Vajad kellegagi rääkida?
Küsi julgelt abi LasteAbi
Logi sisse
✍🏽 Avalikusta oma sahtlis olevad luuletused! Luuletus.ee Sulge

Silindri inertsmoment. - sarnased materjalid

nurkkiirus, kats, inertsmoment, inertsmomendi, allaveeremise, joonkiiruse, katseseade, kaldpind, nihik, automaatne, ajamõõtja, teoreetilised, inertsimomendid, lugedes, libisemine, masskese, 0125
thumbnail
3
docx

Silindri inertsmomendi määramine kaldpinna abil

SILINDRI INERTSMOMENT 1. Tööülesanne. Silindri inertsmomendi määramine kaldpinna abil. 2. Töövahendid. Katseseade (kaldpind), silindrite komplekt, nihik, automaatne ajamõõtja. 3. Töö teoreetilised alused. Antud töös mõõdetakse erinevate silindrite kaldpinnalt allaveeremise aeg ja arvutatakse nende inertsimomendid. Veereva silindri kineetiline energia avaldub valemiga 2 2 mv I Wk= + 2 2 m - silindri mass (kg) v - masskeskme kulgeva liikumise kiirus ( m/s ) I - inertsmoment ( kgm² ) - nurkkiirus tsentrit läbiva telje suhtes ( rad/s )

Mehaanika ja soojuse valemid
1 allalaadimist
thumbnail
8
docx

Silindri inertsmomendi määramine kaldpinna abil.

1.Tööülesanne. Silindri inertsmomendi määramine kaldpinna abil. 2.Töövahendid. Katseseade (kaldpind), silindrite komplekt, nihik, automaatne ajamõõtja. 3.Teoreetilised alused. Antud töös mõõdetakse erinevate silindrite kaldpinnalt allaveeremise aeg ja arvutatakse nende inertsimomendid. Veereva silindri kineetiline energia avaldub valemiga(1) mv 2 Iω2 Wk= + 2 2 m – silindri mass (kg) v – masskeskme kulgeva liikumise kiirus (m/s) I - inertsmoment ( kgm² ) ω - nurkkiirus tsentrit läbiva telje suhtes ( rad/s ) Lugedes hõõrdejõudude töö tühiseks, võib võtta kineetilise energia ja potensiaalse energia muutused võrdseks: ( 2 ) mv2 Iω2 mgh= + 2 2 h- kaldpinnakõrgus Kui veeremisel puudub libisemine, siis võib nurkkiiruse avaldada joonkiiruse kaudu :( 2 ) v ω= r , kus r – silindri raadius

Füüsika
15 allalaadimist
thumbnail
4
docx

SILINDRI INERTSMOMENT

Taavi Tiirats Jüri Averjanov Andrei Mintsenkov SILINDRI INERTSMOMENT PRAKTIKA ARUANNE Õppeaines: Füüsika I Ehitusteaduskond Õpperühm: TE 11a Juhendaja: lektor Jana Paju Esitamiskuupäev: 30.11.2016 Õppejõu allkiri: _________ Tallinn 2016 1. Töö ülesanne. Silindri inertsmomendi määramine kaldpinna abil. 2. Töö vahendid. Katseseade (kaldpind), silindrite komplekt, nihik, automaatne ajamõõtja. 3. Töö teoreetilised alused. Antud töös mõõdetakse erinevate silindrite kaldpinnalt allaveeremise aeg ja arvutatakse nende inertsimomendid. Veereva silindri kineetiline energia avaldub valemiga 2 2 mv I (1)

Füüsika
3 allalaadimist
thumbnail
6
docx

SILINDRI INERTSMOMENT

SILINDRI INERTSMOMENT. 1. Tööülesanne. Silindri inertsmomendi määramine kaldpinna abil. 2. Töövahendid. Katseseade (kaldpind), silindrite komplekt, nihik, automaatne ajamõõtja. 3. Töö teoreetilised alused. Antud töös mõõdetakse erinevate silindrite kaldpinnalt allaveeremise aeg ja arvutatakse nende inertsimomendid. Veereva silindri kineetiline energia avaldub valemiga 2 2 mv Iω Wk= + (1) 2 2 m - silindri mass (kg) v - masskeskme kulgeva liikumise kiirus ( m/s ) I - inertsmoment ( kgm² ) ω - nurkkiirus tsentrit läbiva telje suhtes ( rad/s ) Lugedes hõõrdejõudude töö tühiseks, võib võtta kineetilise energia ja potensiaalse energia muutused võrdseks: mv2 Iω2

