsatulekahjud, 2054, keeb, 2980, amfoteerne, infoallikad, merit, külli, domain
thumbnail
19
pptx

Alumiinium, alumiiniumi avastamine ja saamine

Alumiinium Stefani Kask Pirita Majandusgümnaasium 10.A Mis on alumiinium? Alumiinium (Al) on keemiline element järjenumbriga 13. Alumiinium asub perioodilisussüsteemis 3. perioodis, III A rühmas, oksüdatsiooniastmeks ühendites on +III. Ta on hõbevalge hästi reageeriv pehme metall, tihedusega 2,7 g/cm³ ja sulamistemperatuuriga 660 °C. Avastamine Arheoloogilistel väljakaevamistel leiti ühe Hiina väejuhi 3. sajandi algusest pärit hauakambrist alumiiniumehteid. Viimaste spektraalanalüüsil selgus, et need sisaldasid 85 % alumiiniumi.

Rekursiooni- ja...
23 allalaadimist
thumbnail
9
pdf

Väävel

Ehedalt võib väävlit leida maapinna lähedal vulkaanilistes piirkondades. (Pildiallikas http://staff.ttu.ee/~mari/Is2/s222vulkaan.jpg ) Tuntumatest väävliühenditest leidub looduses kõige enam sulfiide (FeS2 ­ püriit, PbS ­ galeniit , HgS ­ kinaver jt) ja sulfaate ( CaSO4*2H2O ­ kips jt) püriit galeniit Koostanud: Janno Puks Tallinna Arte ja Kristiine Gümnaasium kinaver kips (Pildiallikad http://www.geocities.jp/senribb/jewels/Pyrite2.jpg , http://images.geo.web.ru/pubd/2001/05/15/0001159819/pics/galenite-09-45.jpg , http://upload.wikimedia.org/wikipedia/commons/thumb/c/c7/Cinnabar.jpg/200px- Cinnabar.jpg , http://www.ut.ee/BGGM/miner/kips9.jpg )

Keemia
147 allalaadimist
thumbnail
29
doc

Keemia aluste KT3

Universumis levinuim element (~89%). Sageli ei paigutata teda perioodilisustabelis kindlasse rühma (võiks olla 1. või 17./VIIA rühm). Maal on teda suhteliselt vähe: vesi, fossiilsed kütused. Suur vesiniku sisaldus päikeses ja psüsteemis. Planeetidest on kõige H-rikkam atmosfäär Jupiteril. Saamine laboratoorselt: metallid enne vesinikku reageerivad hapetega (Zn ja Fe)(HF, H2SO4) Zn(s) + 2H(aq)+ Zn2(aq) + H2(g) tööstuses vt slaidilt Vesinik on värvitu, lõhnatu ja maitsetu gaas.·Vesinik on väga väikese tihedusega ­ 0,089 g/l · Kondenseerub alles 20 K juures. Vesiniku molekulil kõige väiksem aatom- ja molekulmass ning sellest tingitult ka kõige suurem liikumiskiirus (difusioonkiirus). Tavatingimustes ja madalal temp on väheaktiivne, toatemp reageerib vaid flouriga. Kasutusalad: õhupalli täitegaasina, aastas toodetakse 3·108 kg. ­ Pool sellest kulub ammoniaagi sünteesiks.(ka vesinikkloriidi, süsivesinike, alkoholide sünteesis lähteaine).

Keemia alused
41 allalaadimist
thumbnail
14
doc

Keemia alused KT3

· Lihtsaim võimalik aatom. · Sageli ei paigutata teda perioodilisustabelis kindlasse rühma (võiks olla 1. või 17./VIIA rühm). · Universumis levinuim element (~89%). Maal on teda suhteliselt vähe: vesi, fossiilsed kütused. Saamine : laboratoorselt Zn (s) + 2H+ (aq) = Zn2+ (aq) + H2 (g) Tööstuses ­ CH4(g) + H2O(g) =Ni CO(g) + 3H2(g) CO(g) + H2O(g) =Fe / Cu CO2(g) + H2(g) · Vesinik on värvitu, lõhnatu ja maitsetu gaas. · Vesinik on väga väikese tihedusega ­ 0,089 g/l · Kondenseerub alles 20 K juures. · Kasutamine ­ aastas toodetakse 3·108 kg. ­ Pool sellest kulub ammoniaagi sünteesiks. ­ Kolmandik metallide hüdrometallurgiliseks ekstraktsiooniks: Cu2+ (aq) + H2(g) Cu(s) + 2H+ (aq) ­ Margariini tootmine jms. 8. Vesiniku olulisemad ühendid (hüdriidid ja oksiidid): kirjutage nende tasakaalustatud tekkereaktsioonid. · Vesinik annab nii katiooni (H+) kui aniooni (hüdriidioon H-).

