Vajad kellegagi rääkida?
Küsi julgelt abi LasteAbi
Logi sisse
Ega pea pole prügikast! Tõsta enda õppeedukust ja õpi targalt. Telli VIP ja lae alla päris inimeste tehtu õppematerjale LOE EDASI Sulge

"päratud-integraalid" - 29 õppematerjali

thumbnail
28
pdf

Kolmas kollokvium

Teooria 3 1.Riemanni summa. Määratud integraali (Riemanni mõttes) definitsioon. Riemanni summa lõigul [a,b] (f) = ∑ . Kui eksisteerib piirväärtus = ∑ , mis ei sõltu [a,b] osalõikudeks jaotamise viisist ega punktide valikust, siis öeldakse, et funktsioon f(x) on integreeruv (Riemanni mõttes) lõigul [a,b] ning seda piirväärtust nimetatakse funktsiooni f(x) määratud integraaliks ehk Riemanni integraaliks lõigul [a,b] ja seda tähistatakse ∫ . 2. Darboux ülem-ja alamsummad. Riemanni summa ja Darboux’ summade seos. Olgu funktsioon f tõkestatud lõigul [a,b]. Siis tükelduse igal osalõigul [ ] leiduvad lõplikud ülemine ja alumine raja ja ning me saame defineerida Darboux’ ülemsumma: ̅ (f)=∑ ja Darboux’ al...

Matemaatika → Matemaatika
24 allalaadimist
thumbnail
2
pdf

Matemaailine analüüs I kollokvium III spikker

1). (Algfunktsiooni definitsioon. Määramata integraali definitsioon. Määramata 7).(Lihtsamate osamurdude integreerimine. Valemite tuletamine). 12. (Näidata, et kui funktsioonid f (x) = g(x) välja arvatud lõplikus arvus punktides, siis integraal kui tuletise ja diferentsiaali pöördoperaator). Tõestame selle järelduse juhul, kui g(x) f(x) vaid punktis x=c [, ]. () Funktsiooni f algfunktsiooniks nimetatakse funktsiooni F, mis rahuldab tingimust [, ] selle lõigu tükeldus, kusjuures [-1 , ]. Kuna g(x) = O(1) (x[a,b]) F'(x) = (x)= f(x). Definitsioon (määramata integraal) Avaldist kujul F(x) + C; kus ...

Matemaatika → Matemaatika analüüs i
139 allalaadimist
thumbnail
14
doc

Kollokvium III

1. Algfunktsiooni definitsioon. Määramata integraali definitsioon. Määramata integraal kui tuletise ja diferentsiaali pöördoperaator. Funktsiooni f algfunktsiooniks nimetatakse funktsiooni F, mis rahuldab tingimust F'(x) = (x)= f(x). Definitsioon (määramata integraal) Avaldist kujul F(x) + C; kus F(x) on funktsiooni f (x) mingi algfunktsioon ja C on suvaline konstant (integreerimiskonstant), nimetatakse funktsiooni f (x) määramata integraaliks ja tähistatakse st . Määramata integraali tuletis on võrdne integreeritava funktsiooniga st ( )'= f(x). Tõestus: ( )'= (F(x)+C)'=F'(x)= f(x). d( )= ( )'dx = f(x)dx = F'(x)dx= dF(x). Operaatorit L:V->W nimetame lineaarseks kui on täidetud tingimused: a)L(f+g)= L(f) + L(g) kui f, g V (aditiivsus) b) L(cf) = cL(f) kui f V ja c R (homogeensus). Määramata integraal on lineaarne operaato...