Füüsika
66 allalaadimist
thumbnail
8
doc

Aruanne: Silindri inertsmomendi määramine kaldpinna abil

Robert Kikas Ragnar Piir Sergei Dikarev Mikk–Martin Anvelt SILINDRI INERTSMOMENT PRAKTIKA ARUANNE Õppeaines: FÜÜSIKA (I) Mehaanikateaduskond Õpperühm: TI 11(B) Juhendaja: lektor Irina Georgievskaya Esitamiskuupäev: 18.11.2014 Tallinn 2014 SILINDRI INERTSMOMENT. 1.Tööülesanne. Silindri inertsmomendi määramine kaldpinna abil. 2.Töövahendid. Katseseade (kaldpind), silindrite komplekt, nihik, automaatne ajamõõtja. 3.Töö teoreetilised alused. Antud töös mõõdetakse erinevate silindrite kaldpinnalt allaveeremise aeg ja arvutatakse nende inertsimomendid. Veereva silindri kineetiline energia avaldub valemiga m - silindri mass (kg) v - masskeskme kulgeva liikumise kiirus ( m/s ) I - inertsmoment ( kgm² )

Füüsika
28 allalaadimist
thumbnail
4
docx

SILINDRI INERTSMOMENT

SILINDRI INERTSMOMENT LABORATOORSE TÖÖ ARUANNE Õppeaines: FÜÜSIKA Ehitusinstituut Õpperühm: HE 11/21 Juhendaja: Esitamiskuupäev:................ Üliõpilase allkiri:................. Õppejõu allkiri: .................. Tallinn 2018 5. SILINDRI INERTSMOMENT Tööülesanne Silindri inertsmomendi määramine kaldpinna abil. Töövahendid Katseseade (kaldpind), silindrite komplekt, nihik, automaatne ajamõõtja. Töö teoreetilised alused Antud töös mõõdetakse erinevate silindrite kaldpinnalt allaveeremise aeg ja arvutatakse nende inertsimomendid. Veereva silindri kineetiline energia avaldub valemiga 2 2 W k = mv + I , 2 2

Füüsika
1 allalaadimist
thumbnail
8
docx

Silindri inertsmoment - laboratoorium

SILINDRI INERTSMOMENT ARUANNE Õppeaines: FÜÜSIKA LABORITÖÖ Transporditeaduskond Õpperühm: AT11b Üliõpilased: Keith Tauden Hendrik Tammi Risto Sepp Juhendaja: õppejõud Peeter Otsnik Esitamiskuupäev: 8.10.2014 Tallinn 2014 1.Töö ülesanne. Silindri inertsmomendi määramine kaldpinna abil. 2.Töövahendid. Katseseade (kaldpind), silindrite komplekt, nihik, automaatne ajamõõtja. 3.Töö teoreetilised alused. Antud töös mõõdetakse erinevate silindrite kaldpinnalt allaveeremise aegu ja arvutatakse antud silindrite inertsmomendid. Veereva silindri kineetiline energia avaldub valemiga mv 2 I ω2 Wk = 2 + 2 (1)

Füüsika
20 allalaadimist
thumbnail
4
docx

Silindri Inertsimoment

SILINDRI INERTSIMOMENT PRAKTIKA ARUANNE Õppeaines: FÜÜSIKA (I) Ehitusteaduskond Õpperühm: Juhendaja: Esitamiskuupäev: 19.11.2014 Tallinn 2014 1 Tööülesanne Silindri inertsmomendi määramine kaldpinna abil. 2 Töövahendid Katseseade (kaldpind), silindrite komplekt, nihik, automaatne ajamõõtja 3 Töö teoreetilised alused. Antud töös mõõdetakse erinevate silindrite kaldpinnalt allaveeremise aeg ja arvutatakse nende inertsimomendid. Veereva silindri kineetiline energia avaldub valemiga m v2 I v2 Wk= + (1) , kus 2 2 m – silindri mass(kg) v – masskeskme kulgeva liikumise kiirus(m/s) I – inertsimoment (kg m2 )