Keemia
27 allalaadimist
thumbnail
18
docx

Keemia: lahused, metallid, gaasid

vett. Siis ilmuvad väiksed vedeliku piisakesed pilvede, udu ja vihmana. TAHKISED Lastes vedelal lahusel tahkestuda, saadakse tahkeid lahuseid. Tahketest lahustest moodustavad olulise klassi sulamid. Sulamid on ühe või mitme metalli või mittemetalli tahked lahused teises metallis, mis moodustab sulamist olulise osa. Võrrelduna algse metalliga, on sulamitel tavaliselt hoopis erinevad omadused. Näiteks on puhas alumiinium väga pehme. Lahustades väikse hulka vaske ja teisi elemente, saadakse vintske kerge sulam, mida nimetatakse duralumiiniumiks. Duralumiinium on eriti kerge, aga väga tugev, nii et seda kasutatakse lennukite kerede ja tiibade valmistamisel. Nagu teistel lahuse tüüpidel, nii on ka tahketel lahustel piirid, kui palju lahustuvat ainet võib seal lahustada. Näiteks on puhas raud pehme, plastiline metall. Lahustades väikse hulga vesinikku sulas rauas, saame terase, mis on palju tugevam

Keemia
20 allalaadimist
thumbnail
16
pdf

Fosfor

kohal. Tuntakse umbes 200 fosforimineraali, aga tähtsamateks peetakse kaltsiumfosfaati sisaldavaid mineraale nagu näiteks apatiit (Ca5[PO4]3X ;X on F või Cl), fosforiit (apatiidile sarnase koostisega, sisaldab 5 - 35% P2O5) jt. Apatiit Fosforiit (Pildiallikad: http://www.exceptionalminerals.com/TC409Apatite.jpg ja http://www.ut.ee/BGGM/maavara/obulus2.jpg ) Koostanud: Janno Puks Tallinna Arte ja Kristiine Gümnaasium 1 Ligikaudu pool Maa fosforivarudest leidub Aafrikas. Ka Eesti fosforivarud on suured (umbes 350 miljonit tonni), tänu Põhja-Eestis leiduva fosforiidi tõttu, mida peetakse Eesti üheks tähtsamaks maavaraks. Fosforiit on tekkinud ordoviitsiumis meres elanud käsijalgsete (Obolos) fosfaatidest koosnevatest karpidest. Kuna fosforiit asub Eestis

Keemia
119 allalaadimist
thumbnail
7
docx

Mittemetallilised elemendid

· Erinev aatomite paigutus kristallvõres(nt teemant ja grafiit) Vesinik VIIA rühmas sellepärast ka, et tal on halogeenidega sarnaseid omadusi. Hapniku ja räni järel üks levinumaid elemente. Lihtainena on teda suhteliselt vähe. Esineb looduses isotoopidena. Tavaline vesinik ehk prootium, raske vesinik ehk deuteerium(1 prooton, 1 neutron), üliraske vesinik ehk triitium( 1 prooton, 2 neutronit). Isotoop on radioaktiivne. Lihtainena: · Lõhnatu, maitsetu, värvusetu gaas · Kõige kergem · Vees väga vähe lahustuv · Keemistemperatuur -253 C, molekulivahelised jõud nõrgad, sellepärast on madal Keemilised omadused: · Suhteliselt väheaktiivne · Enamasti käitub redutseerijana, o.-a. I · Reageerimisel aktiivsete metallidega käitub oksüdeerijana, tekivad hüdriidid. O.-a. ­I. Saamine: · Tsingi reageerimisel väävel- või soolhappe lahusega.(tekib ZnCl ja vesinik) · Vee elektrolüüsil (vesinik ja hapnik)

Keemia
47 allalaadimist
thumbnail
7
docx

Keemia kokkuvõte

nende ühenditest. Naatrium lambid- naatiumi aurudega täidetud lambid(tänavavalgustus) Liitiumpatareid. · Ühendid: CaO- kustutamata lubi, Ca(OH) -kustutatud lubi, NaOH-seebikivi, Na CO -pesusooda, NaHCO -söögisooda, NaCl-keedusool, Na SO -elektrolüüdina , CaSo +2/0.5 H O- märg/kuiv kips, Ca (PO ) -väetis, HNO -ilutulestikes p-Metallid · Kõik metallidele omased tunnused. P-metallid on õhu ja vee suhtes vastupidavad metallid. Alumiinium reageerib kergesti leeliste ja hapetega, teised p-metallid nii kergesti ei reageeri. Tina ja plii on madala sulamis temperatuuriga. Plii on mürgine. · Kasutamine: Alumiiniumist valmistatakse kõiksugu tarbeesemeid, kerge hea töötlemis omadustega metallina on ta hinnatud materjal ehituses. Tina kasutatakse tinatatud plekkist konservkarpide valmistamisel. Pliid kasutatakse autoakude(pliiakude) valmistamisel. Veel