Matemaatika → Matemaatiline analüüs
107 allalaadimist
thumbnail
19
doc

Nimetu

1 ÜHE MUUTUJA FUNKTSIOON. TEMA MÄÄRAMISPIIRKOND DEFINITSIOON 1. Kui muutuja x igale väärtusele hulgast X on mingi eeskirja f abil vastavusse seatud lõplik reaalarv y, siis öeldakse, et hulgal X on määratud FUNKTSIOON ja seda tähistatakse y = f(x). DEFINITSIOON 2. Muutuja x väärtuste hulka, mille puhul f(x) väärtus on lõplik, nimetatakse funktsiooni y = f(x) MÄÄRAMISPIIRKONNAKS. X = { x R; f(x) väärtus on lõplik}. PÕHILISED ELEMENTAARFUNKTSIOONID: 1. Astmefunktsioonid: y = x , Q; 2. Eksponentfunktsioonid: y = ax, a > 0, a 1; 3. Logaritmfunktsioonid: y = loga x, a > 0, a 1; 4. Trigonomeetrilised funktsioonid: y = sin x, y = cos x, y = tan x, y = cot x; 5. Arkusfunktsioonid: y = arcsin x, y = arccos x, y = arctan x, y = arccot x. 2 LIITFUNKTSIOON DEFINITSIOON 1. Funktsiooni, mille argumendiks ei ole sõltumatu...

Varia → Kategoriseerimata
177 allalaadimist
thumbnail
20
docx

MATEMAATILINE ANALÜÜS I

MATEMAATIKA EKSAM. 1. Muutuvad suurused (üldiselt). 1)konstantsed suurused 2)muutuvad suurused NT: ühtlase liikumise korral on kiirus konstante suurus, teepikkus aga muutuv suurus. Funktsiooni mõiste (definitsioon, tähistused, näited). Funktsiooni esitusviise (piltlik, valemiga, tabelina, nooldiagrammina, sõnadega jne). Ühesed, paaris- ja paaritud, perioodilised, kasvavad ja kahanevad funktsioonid (definitsioonidega). Definitsioon: muutuvat suurust y nimetatakse muutuva suuruse x funktsiooniks, kui suuruse x igale väärtusele on vastav y üks väärtus Tähistused: argument(muutuja) x; argument(muutuja) y; määramispiirkond X; muutumispiirkond Y Näited: 2. Funktsiooni graafik (definitsioon, piltlik esitus). Definitsioon: funktsiooni graafik= {(x,f(x)): x∈X} Piltlikult: 3. Pöördfunktsioon (definitsioon). Näiteid. Kuidas leida pöördfunktsioone? Defin...

Matemaatika → Matemaatiline analüüs 1
36 allalaadimist
thumbnail
3
doc

MATEMAATILINE ANALÜÜS I

ÕPPEAINE MATEMAATILINE ANALÜÜS I (kood YMM3731) PROGRAMM Õppeaine eesmärk · Anda ühe muutuja funktsiooni diferentsiaal- ja integraalarvutuse teoreeti-lised alused. · Õpetada lahendama mainitud teooriaga seotud põhilisi ülesandeid. · Näidata esitatud teooria võimalikke rakendusi praktikas ja teistes teadus- harudes. · Harjutada üliõpilasi matemaatilise sümboolikaga. Maht: 5 EAP ainepunkti, nädalatundide arv 2-0-2. Eeldusained: pole. Õppeaine sisu (orienteeruva loenguteks jaotusega): 1. Kasutatav sümboolika. Funktsiooni mõiste ja omadused. Elementaarfunktsioonid. 2. Jada piirväärtus. Arv e. 3. Funktsiooni piirväärtus. Joone asümptoodid. Lõpmata väikesed ja lõpmata suured suurused. Funktsiooni pidevus. Lõigul pidevate funktsioonide omadused. 4. Funktsiooni tuletis....

Matemaatika → Matemaatika analüüs i
210 allalaadimist
thumbnail
11
doc

Määratud integraal

MÄÄRATUD INTEGRAAL Pindfunktsioon ja tema tuletis Kõverjooneliseks trapetsiks nimetatakse kujundit, mille kaks külge on teineteisega paralleelsed sirged (paralleelsed näiteks y teljega). Vaatame siin esialgu veel lihtsustust, kus ka kolmas külg on sirge (x telg täpsemalt x telje lõik [a,b], neljas külg funktsiooni y = f ( x ) graafik. Trapetsiga on sarnasus: kahe vastaskülje paralleelsus. y M A X B y = f(x) m P P 0 a x x+x b x Märgime x teljel punkti x ja vaatleme kõverjoonelist trapetsit axXA. Tähistame trapetsi pindala tähega S. Pindala S sõltub x-st, igale kindlale x väärtusele vastab pindala P kindel v...