Füüsika
5 allalaadimist
thumbnail
10
docx

SILINDRI INERTSMOMENT

SILINDRI INERTSMOMENT PRAKTIKA ARUANNE Õppeaines: FÜÜSIKA I Ehitusteaduskond Õpperühm: Juhendaja Esitamiskuupäev: Õppejõu allkiri: …………… Tallinn 2016 1. Tööülesanne. Silindri inertsmomendi määramine kaldpinna abil. 2. Töövahendid. Katseseade (kaldpind), silindrite komplekt, nihik, automaatne ajamõõtja. 3. Töö teoreetilised alused. Antud töös mõõdetakse erinevate silindrite kaldpinnalt alla veeremise aeg ja arvutatakse nende inertsimomendid. Veereva silindri kineetiline energia avaldub valemiga: 2 2 mv I ❑ W k= 2 +

Füüsika
15 allalaadimist
thumbnail
6
pdf

Silindri inertsmoment

Nimi: 1. TÖÖÜLESANNE Silindri inertsmomendi määramine kaldpinna abil. 2. TÖÖVAHENDID Katseseade (kaldpind), silindrite komplekt, nihik, automaatne ajamõõtja. 3. TÖÖ TEOREETILISED ALUSED Antud töös mõõdame erinevate silindrite kaldpinnalt allaveeremise aja ja arvutame nende inertsimomendid. 2 mv2 ​ Veereva silindri kineetiline energia avaldub valemiga W k = 2 + lω2 (1)​, kus m on silindri mass (kg), v on masskeskme kulgeva liikumise kiirus (m/s), I on inertsmoment (kgm²) ja ω on nurkkiirus tsentrit läbiva telje suhtes (rad/s).

Füüsika
13 allalaadimist
thumbnail
6
pdf

Silindri inertsimoment

SILINDRI INERTSIMOMENT LABORATOORSED TÖÖD Õppeaines: FÜÜSIKA I Mehaanikateaduskond Õpperühm: TI-11 (B2) Juhendaja: Karli Klaas Esitamiskuupäev: 20.10.2015 Tallinn 2015 1. Tööülesanne. Silindri inertsmomendi määramine kaldpinna abil. 2. Töövahendid. Katseseade (kaldpind), silindrite komplekt, nihik, automaatne ajamõõtja. 3. Töö teoreetilised alused. Antud töös mõõdetakse erinevate silindrite kaldpinnalt allaveeremise aeg ja arvutatakse nende inertsimomendid. Veereva silindri kineetiline energia avaldub valemiga 𝒎𝒗𝟐 𝑰𝝎𝟐 𝑾𝒌 = +

Füüsika
32 allalaadimist
thumbnail
4
docx

Füüsika laboratoorne töö - Silindri inertsmoment

TALLINNA TEHNIKAKÕRGKOOL TALLINN COLLEGE OF ENGINEERING Füüsika laboratoorne töö Silindri inertsmoment Õppeaines: Füüsika I Mehaanikateaduskond Õpperühm: Üliõpilased: Juhendaja:P.Otsnik Tallinn 1.Tööülesanne. Silindri inertsmomendi määramine kaldpinna abil. 2.Töövahendid. Katseseade (kaldpind), silindrite komplekt, nihik, automaatne ajamõõtja. 3.Teoreetilised alused.

Füüsika
194 allalaadimist
thumbnail
10
docx

Silindri inertsmoment

Anton Adoson Roman Ibadov Rauno Alp Gert Elmik SILINDRI INSERTSMOMENT LABORITÖÖ NR. 4 Õppeaines: FÜÜSIKA Transporditeaduskond Õpperühm: AT 11/21 Juhendaja: dotsent: Peeter Otsnik Esitamise kuupäev: 12.11.2015 /Allkirjad/ Tallinn 2015 1. Tööülesanne. Silindri inertsmomendi määramine kald pinna abil. 2. Töövahendid. Katseseade (kald pind), silindrite komplekt, nihik, automaatne ajamõõtja. 3. Töö teoreetilised alused. Antud töös mõõdetakse erinevate silindrite kald pinnalt alla veeremise aeg ja arvutatakse nende inertsimomendid. Veereva silindri kineetiline energia avaldub valemiga: 2 2 mv I ❑ W k= 2

