MATEMAATILINE ANALÜÜS II Kood YMM0012 3,5 AP KORDAMISKÜSIMUSED 1. Mitme muutujaga funktsiooni mõiste m-muutuja funktsiooniks nimetatakse kujutist, mis seab suuruse P igale väärtusele tema muutumispiirkonnast D vastavusse suuruse z ühe kindla väärtuse Mitmemuutuja funktsioon graafik Funktsiooni z=f(x1,x2,...,xm), määramispiirkonnaga D, graafikuks nimetatakse järgmist ruumi Rm+1 alamhulka ={(x1,x2,...,xm,f(x1,x2,...,xm))||P(x1,x2,...,xm)D} 2. Nivoojooned ja pinnad Kahemuutuja funktsiooni z=f(x,y) nivoojooneks nimetatakse joont, mille moodustavad piirkonna D punktid (x,y) mille korral f(x,y)=C, kus C on etteantud konstant Skalaarvälja f ehk funktsiooni f nivoopinnaks nimetatakse pinda, mis koosneb piirkonna D punktidest (x,y,z) mille korral f(x,y,z)=C, kus C on etteantud konstant. 3. Mitme muutuja funktsiooni piirväärtus ja pidevus Mitmemuutuja funktsiooni piirväärtus m-muutuja funktsioonil f on piirväärtus b punktis A kui suvalises piirprotsessis PA, mis rahulda
1) Mitmemõõtmelise ruumi ja selle punkti mõisted. Kaugus mitmemõõtmelises ruumis. Kauguse omadused. Parameetrilised jooned. · Mitmemõõteliseks ruumiks nimetakse hulka , mille elementideks on kõik reaalarvust koosnevad järjestatud süsteemid ( a1, a2, ..., an). · Mitmemõõtmelise ruumi punktiks nim mitmemõõtmelise ruumi ( a1, a2, ..., an) süsteemi A=( a1, a2, ..., an). · Kaugus mitmemõõelises ruumis. Kui A=( a1, a2, ..., an) ja B=( b1, b2, ..., bn) siis |AB|= (a1-b1)+ (a2-b2)+ ...+ (an-bn) · Kauguste omadused: A=B siis ja ainult siis, kui |AB|=0 |AB|=|BA| |AB| |AC|+|CB| · Parameetrilised jooned ruumis Rm. Olgu lõigul [T1, T2] antud m funktsiooni x1 = 1(t), x2 = 2(t), . . . , xm = m(t). Vaatleme nende funktsioonidevõrranditest moodustatud süsteemi x1 = 1(t)
1) Mitmemõõtmelise ruumi ja selle punkti mõisted. Kaugus mitmemõõtmelises ruumis. Kauguse omadused. Parameetrilised jooned. · Mitmemõõteliseks ruumiks nimetakse hulka , mille elementideks on kõik reaalarvust koosnevad järjestatud süsteemid ( a1, a2, ..., an). · Mitmemõõtmelise ruumi punktiks nim mitmemõõtmelise ruumi ( a1, a2, ..., an) süsteemi A=( a1, a2, ..., an). · Kaugus mitmemõõelises ruumis. Kui A=( a1, a2, ..., an) ja B=( b1, b2, ..., bn) siis |AB|= (a1-b1)+ (a2-b2)+ ...+ (an-bn) · Kauguste omadused: A=B siis ja ainult siis, kui |AB|=0 |AB|=|BA| |AB| |AC|+|CB| · Parameetrilised jooned ruumis Rm. Olgu lõigul [T1, T2] antud m funktsiooni x1 = 1(t), x2 = 2(t), . . . , xm = m(t). Vaatleme nende funktsioonidevõrranditest moodustatud süsteemi x1 = 1(t)
Hulkade H1,....,Hn, otsekorrutiseks e Cartesiuse korrutiseks H1x...xHn nim kõigi järjendite (h1...hn), kus hkHk (k=1,...,n), hulka. Järjendit nim ka korteeziks. Kui Hk=H (k=1,...,n), siis n teguri, millest igaüks on H, otsekorrutise H x...x H jaoks kasutatakse ka tähistust Hn Aritmeetiliseks punktruumiks Rn nimetatakse otsekorrutist Rn, kus R tähistab reaalarvude hulka. Aritmeetiliseks vektorruumiks Rn nimetatakse hulka Rn, mille elementidel on defineeritud liitmine ja arvuga korrutamine järgmiselt: (x1,...,xn)+(y1,...,yn)=(def) (x1+y1,...,xn+yn), (x1,...,xn)=(def) (x1,...,xn), kus (x1,...,xn), y1,...,yn) Rn ja R Ruumi Rn punktide p(x1,...,xn) ja Q(y1,...,yn) vaheliseks kauguseks nim arvu d(P,Q)= ( x1 - y1) 2 + ... + ( xn - yn) 2 . Vektorruumi Rn vektorite x=(x1,...,xn) ja y=(y1,..,yn) skalaarkorrutiseks nim arvu x*y=x1y1+...+xnyn Vektorruumi Rn nullvektorist erinevate vektorite x=(x1,...,xn) ja y=(y1,...,yn) vahelise nurga koosinuseks nim arvu cos (nurk x,y)=x*y/|x||y| Hulka