Keemia
6 allalaadimist
thumbnail
18
doc

Keemia

Happelise oksiidi reageerimisel veega tekib hape (CO2+H2O -> H2CO3), aluselise oksiidi reageerimisel veega tekib alus (MgO+H2O -> Mg(OH)2). Amfoteersed oksiidid reagreerivad nii aluste kui hapetega. Tuua näiteid õhus, vees ja maakoores leiduvatest oksiididest. Õhus: Süsinikdioksiid e. Süsihappegaas (CO2), 0,03% Vees: Vesi (H2O), 75% Maa pinnast Maakoores: Liiva põhiline koostisosa ränidioksiid (SiO2), rauaoksiidid (Fe2O3; Fe3O4), alumiiniumoksiid (Al2O3) ja vasemaak kupriit vaskoksiid (Cu2O). Iseloomustada vingugaasi (CO) ja süsihappegaasi (CO2). Süsihappegaas on happeline oksiid, mida leidub nii inimese kehas kui ka sissehingatavas õhus. Selle määramiseks kasutatakse reaktsiooni lubjaveega. Vingugaas on väga mürgine aine, millel puudub nii lõhn kui värvus. Selle eraldumise kohta käib valem: C+CO2 -> 2CO Kui põlemisel on hapnikku piisavalt, tekib CO2, kui aga hapnikku on vähe, tekib vingugaas. Hapnikku

Rekursiooni- ja...
19 allalaadimist
thumbnail
16
doc

MITTEMETALLID

(asendusreaktsioonil) Kippi aparaadis: Zn+H2SO4=ZnSo4+H2 b) aktiivsete metallide (leelismetallide) ja vee reageerimisel: 2Na+2H2O=2NaOH+H2 c) vee elektrolüüsil: 2H2O=2H2+O2 Tööstuslikult toodetakse vesiniku 1) vee elektrolüüsil, 2) veegaasist C+H2O=CO+H2 d) loodusliku gaasi (metaani) konverteerimisel: 1400*C CH4+2H2O--------CO2+4H2 3. Füüsikalised omadused. Vesinik on värvuseta, lõhnata, maitseta gaas. Ta on kõige kergem gaas. Vees lahustub vesinik halvasti, hästi lahustub ta mõnedes metallides, näiteks pallaadiumis. Vesiniku suure soojusjuhituvuse tõttu jahtuvad kuumad kehad vesinikus 7 korda kiiremini kui õhus. 4. Keemilised omadused. a) Vesinik põleb õhus ja hapnikus veeauruks: 2H2+O2=2H2O Vesiniku ja hapniku segu plahvatab süütamisel. Gaasisegu, mis koosneb kahest mahuosast vesinikust ja ühest mahuosast hapnikust, nimetatakse paukgaasiks. b) Kõrgel tempeartuuril

Keemia
151 allalaadimist
thumbnail
16
pdf

IA rühma metallid-kokkuvõte

1.2 Leelismetallide leidumine looduses Ehedalt (lihtainena) neid looduses suure keemilise aktiivsuse tõttu ei leidu. Küll aga neid esineb väga paljude ühendite koosseisus. Siiski frantsiumit looduses praktiliselt ei leidu, kuna ta on selline radioaktivne element, millel püsivad isotoobid puuduvad. Lito- ja hüdrosfääris on levinumad naatriumi ja kaaliumi ühendid, kuid teiste leelismetallide ühendid Koostanud: Janno Puks Tallinna Arte ja Kristiine Gümnaasium 1 on haruldasemad. Tähtsamateks leelismetallide esinemiskujudeks on looduses halogeniidid (peamiselt kloriidid), sulfaadid, silikaadid või fosfaadid. Kõige levinumaks leelismetalliks ongi naatrium, sest ta on elementide levikult maakoores kuuendal kohal, kuid metallide levikult merevees lausa esikohal. Loomulikult on viimane tingitud sellest, et

Keemia
212 allalaadimist
thumbnail
10
doc

Kroom

Cr2O3 kasutatakse rohelise värvipigmenina ja poleerpulbrite koostisosana. CrO3 [kroom(VI)oksiid] on punakas-oranz niiskust imav tahke aine. Ta on väga tugev oksüdeerija CrO3 on happeliste omadustega ning selle veega reageerimisel tekib kroom- või dikroomhape. CrO3 kasutatakse m CrO3 e elektrokeemilisel kroomimisel. Orgaaniliste ainete kokkupuutel CrO3-ga need süttivad põle CrO3 eetõttu on CrO3 ka väga sööbiv nahale, sellest tekivad haavandid. CrO [kroom(II)oksiid] on aluseline oksiid. Ta on must tugev redutseerija. CrO reageerib ainult hapetega. CrO2 (kroomdioksiid) on segaoksiid. Seda kasutakse magnetofoni- ja videolintide valmistamiseks. Kroom(VI)oksiidile vastavad happed on kroomhape (H2CrO4) ja dikroomhape(H2Cr2O7). Hapete soolad on kromaadid ja dikromaadid. Kromaadid on püsivad leelilises keskkonnas. Nad on tugevad oksüdeerijad. Kromaate kasutatakse nahatööstuses,korrosioonitõrjeks ja puidu konservandina(muudavad puidu püsivaks