Matemaatika → Kõrgem matemaatika
181 allalaadimist
thumbnail
11
pdf

Määratud integraal

MÄÄRATUD INTEGRAAL Pindfunktsioon ja tema tuletis Kõverjooneliseks trapetsiks nimetatakse kujundit, mille kaks külge on teineteisega paralleelsed sirged (paralleelsed näiteks y teljega). Vaatame siin esialgu veel lihtsustust, kus ka kolmas külg on sirge (x telg või täpsemalt x telje lõik [a,b]), neljas külg funktsiooni y = f ( x ) graafik. Trapetsiga on sarnasus: kahe vastaskülje paralleelsus. y M A X B y = f(x) m P P 0 a x x+x b x Märgime x teljel punkti x ja vaatleme kõverjoonelist trapetsit axXA. Tähistame trapetsi pindala tähega S. Pindala S sõltub x-st, igale kindlale x väärtusele vastab pindala S ...

Matemaatika → Matemaatika
66 allalaadimist
thumbnail
2
doc

Mat analüüs 1

1. Määratud integraali mõiste. Olgu antud f(x) [a;b] ja geom. tõlgenduse jaoks f(x)>=0. a=x0

Matemaatika → Matemaatiline analüüs
318 allalaadimist
thumbnail
20
docx

Matemaatiline analüüs II kontrolltöö

Matemaatiline analüüs II kontrolltöö Punktid 23-45 23. Funktsiooni muudu esitus diferentsiaali ja jääkliikme summana. Kuidas käituvad diferentsiaal ja jääkliige argumendi muudu x suhtes, kui x läheneb nullile?(Tõestada) Loetleda diferentsiaali omadused. a. Funktsiooni muudu esitus diferentsiaali ja jääkliikme summana b. Kuidas käituvad diferentsiaal ja jääkliige argumendi muudu x suhtes, kui x läheneb nullile?(Tõestada) c. Loetleda diferentsiaali omadused c.1. c.2. c.3. c.4. c.5. 24. Funktsiooni lokaalsete ekstreemumite definitsioonid.Sõnastada ja tõestada Fermat' lemma. a. Funktsiooni lokaalsete ekstreemumite definitsioonid a.1. Öeldakse, et funktsioonil f on punktis x lokaalne miinimum, kui ...

Matemaatika → Matemaatiline analüüs
122 allalaadimist
thumbnail
5
docx

Kollokvium V määratud integraal: kõik mida küsitakse

2.12. Määratud integraal Olgu lõigul [a, b] määratud funktsioon f(x). Jaotan lõigu osalõikudeks [xi-1,xi], kusjuures a=x0

Matemaatika → Matemaatiline analüüs
45 allalaadimist
thumbnail
24
pdf

MATEMAATILINE ANALÜÜS I. KORDAMISKÜSIMUSED

MATEMAATILINE ANALÜÜS I. KORDAMISKÜSIMUSED 1. Muutuvad suurused (tähistus, jaotus). Matemaatilises analüüsis tähistatakse muutujad väikeste tähtedega (x, y, a jne). Näiteid muutujate vahelistest suhetest: „Patsiendi vererõhk sõltub ravimite manustamise hulgast“, „Ringi pindala sõltub raadiusest“ Jaotus: a) Konstantsed suurused – ei muutu, omavad alati ühte ja sama väärtust N: ühtlane liikumine – kiirus on konstantne, teepikkus on muutuv suurus) b) Muutuvad suurused N: mitteühtlane liikumine – nii kiirus kui teepikkus muuutvad 2. Funktsiooni mõiste (definitsioon, tähistused, näited). DEF. Muutuvat suurust y nimetatakse muutuva suuruse x funktsiooniks, kui mingi eeskirjaga on suuruse x igale väärtusele seatud vastavusse suuruse y üks väärtus. Asjaolu, et y on x-i funktsioon, tähistatakse y = f(x) • Muutujat x nimetatakse sõltumatuks muutujaks (ehk argumendiks). • Muutujat y nimetatakse sõltuvaks muutujaks. • ...