Füüsika
64 allalaadimist
thumbnail
3
doc

Silindri Inertsmoment

1.Tööülesanne Silindri inertsmomendi määramine kaldpinna abil. 2. Töövahendid Katseseade (kaldpind), silindrite komplekt, nihik, automaatne ajamõõtja. 3. Töö teoreetilised alused. Joonised. Antud töös mõõdeti erinevate silindrite kaldpinnalt allaveeremise aega ja arvutati nende inertsmomendid. 4. Kasutatud valemid koos füüsikaliste suuruste lahtikirjutamisega. Wk = Wk- Kineetiline energia m- silindri mass(kg) v- masskeskme kulgeva liikumise kiirus(m/s) I- inertsmoment - nurkkiirus tsentrit läbiva telje suhtes (rad/s) Lugedes hõõrdejõudude töö tühiseks, võib võtta kineetilise energia ja potensiaalse energia muutused võrdseks: Mgh= h- kaldpinna kõrgus I= mr2 l- kaldpinna pikkus g- raskuskiirendus (9.81 m/s ) t- allaveeremise aeg 2 - kaldenurk (0.085) 5. Täidetud arvutus tabelid

Füüsika praktikum
135 allalaadimist
thumbnail
6
docx

Silindri inertsmoment

SILINDRI INERSMOMENT PRAKTIKA ARUANNE Õppeaines: FÜÜSIKA (I) Mehaanikateaduskond Õpperühm: Juhendaja: Esitamiskuupäev:……………. Tallinn 2014 1. Tööülesanne. Silindri inertsmomendi määramine kaldpinna abil. 2. Töövahendid. Katseseade (kaldpind), silindrite komplekt, nihik, automaatne ajamõõtja. 3. Töö teoreetilised alused. Joonised. Antud töös mõõdetakse erinevate silindrite kaldpinnalt allaveeremise aeg ja arvutatakse nende inertsimomendid. Veereva keha masskese liigub kaldpinnalt alla ühtlaselt kiirenevalt ja sirgjooneliselt. Katse nr l, m t, s m, kg d, m I, kgm2 It, kgm2 1

Füüsika
25 allalaadimist
thumbnail
2
docx

Silindri inertsmomendi määramine kaldpinna abil.

Tööülesanne Silindri inertsmomendi määramine kaldpinna abil. Töövahendid Katseseade (kaldpind), silindrite komplekt, nihik, automaatne ajamõõtja. Töö teoreetilised alused Antud töös mõõdetakse erinevate silindrite kaldpinnalt allaveeremise aeg ja arvutatakse nende inertsmomendid. Veereva silindri kineetiline energia avaldub valemiga: m v 2 I 2 Wk= + 2 2 m - silindri mass (kg) v - masskeskme kulgeva liikumise kiirus (m/s) I - inertsmoment (kgm2) - nurkkiirus tsentrit läbiva telje suhtes (rad/s) Veereva keha masskese liigub kaldpinnalt alla ühtlaselt kiirenevalt ja sirgjooneliselt. Inertsmomendi valem: g t 2 sin I =mr 2( -1) 2l r - silindri raadius (m) g = 9,81 (m/s2) sin = 0,093 Töökäik Mõõtmised teostasime 4 erineva silindriga. Mõõtsime kaldpinna pikkuse l, silindri massi m ja silindri diameetri d

Füüsika
3 allalaadimist
thumbnail
4
docx

Silindri inertsmoment

1. Tööülesanne. Silindri inertsmomendi määramine kaldpinna abil. 2. Töövahendid. Katseseade (kaldpind), silindrite komplekt, nihik, automaatne ajamõõtja. 3. Töö teoreetilised alused. Antud töös mõõdetakse erinevate silindrite kaldpinnalt allaveeremise aeg ja arvutatakse nende inertsimomendid. 4. Kasutatud valemid. Veereva silindri kineetiline energia avaldub valemiga m - silindri mass (kg) v - masskeskme kulgeva liikumise kiirus ( m/s ) I - inertsmoment ( kgm² ) - nurkkiirus tsentrit läbiva telje suhtes ( rad/s ) I - inertsmoment ( kgm² ) m - silindri mass (kg) r - silindri raadius g - 9,81 t - aeg sin ­ 0,085 l ­ kaldpinna pikkus 5. Tabel. Katse l,m t,s m , kg d,m I , kg nr. 1. 0,940 1,87 30× 21,53× 1,9× 1.7× 2. 0,940 1,84 154× 24,96× 12× 12× 3. 0,940 1,83 89× 26,58× 7,7× 7,9× 4. 0,940 1,86 64× 32,93× 9,3× 8,7× 6