Keemia
56 allalaadimist
thumbnail
304
doc

ELEMENTIDE RÜHMITAMISE PÕHIMÕTTED

2CH4 + O2 → 2CO + 4H2 CH4 + 2H2O → CO2 + 4H2 3. Tööstuslikes vee elektrolüüsiprotsessides (kõrvalproduktina leeliste tootmisel jm.): katoodil - : 4H2O + 4e → 2H2 + 4OH- anoodil + : 2H2O - 4e → 4H+ + O2 4. Laboris kõige sagedamini: Zn + 2HCl → ZnCl2 + H2 (sisaldab lisandina HCl ja happe aerosooli) 5) Välitingimustes mõnikord hüdriididest: CaH2 + 2H2O → Ca(OH)2 + 2H2 1 mol = 42 g 2 . 22,4 l 2.1.3. Omadused  Kergeim gaas (ja üldse aine), 14,5 korda õhust kergem  Molekul kaheaatomiline: H2  Parim gaasiline soojusjuht  Difundeerub kergesti läbi paljude materjalide, väga “liikuv” kõrgemal temp-l läbib ka metalle  Lahustub halvasti vees ja org. lahustites, hästi mõnedes metallides (Pd, Pt)  Aatomi H ja molekuli H2 mõõtmed väga väikesed, molekulis sidemeenergia kõrge: raskesti polariseeritav

Keemia
72 allalaadimist
thumbnail
12
doc

Lühikokkuvõte

kokkupuude toiduainetega on lubatud. Vedelate alkaanide veekogudesse sattumisel on paljudele organismidele kahjulikud (naftareostus). Õnneks leidub looduslikes veekogudes mikroorganisme, mis suudavad alkaane oksüdeerida. See puhastusprotsess toimub aga üpris aeglaselt. Pürolüüs on aine lagunemine kõrge temperatuuri toimel (krakkimine, isomeerimine). Alkaane kasutatakse nende suure põlemissoojuse tõttu kütusena. CH4 on peamine loodusliku gaasi koostisosa ning peamine gaas majapidamisgaasis. Propaani (C3H8) ja butaani (C4H10) isomeere kasutatakse vedelgaasis ehk balloonigaasis, mida saadakse nafta töötlemise kõrvalsaadusena. Triklorometaan e. kloroform (CHCl3) on narkoosivahend meditsiinis. Tetraklorometaani (CCl4) kasutatakse tulekustutites, ta on hea lahusti rasvadele ja vaikudele. Diklorodifluorometaani e. freooni (CCl2F2) kasutatakse külmikutes ning aerosoolides pihustusainena. Kloroetaani e

Keemia
349 allalaadimist
thumbnail
5
docx

Keemia põhjalik kirjeldus mittemetallidest

Hüdrolüüs - keemiline reaktsioon, kus keemiline ühend veega reageerides laguneb. Vesinik H:Viimasel kihil ainult 1 elektron, H:+1/1). Esineb ainult ühenditena (orgaanilised ained, elusloodus) Maal, kuna kergem kui õhk. Saamine elektrolüüs (vesi tavaliselt), laboris Metall + hape (va. konts. lämmastik- ja väävelhape) ja süsinikuga. O-a (siin ja edaspidi oksüdatsiooni aste) I..-I. Molekulaarne aine(H2), hästi väikese tihedusega, seetõttu ka kerge, lõhnatu, värvitu gaas, vähe lahustub vees, hästi madal keemistemperatuur. Molekulidevahelised jõud nõrgad. Peaaegu alati redutseerija (o-a I), aktiivsete metallide reageerides tekib aga hüdriid (o-a -I) 2Li + H2= 2LiH. Hüdriid on väga tugevad redutseerijad. Kasutatakse raketikütuse segudes, tootmistel ja oksiidide saamiseks, energeetikas. Halogeenid Hal2: p-orbitaali metallid, ns2np5 , viimasel kihil 7 elektroni. Molekulaarsed mittemetallid. Väga tugevad oksüdeerijad lihtainena. O-a -I...VII (va. F)

Keemia
12 allalaadimist
thumbnail
4
doc

Keemia igapäevaelus ja tööstuses

Sulamis temp. On 318 kraadi ja keemis temp on 1390 kraadi. 2Na + 2H2O = 2NaOH + H2 Ta on valge, tahke ja väga hügroskoopne (imab niiskust) söövitava toimega aine. Naatriumhüdroksiid söövitab nahka, puitu, siidi, villa ja paberit. Teda kasutatakse tööstuses seebi keetmisel rasvadest, naftatööstuses bensiini puhastamisel, kunstsiidi tootmisel jne. Väävli põlemisel tekib vääveldioksiid, S + O2 = SO2 Vääveldioksiid on tikupõlemise lõhnaga mürgine gaas Vääveldioksiid on happeline oksiid. Kuna ta on vahepealse oks.astmega ühend - võib ta olla nii oksüdeerija kui redutseerija. Hapete toimel sulfitid lagunevad CaSO3 + H2SO4 = CaSO4 + H2SO3 = CaSO4 + SO2 + H2O SO2 on happeline oksiid veega annab väävlishappe H2O + SO2 = H2SO3 , leelistega annab sulfiteid 2NaOH + SO2 = Na2SO3 + H2O SO2 on tavaliselt redutseerija · oksüdeerub VI ­ni (sulfaadiks) NO2 + SO2 = NO + SO3 see reaktsioon on oluline happevihmade tekkes