Matemaatika → Matemaatiline analüüs 1
26 allalaadimist
thumbnail
12
docx

Matemaatiline analüüs I 3. kollokviumi spikker

Küsimused: 1.Määratud integraali (Riemanni mõttes) definitsioon. Darbouc ülem- ja alamsummad. Riemanni summa ja Darboux’ summade seos-viimane pilt. ∫ f ( x ) dx st ∫ f ( x ) dx=F ( x ) +C . Määramata integraali tuletis on f (¿ ξi) ∆ xi SΠn n võrdne integreeritava funktsiooniga st ( ∫ f ( x ) dx )’= f(x). Tõestus: ( ∫ f ( x ) dx Riemanni summa lõigul [a,b] (f) = ∑¿ . ...

Matemaatika → Matemaatiline analüüs 1
24 allalaadimist
thumbnail
15
docx

Matemaatika analüüsi II Kontrolltöö

Matemaatilise analüüsi II Kontrolltöö 1. Funktsiooni muudu esitus diferentsiaali ja jääkliikme summana. Kuidas käituvad diferentsiaal ja jääkliige argumendi muudu x suhtes, kui x läheneb nullile? (tõestada!). Loetleda diferentsiaali omadused. a. Teades, et ­argumendi muut kohal a -funktsiooni muut kohal a a.i. Nii me näitasime, et a.ii. Tähistades ja vahe järgmiselt a.iii. Kehtib võrratus: a.iv. Et avaldada väärtust kaudu peame kõigepealt avaldama suhte: a.v. Korrutades saadud avaldist saame: kus a.vi. Nüüd näemegi, et koosneb kahest liidetavast, esimeseks dy= ja teine on , mis kahanevad piirprotsessis a.vii. Võrdleme neid suuruseid suhtes: a.viii. Lisaks kehtib veel: a.ix. Nüüd teame,et diferentsiaal dy on sama järku kahanev suur...

Matemaatika → Matemaatiline analüüs 2
99 allalaadimist
thumbnail
21
docx

Matemaatiline analüüs 1, teine teooriatöö kordamisküsimused

23. Funktsiooni muudu esitus diferentsiaali ja jääkliikme summana. Kuidas käituvad diferentsiaal ja jääkliige argumendi muudu x suhtes, kui x läheneb nullile? (tõestada!). Loetleda diferentsiaali omadused. Funktsiooni muudu esitus diferentsiaali ja jääkliikme summana y ' =f ( a ) +r ( x ) x Korrutame saadud avaldise x-ga ja saame y=f ' ( a ) x+ , kus =r ( x ) x Kuidas käituvad diferentsiaal ja jääkliige argumendi muudu x suhtes, kui x läheneb nullile? (Tõestada) ' lim f ( a ) x dy lim r ( x ) x =¿ x o = lim f ' ( a )=f ' ( a ) 0 x x x o lim = x o = lim r ( x ) =0 lim ¿ x o x x x o x o Loetleda diferentsiaali omadused ...

Matemaatika → Matemaatika
9 allalaadimist
thumbnail
7
pdf

Määramata integraalid

KÕRGEM MATEMAATIKA III Matemaatilise analüüsi elemendid 3. Määramata integraalid Õppekirjandus: [1] Abel, E., Kokk, K. Kõrgem matemaatika (Harjutusülesanded). EMS, Tartu, 2003. [2] Lõhmus, A., Petersen, I., Roos, H. Kõrgema matemaatika ülesannete kogu. "Valgus", Tallinn, 1982. [3] Loone, L., Soomer, V. Matemaatilise analüüsi algkursus. "TÜ Kirjastus", Tartu, 2006. [4] Tõnso, T., Veelmaa, A. Matemaatika XII klassile. "Mathema", Tallinn, 1995. [5] Piskunov, N. Diferentsiaal- ja integraalarvutus. "Valgus", Tallinn, 1981. 3.1 Algfunktsioon ja määramata integraal Kursuse eelnevas osas käsitlesime ühe muutuja funktsiooni y = f (x) tuletise y = f (x) leid- misega seotud küsimusi. Teame, et funktsiooni f (x) = 2x tuletis on f (x) = 2 ja funktsiooni f (x) = sin x tuletis on f (x) = cos x. Vaatleme nüüd vastupidist ülesannet...