Füüsika
241 allalaadimist
thumbnail
25
docx

Laboratoorsed tööd

..................................3 5.4Töö käik...........................................................................................................................................5 5.4.1Mõõdame silindri massi (m) ja mõõdame tema läbimõõdu (d)............................................5 5.4.2Mõõdame kaldpinna pikkuse (l) väravate vahel...................................................................5 5.4.3Arvutame valemi (6) järgi teoreetilise silindri inertsmomendi.............................................5 5.4.4Nullistame ajamõõtja............................................................................................................5 5.4.5Laseme silindri vabalt veerema............................................................................................5 5.4.6Kirjutame üles ajamõõtja näidu. Kordame katset 3 korda....................................................5 5.4

Füüsika
16 allalaadimist
thumbnail
3
docx

Silindri inertsmoment

TALLINNA TEHNIKAKÕRGKOOL TALLINN COLLEGE OF ENGINEERING LABORATOORSE TÖÖ ARUANNE SILINDRI INERTSMOMENT Õppeaines: FÜÜSIKA Transporditeaduskond Õpperühm: AT12a Üliõpilased: X X X X Juhendaja: P.Otsnik Tallinn 2010 1.Töö ülesanne. Silindri inertsmomendi määramine kaldpinna abil. 2.Töövahendid Silindrite komplekt, nihik, katseseade (kaldpind), automaatne ajamõõtja. 3.Töö teoreetilised alused Antud töös mõõdame erinevate silindrite kaldpinnalt allaveeremise aegu ja arvutame antud silindrite inertsmomendid. Veereva silindri kineetiline energia avaldub valemiga = + m-silindri mass (kg) v-massikeskme kulgeva liikumise kiirus (m/s) I-inertsmoment (kgm2) -nurkkiirus tsentrit läbiva telje suhtes (rad/s)

Füüsika
165 allalaadimist
thumbnail
4
docx

Silindri inertsmoment

SILINDRI INERTSMOMENT PRAKTIKA LABORI ARUANNE FÜÜSIKA Ehitusteaduskond Teedeehitus Tallinn 2019 Tööülesanne Silindri inertsmomendi määramine kaldpinna abil. Töövahendid Kaldpind, silindrite komplekt, nihik ning automaatne ajamõõtja. Töö teoreetilised alused Antud töös mõõdame erinevate silindrite kaldpinnalt allaveeremise aja ja arvutame nende inertsimomendid. Katseandmete tabel Tabel. Silindri inertsmomendi eksperimendi mõõtetulemused mr 2 It= 2 I inertsmoment ( kgm² ) m silindri mass (kg) r silindri raadius g 9,81 t aeg sin ­ 0,09 l ­ kaldpinna pikkus 0,155 x 0,0024 It= 2 =0,122x10¯ 0,104 x 0,00198 It= 2 =0,051x10¯ 0,064 x 0,0328 It= 2 =0,086x10¯ 0,030 x 0,00215 It= 2 =0,017x10¯ (9,81 x 2,772 x 0,09)

Füüsika
3 allalaadimist
thumbnail
2
doc

Silindri inertsmoment

1.Töö ülesanne. Silindri inertsmomendi määramine kaldpinna abil. 2.Töövahendid Silindrite komplekt, nihik, katseseade (kaldpind), automaatne ajamõõtja. 3.Töö teoreetilised alused Antud töös mõõdame erinevate silindrite kaldpinnalt allaveeremis aegu ja arvutame antud silindrite inertsmomendid. Veereva silindri kineetiline energia avaldub valemiga m-silindri mass (kg) v-massikeskme kulgeva liikumise kiirus (m/s) I-inertsmoment (kgm2) -nurkkiirus tsentrit läbiva telje suhtes (rad/s) Pärast teisendusi ja asendusi saame avaldise inertsmomendi leidmiseks. l-kaldteepikkus t-allaveeremis aeg r-silindri raadius