Keemia
28 allalaadimist
thumbnail
20
doc

Anorgaaaniline keemia kokkuvõte

Pasiivne, kuigi teemant veidi aktiivsem, tulekindel. Karbüün- süsinikaatomite lineaarne pölümeer. Fulleereenid – avastamise ja uurimise eest anti Nobeli preemia. Lonsdeiliit – moodustub kõrgetel rõhkudel ja suht madalatel temperatuuridel, on leitud meteoriitides. Keem OM - Kem.akt. Sõltub süsiniku erivormist. Madalatel temp keemiliselt inertne (raskesti sulatatav) Ühendid: Oksiidid: CO (vingugaas)- värvitu ja lõhnatu väga mürgine põlev gaas, tekib süsinikku sis kütuste mittetäielikul põlemisel, hapniku juuresolekul põleb sinise leegiga, CO2 (süsihappegaas)- värvitu, mittepõlev, hapuka maitse ja lõhnaga gaas, ei ole mürgine kuid ei toeta ka hingamist ega põlemist. Tekib süsinikuühendite oksüdatsiooniprotsessides C3O2 (trisüsinikoksiid)- lämmatava lõhnaga värvitu gaas. Vesinikühendid- rikas C ühendite klass 1)alkaanid 2)alkeenid 3)alküünid 4)tsüklilised 5)mitme kaksiksidemega

Keemia
19 allalaadimist
thumbnail
23
doc

Keemia konspekt

Magneesium fosfaat Mg3(PO4)2 Soolasid jaotatakse: Lihtsoolad, Vesinik soolad (valemis on sees ka happe vesinik) Magneesium vesinik fosfaat MGHPO4 Page 1 Naatrium di vesinik fosfaat NAHPO4 Soolasid jaotatakse lahustuvuse järgi. Lahustumatud: FeSO3, KORDAMINE KONTROLL TÖÖKS 1)Arvuta aine massi % väärtus. Aine massi % arvutamine. 2)Sõnastada mõisted ja tuua näiteid. Oksiid Aluseline oksiid Happeline oksiid Amfoteerne oksiid Hape(d) Alus Hüdroksiid Leelis Sool(ad) 2)Jaotused Aluse jaotus Vees lahustuvad vees mitte lahusuvad NaOH, KOH MgOH, CuOH 3)Hapete jaotus hapniku sisalduse järgi Osisaldavad Omittesisaldavad H2SO4 HCl Page 2 5)Hapete jaotus tugevuse järgi

Keemia
510 allalaadimist
thumbnail
34
pdf

Üldkeemia

Metallid on hea elektri- ning soojusjuhtivusega ja on ka enamjaolt hästi sepistatavad. Perioodilisussusteemis lahutab metalle mittemetallidest diagonaal, mis kulgeb boorist (B) polooniumini (Po). Joone peale jäävad elemendid on poolmetallid ehk metalloidid; üles paremale jaavad mittemetallid. Praktikas kasutatavatest metallidest on parimad elektri- ja soojusjuhid hõbe ja vask, küllaltki head on ka kuld ja alumiinium. 13. Materjalide füüsikalised omadused: nimetage ja iseloomustage neid. Tihedus ­ aine mass ruumalaühikus Sulamistemperatuur ­ aine temperatuur, mille saavutades hakkab aine sulama või tahkuma Korrosioonikindlus ­ Omadus, mis hoiab ära (piirab) korrosiooni. Korrosioon on keemilise aine või materjali (enamasti metalli) osaline häving keskkonnas toimuvate keemiliste reaktsioonide tõttu. 14

Üldkeemia
69 allalaadimist
thumbnail
38
docx

Üldkeemia eksami konspekt

lämmastiku aatomiga. Anorgaaniliste ühendite põhiklassid ja nende omadused. 12. Metallid.  Metallideks nimetatakse keemilisi elemente, millel on vabu elektrone ja mis tahkes olekus moodustavad nn metallilise võre, mis annab neile iseloomuliku metallilise läike, hea elektrijuhtivuse ning soojusjuhtivuse ja on ka enamikus sepistatavad  Praktikas kasutavatest metallidest on parimad elektri- ja soojusjuhid hõbe ja vask, küllaltki head on ka kuld ja alumiinium. 13. Materjalide füüsikalised omadused: nimetage ja iseloomustage neid.  Tihedus, sulamistemperatuur, korrosioonikindlus  Erinevad materjalide grupid (metallid, plastid, keraamika) erinevad üksteisest eelkõige tiheduse (roo) poolest, mille ühik on mahuühikumass kg/m 3 . Plastide tihedus on vahemikus 1000-2000, keraamikal 1500-2500, metallidel 1700-22000 piires.  Temperatuuri, mil materjal läheb tardolekust üle vedelasse, nimetatakse