Kordamine eksamiks aines matemaatiline analüüs II (2004/2005 õa kevad) §1. MITME MUUTUJA FUNKTSIOONID 1. Ruum R m , hulgad selles ruumis Def. Kõigi m reaalarvust koosnevate järjestatud süsteemide P = ( x1 ,..., x m ) hulka nimetatakse m-mõõtmeliseks ruumiks. Def. Kui m-mõõtmelises ruumis defineeritakse süsteemide P = ( x1 ,..., x m ) ja Q = ( y1 ,..., y m ) m
Teemad: 5. Öeldakse, et { xn} on Cauchy jada ehk fundamentaaljada, kui iga > 0 korral leidub C N, 1. Norm ja kaugus (meetrika). Ümbrused. -ümbruse definitsioon. Reaalarvu ühepoolsed et iga naturaalarvu n > C ja naturaalarvu p korral kehtib võrratus |xn+p - xn| < . ümbrused. Lõpmatuse ümbrused. Lause. Jada { xn} koondub parajasti siis, kui ta on Cauchy jada. 2. Funktsiooni mõiste. Reaalmuutuja ühene funktsioon. Määramispiirkond, muutumispiirkond. Jada kuhjumispunktiks nim. arvu, mille igas ümbruseson lõpmata palju vaadeldava jada Paaris ja paaritud funktsioonid. Perioodilised ja antiperioodilised funktsioonid. liikmeid. Pöördfunktsioon. Monotoonsed funktsioonid. Kasvavad ja kahanevad funktsioonid. Lause. Arv a on jada { xn} kuhjumispunkt pa
Mitmemõõtmelise ruumi mõiste Def: On antud n reaalarvu x1...xn ja nende järjestatud jada (x1...xn)(-punkt) seda nim n- mõõtmelise ruumi punktiks. Rn={(x1,...,xn) | xi R, i=1,...,n}, P(x1,...,xn) punkt koordinaatidega xi n=1: R1={P(x1) | x1 R} geom. sirge n=2: R2={P(x1,x2) | x1,x2 R} geom. tasand n=3: R3={P(x1,x2,x3) | x1,x2,x3 R} geom. ruum Punkt A on piirkonna D sisepunkt, sel korral kui tal leidub ümbrus, mis sisaldub piirkonnas D. Punkt A on piirkonna D rajapunkt sel korral kui iga tema ümbrus sisaldab nii piirkonna D kui ka piirkonda mittekuuluvaid punkte. Piirkond D on lahtine, kui ta koosneb sisepunktidest. Piirkond D on kinnine, kui ta koosneb nii sise- kui ka rajapunktidest. Mitme muutuja funktsiooni mõiste Def: nMF f:RnR:P(x1,...,xn) Rn a w=f(P) f(x1,...,xn) R Kujutlus, mis seab n-mõõtmelise ruumi punktidele P vastavusse lõpliku reaalarvu w=f(P), nim n- muutuja funktsiooniks. Geom hüperpind n+1-mõõtmelises ruumis. Füüsikaliselt on nMF skalaarv?
Mitme muutuja funktsiooni mõiste
Def: Kui igale x-I ja y-I väärtuste paarile mingis piirk D on vastavusse seatud muutuja z teatud kindel väärtus, siis öeldakse et z
on kahe muutuja y ja x funktsioon. z=(x; y) või z=z(x; y) või z=(x; y) või z=F(x; y). (joon) D-x, y tasandi punktide hulk; -
piirk D rajajoon e raja. Def1: Piirk D nim lahtiseks kui ta ei sisalda ühtegi oma rajajoone punkti; Def2: Piirk D nim kinniseks kui
ta sisaldab kõiki oma rajajoone punkte. Näiteks on kaks hulka: A={(x; y)x2+y2
Kõik kommentaarid