Matemaatika → Kõrgem matemaatika
172 allalaadimist
thumbnail
8
docx

Matemaatiline analüüs I 2. teooria KT vastused

TÕESTUSED, TULETUSKÄIGUD, PÕHJENDUSED!!! 23. Funktsiooni muudu esitus diferentsiaali ja jääkliikme summana y = f'(a)x + , kus = r(x)x Kuidas käituvad diferentsiaal ja jääkliige argumendi muudu x suhtes, kui x läheneb nullile? (tõestada!). funktsiooni muut y koosneb kahest liidetavast, millest esimene on diferentsiaal dy = f'(a)x ja teine on . M~olemad liidetavad on l~opmatult kahanevad protsessis x 0. V~ordleme neid suurusi x suhtes. Esiteks, eelduse f'(a) 0 p~ohjal saame lim dy x= lim f'(a)/x* x= lim f'(a) = f(a) 0. x0 x0 x0 Teiseks kehtib lim / x = lim r(x)x /x = lim r(x) = 0. x0 x0 x0 N¨aeme, et esimene liidetav, so diferentsiaal dy on sama j¨arku l~opmatult kahanev suurus kui x ja teine liidetav on k~orgemat j¨arku l~opmatult kahanev suurus x suhtes. J¨arelikult v¨aikese x korral hakkab diferentsiaal funktsiooni muudu avaldises domineerima. Seet~ottu v~oime lugeda diferent...

Matemaatika → Matemaatika
46 allalaadimist
thumbnail
18
docx

Matemaatiline analüüs KT2 vastused

23. Funktsiooni muudu esitus diferentsiaali ja jääkliikme summana. Kuidas käituvad diferentsiaal ja jääkliige argumendi muudu x suhtes, kui x läheneb nullile? (tõestada!). Loetleda diferentsiaali omadused. Funktsiooni muudu peaosa ja jääkliige. Olgu antud funktsioon, mis on diferentseeruv punktis a. Eeldame, et f(a)0 kasutades mõisteid: x = x - a - argumendi muut kohal a y = f(x) - f(a) - funktsiooni muut kohal a . Näitasime, et Seega kui tähistame ja f'(a) vahe järgmiselt : Kehtib võrdus Püüame avaldada funktsiooni muutu y argumendi muudu x kaudu. Selleks avaldame kõigepealt võrdusest suhte ja korrutame saadud avaldise x-ga. Saame valemi Valemist näeme, et funktsiooni muut y koosneb kahest liidetavast, millest esimene on diferentsiaal dy = f(a)x ja teine on . Mõlemad liidetavad on lõpmatult kahanevad protsessis x 0. Võrdleme neid suurusi x suhtes. Esiteks, eelduse f(a) 0 põhjal saame : Teiseks kehtib valem :...

Matemaatika → Matemaatiline analüüs i
120 allalaadimist
thumbnail
156
pdf

Kõrgem matemaatika

MTMM.00.340 Kõrgem matemaatika 1 2016 KÄRBITUD loengukonspekt Marek Kolk ii Sisukord 0 Tähistused. Reaalarvud 1 0.1 Tähistused . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 0.2 Kreeka tähestik . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 0.3 Reaalarvud . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 0.4 Summa sümbol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1 Maatriksid ja determinandid 7 1.1 Maatriksi mõiste . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 1.2 Tehted maatriksi...