Üldkeemia
50 allalaadimist
thumbnail
14
doc

Keemia - FOSFOR

Tuntumad ühendid FOSFORI OKSIIDID Fosfor moodustab palju oksiide, kuid neist põhjalikumalt on uuritud järgmiseid oksiide: P4O6, P4O7, P4O8, P4O9, P4O10. Enamasti on fosfori oksiidid värvusetud ja praktikas valged, kuid näiteks P4O on punakaspruun ja P4O2 oranzi värvi kristalne aine. P4O10 ­ tetrafosfordekaoksiid ehk fosfor(V)oksiid. P4O10 molekuli struktuur. On fosfori tähtsaim ja ka püsivaim oksiid. Ta tekib tiheda valge suitsuna fosfori põlemisel hapniku või õhu liias. Fosfor(V)oksiid on valge tahke, amorfne, klaasjas või kristalliline aine. Kristalne P4O10 on molekulvõrega ühend, kus molekulid asuvad kristalvõre sõlmpunktides. Ta on sööbiv ja erakordselt hügroskoopne, mis seob tugevasti õhuniiskust ja vett ka teiste ainete koostisest. Seepärast võivad orgaanilised lahustid ja paber kokkupuutel fosfor(V)oksiidiga süttida.

Keemia
14 allalaadimist
thumbnail
14
odt

Elavhõbe

energeetiline väärtus massiühiku kohta fossiilkütustega võrreldes. Kuna tuumajäätmed on keskkonda sattudes inimelule väga ohtlikud, siis on nende atmosfääri või veekogudesse juhtimine lubamatu. Samal ajal on lubatud fossiilkütuseid põletavate elektrijaamade, autode ja tööstuse tekitatud saasteainete hajutamine veekogudesse, maapinnale ning atmosfääri. Pehme kivisöe põletamisel vabaneb atmosfääri suur hulk elavhõbedat ja vääveldioksiidi, mille tagajärjel sureb kümneid tuhandeid inimesi aastas. Vääveldioksiid satub mulda ja veekogudesse sademetega, viib alla sealse pH taseme ning keemiliste reaktsioonide kaudu teiste ühenditega muudab elukeskkonna paljudele liikidele elu jätkumiseks võimatuks. Kivisöe põletamisel atmosfääri vabanenud elavhõbe jääb loodusesse, kuni mõni organism selle enda elutegevuse käigus omastab. Ühendriikide National Academy of Sciences´i 2000.

Keemia
29 allalaadimist
thumbnail
26
docx

Loodusteaduste olümpiaadiks valmistumine

ühendeid. Peene tuhk võib tuulega levida kilomeetreid eemale ja katta väga suuri alasid. Looduslikud saasteallikad Saasteaineid satub õhke vulkaanidest, põlemisprotsesside, hingamise, mädanemise, kõdunemise ja mitmesuguste bakteriaalsete protsesside käigus. Äikese tõttu tekib õhku lämmastikoksiide, vulkaanidest eraldub SO2. Erinevatel bioloogilistel protsessidel tekivad H2S, CO, CO2 ja NH3. Levinumaid heitgaase Vääveldioksiid SO2 Vääveldioksiid on terava lõhnaga mürgine gaas, mis tekib kütuste põletamisel. SO2 tekitab bronhiiti, hingeldust ja silmapõletikke. Vääveldioksiid lagundab taimedes klorofülli, mis seejärel muutuvad pruuniks ja hukkuvad. Lämmastikdioksiidi või osooni mõjul oksüdeerub see vääveltrioksiidiks (SO3), millest veega moodustuvad happesademete põhikomponendid. Süsinik(mono)oksiid e vingugaas, CO Vingugaas on väga mürgine põlev gaas, mis tekib tekib kütuste põlemisel mootorites ja hapniku vaesetes kohtades (nt

Füüsika
8 allalaadimist
thumbnail
14
doc

Raud, nikkel, koobalt

o Punane ja pruun rauamaak sisaldavad põhiühendina raud(III)-oksiidi (Fe2O3), mis on hüdratiseeritud vee molekulidega (2Fe2O3, 3H2O jt ). o Magnetiidi põhiosa moodustav triraudtetraoksiid on musta värvusega kristalne magnetiline aine. Magnetiit on kõige rauarikkam ja puhtam rauamaak. Suurim leiukoht maailmas on Kurski oblast. o Püriiti (FeS2) tavaliselt rauamaagina ei kasutata , sest väävel halvendab püriidist saadud rauasulamite kvaliteeti. Püriiti kasutatakse väävelhappe tootmisel. o Sideriit kujutab endast raudkarbonaati (Fe CO3). Raudkarbonaat reageerib süsinikdioksiidi sisalava veega, muutudes lahustuvaks raudvesinikkarbonaadiks : FeCO3+H2O+CO2=Fe(HCO3)2 Raua füüsikalised ja keemilised omadused · Raud on hõbevalge keskmise kõvadusega metall