Füüsika
239 allalaadimist
thumbnail
3
docx

Laboriaruanne teemal - Silindri inertsimoment

SILINDRI INERTSIMOMENT PRAKTIKA ARUANNE Õppeaines: FÜÜSIKA I Ehitusinstituut Õpperühm: HE 11/21b Juhendaja: lektor Esitamiskuupäev:................ Õppejõu allkiri: .................. Tallinn 2018 Töö ülesanne: Silindri inertsmomendi määramine kaldpinna abil. Töö vahendid: Katseseade (kaldpind), silindrite komplekt, nihik, automaatne ajamõõtja. Töö teoreetilised alused: Antud töös mõõdetakse erinevate silindrite kaldpinnalt allaveeremise aeg ja arvutatakse nende inertsimomendid. Koostasime katseandmete tabeli Katse nr. l, m t, s m, kg d, m I, kgm² It, kgm² 1. 0,702 1,67 0.155 0,0125 0,00002027 0,00001211 1,785 1,65

Füüsika
2 allalaadimist
thumbnail
34
doc

Mehhaaniline energia

........................................................12 3.1.3 Katse käik..........................................................................................................................12 3.1.4 Järeldused..........................................................................................................................13 4 LABORATOORNE TÖÖ NR. 4.....................................................................................................15 4.1 Silindri inertsmoment...............................................................................................................15 4.1.1 Tööülesanne.......................................................................................................................15 4.1.2 Töövahendid......................................................................................................................15 4.1.3 Katse käik......................................................................

Füüsika praktikum
39 allalaadimist
thumbnail
20
docx

SILINDRI INERTSIMOMENT N7

Tallinna Tehnikaülikool Füüsikainstituut Üliõpilane: Vladimir Bednõi Teostatud: 27.02.2017 Õpperühm: YAEB-21 Kaitstud: Töö nr: 7 TO: SILINDRI INERTSIMOMENT Töö eesmärk: Töövahendid: Silindri inertsimomendi määramine Katseseade (kaldpind koos elektroonilise kellaga), kaldpinna abil. silindrite komplekt, nihik, ajamõõtja, kaalud, mõõtelint. Skeem TÖÖ KÄIK 1. Määrake silindri mass ja tema läbimõõt (õõnsa silindri korral ka tema siseläbimõõt d'). Mõõtke veereva silindri masskeskme poolt läbitud tee pikkus l . 2

Füüsika praktikum
70 allalaadimist
thumbnail
52
doc

D’Alembert’i printsiip

mOA = m = 25 kg OA=l=50 cm z A 3 Variant 3. Varras OA liigub vertikaaltasapinnas ülespoole, pööreldes ümber horisontaalse telje mis läbib punkti O. Alghetkel on varda nurkkiirus 0 = 6,3 1/s. Leida liigendi O reaktsioonkomponendid sel hetkel, mil pöördenurk on parajasti võrdne väärtusega 1. A z mOA = m = 40 kg OA=l=80 cm 1/s

Dünaamika
71 allalaadimist
thumbnail
69
docx

FÜÜSIKA 1 eksami vastused

Öeldakse, et keha töötab jõule(liikumisele) vastu. Negatiivse töö puhul on nurk jõu ja keha liikumissuuna vahel nürinurk ehk suurusega üle 90°: kui < 90°, siis cos > 0 ja W > 0, kui 90° < < 180°, siis cos < 0 ja W < 0. 20. Mehaanika kuldreegel Nii mitu korda kui võidetakse jõus, kaotatakse nihkes. A F s const - Võites jõus, kaotate teepikkuses. [2] See reegel kehtib lihtmehhanismide kohta nagu kang, plokk, kaldpind ja teised. Kõige lihtsam on mehaanika kuldreeglit mõista kangi näitel. Kang muudab raskete asjade tõstmise palju kergemaks. Väheneb jõud, mida peab koormusele selle tõstmiseks rakendama. Mida suurem on kangile rakendatud jõu õlg, seda väiksem peab olema jõud ise. [3] Näited: 15 [2] 21. Võimsus

Füüsika
108 allalaadimist
thumbnail
60
doc

Kineetilise energia teoreem

Tallinna Tehnikaülikool Mehhatroonikainstituut Jüri Kirs, Kalju Kenk Kodutöö D-3 Kineetilise energia teoreem Tallinn 2009 Kodutöö D-3 Kineetilise energia teoreem Leida mehaanikalise süsteemi mingi keha kiirus ja kiirendus, või mingi ploki nurkkiirus ja nurk- kiirendus vaadeldaval ajahetkel, kasutades kineetilise energia muutumise teoreemi. Mõningates variantides tuleb leida ainult mingi keha kiiruse. See, millise suuruse tuleb variandis leida, on täpsustatud iga variandi juures. Kõik süsteemid on alghetkel paigal. Kõik vajalikud arvulised andmed on toodud vastava variandi juures. Kõik rattad veerevad ilma libisemata. Kõik kehad on absoluutselt jäigad, niidid on venimatud ning kaalutud. Niidid plokkide suhtes kunagi ei libise