Matemaatika → Kõrgem matemaatika
94 allalaadimist
thumbnail
23
docx

MATEMAATILINE ANALÜÜS TÖÖ VASTUSED

1. · Arvtelje mõiste ­ Arvteljeks kutsume sirget, millel on positiivne suund, määratud nullpunkt ja pikkusühik. Arvteljega on võimalik seada vastavusse kõik reaalarvud, kus ühele reaalarvule vastab ainult üks arvtelje punkt. · Reaalarvu absoluutväärtus ­ · Absoluutväärtuse omadused · Reaalarvu lõpmatuseks nimetame suvalist vahemikku (a-,a+), kus >0 on ümbruse raadius · Reaalarvu vasakpoolseks lõpmatuseks nimetame suvalist vahemikku (a-,a], kus >0 · Reaalarvu parempoolseks lõpmatuseks nimetame suvalist vahemikku [a, a+), kus >0 · Suuruse lõpmatus ümbruseks nimetame hulka (M,), kus M>0 · Suuruse miinus lõpmatus ümbruses nimetame hulka (-,-M), kus M>0 · Hulka A nimetame tõkestatud hulgaks, kui A on määratud lõplikus vahemikus (a,b) 2. · Jääv suurus on suurus mille väärtus ei muutu · Muutuv suurus on suurus, millele võib omastada erinevaid väärtuseid ...

Matemaatika → Matemaatika analüüs i
104 allalaadimist
thumbnail
11
doc

Matemaatiline analüüs - konspekt II

32. Lokaalse ekstreemumi piisavad tingimused: tingimus I. Olgu x1 funktsiooni f kriitiline punkt. Kui läbides punkti x1 vasakult paremale funktsiooni tuletise märk muutub plussist miinuseks siis on funktsioonil selles punktis lokaalne maksimum. Kui aga läbides punkti x1 vasakult paremale funktsiooni tuletise märk muutub miinusest plussiks siis on funktsioonil selles punktis lokaalne miinimum. Kui funktsioonil eksisteerib teist järku tuletis siis saab lokaalsete ekstreemumite olemasolu kontrollida ka selle abil. Nimelt maksimumpunkti läbides vasakult paremale funktsiooni graafiku puutuja tõus väheneb. See tähendab et funktsiooni tuletis kahaneb. Funktsiooni tuletis kahaneb aga juhul kui teine tuletis on negatiivne. Seevastu miinimupunkti läbides puutuja tõus suureneb, seega tuletis kasvab. Tuletis kasvab aga juhul kui teine tuletis on positiivne. Järelikult kehtib järgmine väide: Lokaalse ekstreemumi piisav tingimus II. Olgu f ` (x1) = 0...

Matemaatika → Matemaatiline analüüs
350 allalaadimist
thumbnail
36
pdf

Matemaatiline analüüs

Matemaatiline analüüs 23. Funktsiooni muudu esitus diferentsiaali ja jääkliikme summana. Kuidas käituvad diferentsiaal ja jääkliige argumendi muudu ∆x suhtes, kui ∆x läheneb nullile? (tõestada!). Loetleda diferentsiaali omadused. Funktsiooni muudu esitus: ∆y = f’(a)∆x + β , kus β = r(∆x)∆x Kuidas käituvad diferentsiaal ja jääkliige argumendi muudu ∆ x suhtes, kui ∆ x läheneb nullile? (tõestada!). funktsiooni muut ∆y koosneb kahest liidetavast, millest esimene on diferentsiaal dy = f’(a)∆x ja teine on β. Mõlemad liidetavad on lõpmatult kahanevad protsessis ∆x → 0. Võrdleme neid suurusi ∆x suhtes. Esiteks, eelduse f’(a)  0 põhjal saame lim dy ∆x= lim f’(a)/∆x* ∆x= lim f’(a) = f(a)  0. ∆x→0 ∆x→0 ∆x→0 Teiseks kehtib lim β/ ∆x = lim r(∆x)∆x /∆x = lim r(∆x) = 0. ∆x→0 ∆x→0 ∆x→0 Näeme, et esimene liidetav, so diferentsiaal dy on sama järku lõpmatult kahanev suurus kui ∆x ja t...