Keemia
51 allalaadimist
thumbnail
15
doc

Mangaan

Mn(s) + H2SO4(aq) Mn2+(aq) + SO4 2­(aq) + H2(g) (8) 5. Ühendid Ühendeis on Mangaani oksüdatsiooniaste kuni VII, neist püsivamad II ja VII. Madalaima o.- a.-ga Mn-ühendeis on mangaanil aluselised, kõrgematel happelised ning vahepealse o.-a.-ga ühendeil on amfoteersed omaused. (2) 5.1 Oksiidid (2) Tuntakse järgmisi oksiide: MnO, Mn2O3, MnO2, Mn3O4, MnO7. MnO on roheka värvusega kristalliline mittetöhhimeetriline oksiid (MnO kuni MnO1,15), mida saadakse kõrgematest oksiididest redutseerimisel vesinikuga või MnCO3 termilisel lagundamisel. MnO veega ei reageeri, hapetega moodustab ta sooli [MnCl2, MnSO4, Mn(NO3) 2]. Soolad on roosaka värvusega. Mn2O3 saadakse MnO2 kuumutamisel. MnO3 on musta või pruunika värvusega kristalliline aine. Mn2O3 reageerimisel hapetega moodustuvad mangaan(II)soolad. Mn3O3 tekib Mn2O3 kuumutamisel. Mn3O4 kujutab endast tegelikult ühendit Mn2MnO4 [dimangaan(II)mangaat(IV)].

Keemia
26 allalaadimist
thumbnail
23
doc

Keemia konspekt

51. metallide keemiline ja elektrokeemiline korrosioon. Korrosioon on materjali keemiline reaktsioon ainetega materjali ümbrusest, mis kutsub materjalis esile mõõdetava muutuse. Metallide korrosioon on metallide oksüdeerumine, mille tulemusena võivad metallisse tekkida augud või metallikihid lahti tulla. Raua korrosiooni nimetatakse roostetamiseks. Tugeva korrosiooni puhul võib materjal lakata täitmast funktsiooni, milleks ta on mõeldud. Mõned metallid, näiteks alumiinium, võivad moodustada korrosiooni takistava oksiidikihi. Korrosiooni takistamiseks kasutatakse mitmesuguseid korrosioonikaitse meetmeid. Elektrokeemiline korrosioon toimub elektrolüüte (näit. vees lahustunud soolad) sisaldavates keskkondades ja seda põhjustavad elektrokeemilised reaktsioonid metall ja elektrolüüdi kokkupuutepinnal. Harilikult muutub ka niiskuskelme elektrolüüdiks, kuna selles lahustuvad õhust mitmesugused gaasid (H2S, CO2, SO2) ning soolad

Keemia
408 allalaadimist
thumbnail
62
doc

YKI 3030 Keemia ja materjaliõpetus

Element on aine, mida ei saa keemiliste meetoditega enam lihtsamateks aineteks jagada. (109 elementi, 83 looduses) 3. Keemiline ühend. Keemilised ühendid on keemiliste elementide kogumid, väikseim iseseisev osake on molekul. 4. Ainete klassifikatsioon, liht ja liitained. *Anorgaanilised *Orgaanilised lihtaine- moodustub ainult ühe ja sama keemilise elemendi aatomitest. Näiteks: hapnik, raud, elavhõbe, väävel liitaine- koosneb erinevatest keemilistest elementidest. Näiteks: vesi, lubi, süsinikdioksiid. Mõlemad võivad esineda nii tahkes, vedelas kui gaasilises olekus. 5. Aine olekud (tahke, vedel, gaas) Tahkes aines on molekulid tihedalt koos ja nende liikumine pole võimalik. Vedelikus on molekulide vaheline kaugus mõnevõrra suurem ja nad võivad üksteisest mööduda. Gaaside puhul on molekulide vaheline kaugus suur ja nad võivad täiesti vabalt liikuda

Keemia ja materjaliõpetus
108 allalaadimist
thumbnail
72
pdf

Keemia ja materjaliõpetus (YKI3030) eksami kordamisküsimused ja vastused 2016/2017

(109 elementi, 83 looduses)  Keemilised ühendid on keemiliste elementide kogumid, väikseim iseseisev osake on molekul.  Molekul - aine väikseim osake, millel on antud aine keemilised omadused ning mis võib iseseisvalt eksisteerida (O2, CO2, H2O) 3. Ainete klassifikatsioon, liht ja liitainete mõisted, näited. *Anorgaanilised *Orgaanilised  lihtaine- moodustub ainult ühe ja sama keemilise elemendi aatomitest. Näiteks: hapnik, raud, elavhõbe, väävel  liitaine- koosneb erinevatest keemilistest elementidest. Näiteks: vesi, lubi, süsinikdioksiid. Mõlemad võivad esineda nii tahkes, vedelas kui gaasilises olekus. 4. Aine olekud (tahke, vedel, gaas).  Tahkes aines on molekulid tihedalt koos ja nende liikumine pole võimalik.  Vedelikus on molekulide vaheline kaugus mõnevõrra suurem ja nad võivad üksteisest mööduda.  Gaaside puhul on molekulide vaheline kaugus suur ja nad võivad täiesti vabalt liikuda.