Dünaamika
75 allalaadimist
thumbnail
10
doc

Füüsika eksamiks

Jõumomendi vektori suund on pöörlemistelje sihiline ja määratud vektorkorrutise reegliga.Jäiga keha puhul on jõu f¯ õlg võrdne jõu rakenduspunkti ja pöörlemistelje (või pöörlemistsentri ja jõu mõjusirge vahelise kaugusega).Defineerime pöörleva masspunkti impulsmomendi L¯,kui liikumine toimub ümber fikseeritud tsentri O nii,et masspunkti raadiusvektor on r¯ ja tema impulss p¯ L¯=r¯*p¯ Skalaarselt L=rpsin=Rp,kus R=rpsin ja on nurk raadiusvektori ja trajektoori joonkiiruse vektori vahel.Kuna p=mv(v on masspunkti joonkiirus ringsel trajektooril),siis L=mvR. Fikseeritud telje z suhtes L2¯=m(R¯*v¯).Selles seoses vektor R¯ on masspunkti raadiusvektor,mis oma pikkuselt on võrdne kaugusega pöörlemisteljest.Leiame seose jõumomendi ja impulssmomendi vahel.Kuna a¯=dv¯/dt,siis dL¯/dt=r¯* m*dV¯/dt=r¯¯*f¯=M¯ Kui süsteemi väliseid jõude ei mõju,on nende jõudude moment võrdne nulliga ja süsteemi impulssmoment konstantne.Niisiis,kui M¯=0,siis L¯=const

Füüsika
799 allalaadimist
thumbnail
2
odt

Füüsika Arvestuse Spikker

välja asetatud keha. mudel ei ole kasutatav. Adiabaatiline protsess:süsteem pole väliskeskkonnaga soojusvahetuses. Joonkiirus:hetkkiirus, kui pika tee läbib keha ajaühikus mööda ringjoont. Pascali s:rõhk vedelikus/gaasis kandub edasi igas suunas ühteviisi. Protsessi adiabaatilisus tuleneb protsessi toimumise suurest kiirusest/heast Joonkiiruse suund puutuja sihiline. Jääva nurkkiirusel joonkiirus on seda Pindpinevus: vedeliku pinnakihi omadus säilitada antud tingimustes isoleeritusest. Adiabaatilised protsessid nt küttesegu kokkusurumine suurem, mida suurem on trajektoori (ringjoone)raadius:v= R=l/t võimalikult väiksemat pinda. sisepõlemismootorisilindris ja õhu kiire kokkusurumine õhksütikus. Jada: Pöördvõrdeline, juhtmetel pole takistust U=U1+U2+U3

Füüsika
120 allalaadimist
thumbnail
12
docx

Kogu keskkooli füüsikat valdav konspekt

Jõumomendi vektori suund on pöörlemistelje sihiline ja määratud vektorkorrutise reegliga.Jäiga keha puhul on jõu f õlg võrdne jõu rakenduspunkti ja pöörlemistelje (või pöörlemistsentri ja jõu mõjusirge vahelise kaugusega).Defineerime pöörleva masspunkti impulsmomendi L,kui liikumine toimub ümber fikseeritud tsentri O nii,et masspunkti raadiusvektor on r ja tema impulss p L=r*p Skalaarselt L=rpsin=Rp,kus R=rpsin ja on nurk raadiusvektori ja trajektoori joonkiiruse vektori vahel.Kuna p=mv(v on masspunkti joonkiirus ringsel trajektooril),siis L=mvR. Fikseeritud telje z suhtes L2=m(R*v).Selles seoses vektor R on masspunkti raadiusvektor,mis oma pikkuselt on võrdne kaugusega pöörlemisteljest.Leiame seose jõumomendi ja impulssmomendi vahel.Kuna a=dv/dt,siis dL/dt=r* m*dV/dt=r*f=M Kui süsteemi väliseid jõude ei mõju,on nende jõudude moment võrdne nulliga ja süsteemi impulssmoment konstantne.Niisiis,kui M=0,siis L=const