Matemaatika → Matemaatiline analüüs 1
13 allalaadimist
thumbnail
13
doc

Matemaatiline analüüs 1 kordaisküsimuste vastused

1. Muutuvad suurused. Def. 1 *Suurusi, mis omand erinevaid väärtusi(vaadeldavas protsessis) nim muutuvateks suurusteks. *Suurusi, mis omand. konstantseid püsivaid väärtusi nim jäävateks suurusteks e. konstantideks. *Tähistus: x,y,z...u,v,w,t *NT ühtlane liikumine-> kiirus konstantne v, teepikkus ja aeg muutuvad *Muutuvad suurused on tavaliselt reaalarvud-> geom võime esitada sirgel *absoluutsed konstandid- mistahes protsessis vaadeldavad suurused: =3,14..., e =2,71 1. väärtused on diskreetsed x: x1,x2,x3 (arvjada) 2. väärtused omand pideva alamhulga reaalteljel (+joonised!): *X={x IR|axib} lõik * X={x IR|a0 (joonis) 2. Funktsiooni mõiste Olgu antud 2 suurust x-muutumisp. X, y-muutumisp. Y *Def.1 Me nim funktsiooniks kujutust, mis seab igale x väärtusele piirkonnas X ...

Matemaatika → Kõrgem matemaatika
147 allalaadimist
thumbnail
26
doc

Matemaatiline analüüs I - kordamine eksamiks

MATEMAATILINE ANALÜÜS I § 1 REAALARVUD JA FUNKTSIOONID 1. Reaalarvu mõiste Tähistame sümboliga N kõigi naturaalarvude hulga, st N = {1, 2, 3,...} ja sümboliga Z kõigi täisarvude hulga, st Z = {...,­3,­2,­1, 0, 1, 2, 3,...}. p Ratsionaalarvudeks nimetatakse arve kujul q , kus p ja q on täisarvud, q 0. Kõigi ratsionaalarvude hulga tähistame sümboliga Q. Ratsionaalarvudeks on parajasti need arvud, mis on esitatavad lõplike või lõpmatute perioodiliste kümnendmurdudena. Arve, mis on esitatavad lõpmatute mitteperioodiliste kümnendmurdudena, nimetatakse irratsionaalarvudeks. Kõik ratsionaalarvud ja irratsionaalarvud moodustavad reaalarvude hulga. Kõigi reaalarvude hulga tähistame sümboliga R. Iga lõplikku kümnendmurdu a= , 12 ...n saab esitada lõpmatu kümnendmurruna kahel viisil: a = , 12 ...n 00... või a =...

Matemaatika → Matemaatiline analüüs i
687 allalaadimist
thumbnail
16
docx

J. Kurvitsa teooria vastused

1. Kollokvium 1. Hulga mõiste. Järjestatud hulk. Tehted hulkadega. Arvuhulgad. Teoreem. Ei leidu ratsionaalarvu, mille ruut on 2 (tõestada). Tõkestatud hulgad (näide). Tõkestamata hulgad (näide). Hulk koosneb elementidest, kusjuures elemendid ei kordu ja nende järjestus ei ole kindlaks määratud. Järjestatud hulk koosneb samuti elementidest, kuid selles hulgas on iga kahe elemendi kohta võimalik öelda, kumb neist on eelnev, kumb järgnev. Tehted hulkadega: * Hulkade A ja B ühendiks ehk summaks nimetatakse hulka, mille moodustavad kõik kas hulka A, hulka B või mõlemasse kuuluvad elemendid. Hulkade A ja B ühendit tähistatakse * Hulkade A ja B ühisosaks ehk korrutiseks nimetatakse hulka, mille moodustavad kõik üheaegselt nii hulka A kui ka hulka B kuuluvad elemendid. Hulkade A ja B ühisosa tähistatakse * Hulkade A ja B vaheks nimetatakse kõigi selliste elementide hulka, mis kuuluvad hulka A, kuid ei...