Keemia ja materjaliõpetus
42 allalaadimist
thumbnail
33
doc

Keemia ja materjaliõpetuse eksam 2011

käsiraamatute või Interneri otsingumootorite abil. 4) NOMENKLATUURSED NIMETUSED: standardiseeritud puhastele ainetele JUPAC poolt, nt FeO, raud(II)oksiid. 3. 1)Kolloidsete süsteemide klassifikatsioon. Näiteid nende kasutamisest, tekkimisest ja esinemisest nii loodus- kui tehiskeskkonnas ning mõjust insenerirajatistele ja ehitistele. Pihustatud aine olek GAAS VEDELIK TAHKE GAAS Vedel aerosool Tahke aerosool udu, pilved, atmosfäär suits, tolmune atmosfäär Pihus- VEDELIK Vaht Emulsioon Kolloidne suspensioon tus- vahukoor, majonees, kätekreem piim, värvid, tint kesk- seebivaht kond TAHKE Tahke vaht Geel Tahke kolloid

Keemia ja materjaliõpetus
242 allalaadimist
thumbnail
30
docx

Keemia ja materjaliõpetuse eksami küsimuste vastused

ega kuju). Aur on selline aine gaasilises olekus, mille keemistemperatuur on kõrgem kui toatemperatuur, nt veeaur (st gaasilises olekus olevad ained, mis tavatingimustes on kas vedelad või tahked, nt vesi (vedel), jood (tahke)). Gaaside kõige iseloomulikumaks omaduseks on nende kokkusurutavus ja võime paisuda. Gaasidel ei ole kindlat kuju, nad täidavad anuma, võttes selle kuju. Gaasi ruumala ühtib anuma ruumalaga, milles ta asub. Ruumala sõltub toatemperatuurist ja rõhust. Gaas avaldab anuma seintele püsivat rõhku, mis on kõikides suunades ühesugune. Gaaside käitumist iseloomustatakse kriitilise temperatuuri ja rõhuga. Põhiseadused: Normaaltingimused: T = 273,15 K (0 C); P = 101 325 Pa (1,0 atm; 760 mmHg) V m = 22,4 dm3/mol. Tihedus on suurus, mis on võrdne ruumala ühikus olevate osakeste arvuga, ka mass ruumala ühikus = m/V (kg/m3). Ühe mooli gaasi või auru ruumala normaaltingimustel on 22,4 g/dm 3. Kriitiline

Keemia ja materjaliõpetus
309 allalaadimist
thumbnail
15
doc

Keemia ja materjaliõpetuse Eksami kordamisküsimuste vastused

aineteks jagada. (109 elementi, 83 looduses). 3. Keemilised ühendid moodustuvad keemiliste elementide ühinemisel, kus väikseim iseseisev osake on molekul. Molekul - aine väikseim osake, millel on antud aine keemilised omadused ning mis võib iseseisvalt eksisteerida (O2, CO2, H2O). Aatomid molekulis on seotud keemiliste sidemetega. 4. lihtaine- moodustub ainult ühe ja sama keemilise elemendi aatomitest. Näiteks: hapnik, raud, elavhõbe, väävel. liitaine- koosneb erinevatest keemilistest elementidest. Näiteks: vesi, lubi, süsinikdioksiid. Nii liht- kui liitained võivad esineda gaasilises, vedelas või tahkes olekus. 5. Tahkes aines on molekulid tihedalt koos ja nende liikumine pole võimalik. Vedelikus on molekulide vaheline kaugus mõnevõrra suurem ja nad võivad üksteisest mööduda. Gaaside puhul on molekulide vaheline kaugus suur ja nad võivad täiesti vabalt liikuda. Molekulidevahelised jõud on väikesed. . 6

Keemia ja materjaliõpetus
416 allalaadimist
thumbnail
14
doc

Eksami abimees!

molaarmasside ja ioonlaengute jagatiste suhtega. Archimedese seadus: Vedelikku/gaasi asetatud kehale mõjub üleslükkejõud, mis võrdub keha poolt välja tõrjutud vedeliku/gaasi kaaluga. 2) Aine on osake, mis omab nii massi kui mahtu, ta võib esineda puhtana (suhteline mõiste) kui ka ühendites. Materjal on aine, mille töötlemisel (kasutamisel) ei esine arvestatvaid keemilisi muutusi (nt: alumiinium pottidena, metallid, looduslikud ja sünteetilised kivimid, pooljuhid). Kemikaal - aine, mida kasut või valmist (toodetakse) keemilises protsessis. Mineraal ­ anorg aine, mida leidub looduses. Eksisteerimise olekud: gaasid ja aurud: gaasid-ained, mis on tavatingimustes täielikult gaasilises olekus (nt: He, H 2). Aurud-gaasilises olekus olev aine, mis tavatingimustes eksisteerib ka vedelas või tahkes olekus (nt: veeaur, jood J 2). Kõiki gaase ja aurusid on võimalik viia rõhu tõstimse

Keemia ja materjaliõpetus
343 allalaadimist
thumbnail
70
pdf

Rakenduskeemia kordamisküsimused

väliskihil elektrone jagama nii omavahel kui ka teiste kovalentsete sidemetega ainete vahel. Olek toatemperatuuril Tahke Vedelik või gaas Polaarsus Kõrge Madal Kuju Kindel kuju puudub Konkreetse kujuga Sulamistemperatuur Kõrge Madal Keemistemperatuur Kõrge Madal

Rakenduskeemia
46 allalaadimist


Sellel veebilehel kasutatakse küpsiseid. Kasutamist jätkates nõustute küpsiste ja veebilehe üldtingimustega Nõustun