Füüsika
20 allalaadimist
thumbnail
11
doc

Füüsika eksam

7. Ühtlaselt muutuv liikumine- konstantse kiirendusega liikumist nimetatakse ühtlaseks muutuvaks (kiirenevaks või aeglustuvaks) liikumiseks. a=const 8. Kiirendus- suurus mis iseloomustab keha kiiruse muutumist ajaühikus. a=v/t a<0aeglustuv, a=0 ühtlane, a>0kiirenev Raskuskiirendus: g=9,81 m/s2 Kesktõmbekiirendus (normaalkiirendus) väljendab ringliikumisel kiiruse suuna muutumist ajas. a n = v2/R = 2R -nurkkiirus Nurkkiirendus näitab, kui palju muutub keha nurkkiirus ajaühikus. = ( - 0) / t (rad/sek2) Kiiruse suuruse muutumist näitab tangentsiaalkiirendus. at = r 9. Pöörlemine on ringliikumisega sarnane liikumine, pöörlemisel on aga keskpunkt keha sees. Pöörlemise all mõistetakse jäiga, liikumise käigus mitte deformeeruva keha asendi muutus. = /t ­ raadiuse pöördenurk t ­ selle moodustamiseks kujunud ajavahemik = v/r (nurkkiirus) [rad/s] v= R (joonkiirus) [m/s] = t -nurkkiirus -pöördenurk = ot ± t2/2 10

Füüsika
393 allalaadimist
thumbnail
45
doc

Teooriaküsimused ja vastused

145. Mida nimetatakse jäiga keha pöörlemiseks ümber kinnistelje ja millisel kujul esitatakse sellisel juhul jäiga keha liikumise võrrand? Jäiga keha pöörlemiseks ümber kinnistelje nimetatakse sellist liikumist, mille puhul mingid 2 kehaga muutumatult seotud punkti jäävad kogu liikumise vältel paigale. = (t ) 146. Kuidas antakse liikumise seadus jäiga keha pöörlemisel ümber kinnistelje? = (t ) 147. Defineerida täpselt nurkkiirus jäiga keha pöörlemisel ümber kinnistelje. Jäiga keha nurkkiiruseks nimetatakse pöördenurga vektori tuletist aja järgi. 148. Defineerida nurkkiirendus jäiga keha pöörlemisel ümber kinnistelje. Jäiga keha nurkkiirenduseks nimetatakse nurkkiirusvektori tuletist aja järgi. 149. Defineerida täpselt nurkkiirus ja nurkkiirendus jäiga keha pöörlemisel ümber kinnistelje. Jäiga keha nurkkiiruseks nimetatakse pöördenurga vektori tuletist aja järgi.

Insenerimehaanika
358 allalaadimist
thumbnail
28
pdf

Impulss, energia, töö

KOOLIFÜÜSIKA: MEHAANIKA3 (kaugõppele) 3. IMPULSS, TÖÖ, ENERGIA 3.1 Impulss Impulss, impulsi jäävus Impulss on vektor, mis on võrdne keha massi ja tema kiiruse korrutisega r r p = mv . Mehaanikas nimetatakse impulssi vahel ka liikumishulgaks. See on vananenud mõiste ja selle kasutamine ei ole otstarbekas. Nii näiteks on ka elektromagnetväljal impulss, mille üheks avaldusvormiks on valgus rõhk. Elektromagnetvälja korral aga on liikumishulga mõiste kohatu. Impulsi mõiste on kasulik seetõttu, et teatud juhtudel, näiteks kehade põrgetel, kehtib impulsi jäävuse seadus. Viimase üldine sõnastus on järgmine. Impulsi jäävuse seadus: suletud (isoleeritud) süsteemi koguimpulss on jääv suurus, st mistahes ajahetkel on süsteemi kuuluvate kehade impulsside summa konstantne r r r p1 + p 2 + L + p n = const. Kehade liikumisel ja omavahelistel vastastikmõjudel kehade impulsid muutuvad, muutuda võib ka kehade arv süsteemis. Nii näiteks võivad k

Füüsika
51 allalaadimist


Sellel veebilehel kasutatakse küpsiseid. Kasutamist jätkates nõustute küpsiste ja veebilehe üldtingimustega Nõustun