Matemaatika → Matemaatiline analüüs
195 allalaadimist
thumbnail
3
docx

Matemaatiline analüüs 1

23Funktsiooni muudu peaosa ja jääkliige. Olgu antud funktsioon, mis on diferentseeruv punktis a. Eeldame, et f(a)0 26l'Hospitali reegli põhjal saab 0/0 tüüpi määramatusega piirväärtuse arvutamisel üle minna piirväärtusele, mille all kasutades mõisteid: esineb esialgse murru lugeja tuletise ja nimetaja tuletise jagatis. x = x - a - argumendi muut kohal a Tuletamine. Arvutame lim(x0)?sinx/x?. Elementaarfunktsioon sinx/x ei ole x = 0 korral määratud (tekib määramatus y = f(x) - f(a) - funktsiooni muut kohal a . 0/0). Piirväärtuse arvutamisel kasutame l'Hospitali reeglit: Näitasime, et ...

Matemaatika → Matemaatiline analüüs 1
66 allalaadimist
thumbnail
39
pdf

Matemaatiline analüüs I konspekt -Tõkestatud hulgad

Kordamine matemaatilise analüüsi I eksamiks matemaatika-informaatika teaduskonnas 04/05 õ.a I FUNKTSIOONID Tõkestatud hulgad Ülalt ja alt tõkestatud hulgad Olgu X mingi reaalarvude hulk. Definitsioon: Kui leidub niisugune reaalarv M , et hulga X iga elemendi x puhul kehtib võrratus x M , siis öeldakse, et hulk X on ülalt tõkestatud, kusjuures arvu M nimetatakse hulga X ülemiseks tõkkeks. Ülalt tõkestatud hulga X elemendid paiknevad seega lõpmatus poollõigus (- , M ] . Definitsioon: Kui leidub niisugune reaalarv m , et hulga X iga elemendi x puhul kehtib võrratus x m , siis öeldakse, et hulk X on alt tõkestatud, kusjuures arvu m nimetatakse hulga X alumiseks tõkkeks. Alt tõkestatud hulga X elemendid paiknevad seega lõpmatus poolllõigus [m, ) . Definitsioon: Hulka X nimetatakse tõkestatud hulgaks, kui X on ülalt ja alt tõkestatud. Tõkestatud hulga X elemend...

Matemaatika → Matemaatiline analüüs i
73 allalaadimist
thumbnail
22
doc

Matemaatiline analüüs I - kordamine eksamiks (ainekava järgi koostatud konspekt)

Ainekava eksamiks ,, Matemaatiline analüüs I " 2007 ­ 2008 kevadsemester 1. Naturaalarvud, täisarvud, ratsionaalarvud, irratsionaalarvud, reaalarvud. Naturaalarvud ­ arvud, mis saadakse loendamise teel, tähistatakse: IN (1, 2, 3, 4, 5, 6, ..., ) Täisarvud ­ kõik naturaalarvud ja nende vastandarvud ning lisaks 0, tähistatakse Z m Ratsionaalarvud ­ on sellised reaalarvud, mida saab esitada kahe täisarvu m ja n jagatisena nii et n n 0 . Igal ratsionaalarvul on ka lõpmatu kümnendmurdarendus ja see on alati perioodiline, tähistatakse Q Irratsionaalarvud ­ mitteperioodilised lõpmatud kümnendmurrud. Tähistus I Reaalarvud ­ hulk R, koosneb k...

Matemaatika → Matemaatiline analüüs i
776 allalaadimist
thumbnail
177
pdf

ÜHE MUUTUJA MATEMAATILINE ANALÜÜS

LTMS.00.022 ÜHE MUUTUJA MATEMAATILINE ANALÜÜS Loengukursus Tartu Ülikooli loodus- ja täppisteaduste valdkonna üliõpilastele 2019./2020. õppeaasta Toivo Leiger Joonised: Ksenia Niglas Pisitäiendused 2016–20: Märt Põldvere, Natalia Saealle, Indrek Zolk, Urve Kangro 2 Sisukord 1 Reaalarvud 6 1.1 Järjestatud korpused . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1.1.1 Korpuse aksioomid . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1.1.2 Järjestatud korpus . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 1.1.3 Täielik järjestatud ...

Matemaatika → Algebra I
8 allalaadimist


Sellel veebilehel kasutatakse küpsiseid. Kasutamist jätkates nõustute küpsiste ja veebilehe üldtingimustega Nõustun