Vajad kellegagi rääkida?
Küsi julgelt abi LasteAbi
Logi sisse
✍🏽 Avalikusta oma sahtlis olevad luuletused! Luuletus.ee Sulge

Mat. tõestuse põhimõtted - sarnased materjalid

ões, ioon, äide, maatrik, eelda, algarv, aame, tame, teoreem, eega, väärtu, uhul, aatriks, mend, ment, maatriks, tatud, ellis, murd, elem, umma, korrutatu, mega, veerg, mendid, ides, predikaat, avaldis, ärgi, jagub, algarvud, veergu, kolmnurg, teoreemid, kirj, eelnevat, lahend, naturaal, tega, tavate, elementid, tiline, defineeri, ioom, mnurga
thumbnail
15
doc

Matemaatiliste tõestuste meetodid

Matemaatiliste tõestuste meetodid 1. Otsesed tõestuse meetodid M ate maat ilin e s üs teem koos neb aks ioomides t, teoreemides t, definits ioonides t ja defineeri ma ta obj ektides t. A ks ioom on laus e, mid a eeldataks e tõene olevat. D ef in its ioon i kas utataks e uute konts epts ioonide ja mõis t ete s elgitamis eks teadaolev ate mõis te te kaudu. Teoreem on väide, mis on tões tatud. L em m a - väiks e ma is es eis va tähts us ega teoreem, mis on ena mas ti abiks teoreemide tões ta mis e l. Järeld u s - toeree mis t ots es elt j ärelduv tule mus N äited: D efineeri ma ta obj ektid: punktid, jooned D efinits ioon: Kolmnurga ümber mõõ t on võrdne s elle kolmnurga külgede s ummaga Teoree m: Täis nuks e kolmnurga kaatet ite ruutude s umma võrdub hüpotenuus i ruuduga. J äreldus : kui kolmnurga külj ed on võrds e pikkus ega, s iis on s elle kolmnug a nurgad s amut i võrds ed.

Matemaatika
1 allalaadimist
thumbnail
17
doc

Relatsioonid ja funktsioonid

Relatsioonid ja funktsioonid 1. Relatsioon Lähtu me ees pooldefineeri tud hulkade Cartes ius e korrutis es t ehk ris tkorrutis es t (öeldaks e ka ots ekorrutis ) A × B tähendab kõiki järj es tatud paaride hulka (a,b), kus a A j a b B. N 1: A ntud on hulgad A= { 1,2} j a B={ 1} Leia me : A × B= { (1,1),(2,1)} B × A ={ (1,1),(1,2)} J äreldus : A × B B × A Hu lga A × B alam h ulk a R n im etatak s e b in aars eks relats ioon ik s hu lgas t A hu lk a B K ui (a,b) R, s iis kirj utataks e ka aRb. J uhul kui a pole s eotud b-ga s iis kirj utataks e a R b . Erij uhul kui B=A , s iis R on binaars e relats ioon hulgal A . (alterna tiivne levinud tähis tus on A x B : A B ) Relatsiooni (vastavuse) määramispiirkond D om(R )= { a A |leidub b B nii et (a,b) R } (doma in of R) Relatsiooni (vastavuse) muutumispiirkond R ange(R )= { b B | leidub a A nii et (a,b) R} (range of R)

Matemaatika ja statistika
55 allalaadimist
thumbnail
17
doc

Relatsioonid ja funktsioonid

Relatsioonid ja funktsioonid 1. Relatsioon on hulk paare Lähtu me ees pooldefineeri tud hulkade Cartes ius e korrutis es t ehk ris tkorrutis es t (öeldaks e ka ots ekorrutis ) A × B tähendab kõiki järj es tatud paaride hulka (a,b), kus a A j a b B. N 1: A ntud on hulgad A= { 1,2} j a B={ 1} Leia me : A × B= { (1,1),(2,1)} B × A ={ (1,1),(1,2)} J äreldus : A × B B × A Hu lga A × B alam h ulk a R n im etatak s e b in aars eks relats ioon ik s hu lgas t A hu lk a B K ui (a,b) R, s iis kirj utataks e ka aRb. J uhul kui a pole s eotud b-ga s iis kirj utataks e a R b . Erij uhul kui B=A , s iis R on binaars e relats ioon hulgal A . (alterna tiivne levinud tähis tus on A x B : A B ) Relatsiooni (vastavuse) määramispiirkond , tähis on Dom(R) D om(R )= { a A |leidub b B nii et (a,b) R } (doma in of R) Relatsiooni (vastavuse) muutumispiirkond

Matemaatika
6 allalaadimist
thumbnail
7
doc

Hulgateooria põhimõisted

P aradoks : a) H abemeaj aj a puzle- kapten käs ib rühma habemeaj aj ale aj ada habet kõikidel kompan ii liikmete l, eeldus el et rühma liik med ei tohi is e habet aj ada. O lles kõigi teis te habemed aj anud, kas vab talle endale habe. Enda habet ei s aa ta aj ada, s es t nii rikuks ta kapteni käs ku. Kui ta aga enda habet ei aj a, s iis ta peaks ühtpidi kapteni käs u järgi enda habet aj ama (kõikidel liik me tel). D ef: Hu lk A on k ollek ts ioon k orrek ts elt d ef in eeritu d ob jek tid es t, n ii et iga ob jek ti k orral k eh tib ük s järgevas t k ah es t võim alu s es t - x k u u lub h u lk a A , k irju tam e x A - x ei ku u lu h u lk a A , k irju tam e x A H ulki tähis tame s uurte tähtedega j a nende ele men te väikes te tähtedeg a. Tühihulk Ø ={ } N äited hulkada defineerimis es t j a kas uta mis es t N 1. A ntud hulgad { a) x | x on reaalarv ja kehtib x 2 = 1}

Matemaatika ja statistika
57 allalaadimist
thumbnail
7
doc

Hulgateooria põhimõisted

P aradoks : a) H abemeaj aj a puzle- kapten käs ib rühma habemeaj aj ale aj ada habet kõikidel kompan ii liikmete l, eeldus el et rühma liik med ei tohi is e habet aj ada. O lles kõigi teis te habemed aj anud, kas vab talle endale habe. Enda habet ei s aa ta aj ada, s es t nii rikuks ta kapteni käs ku. Kui ta aga enda habet ei aj a, s iis ta peaks ühtpidi kapteni käs u järgi enda habet aj ama (kõikidel liik me tel). D ef: Hu lk A on k ollek ts ioon k orrek ts elt d ef in eeritu d ob jek tid es t, n ii et iga ob jek ti k orral k eh tib ük s järgevas t k ah es t võim alu s es t - x k u u lub h u lk a A , k irju tam e x A - x ei ku u lu h u lk a A , k irju tam e x A H ulki tähis tame s uurte tähtedega j a nende ele men te väikes te tähtedeg a. Tühihulk Ø ={ } N äited hulkada defineerimis es t j a kas uta mis es t N 1. A ntud hulgad { a) x | x on reaalarv ja kehtib x 2 = 1} -1 ja 1

Algebra ja Analüütiline...
8 allalaadimist
thumbnail
48
pdf

Maatriksid

SISUKORD I. Maatriksid ja determinandid 1. Maatriksi m~oiste. Tehted ja nende omadused . . . . . . . . . . . . . . . . . . . . . . 4 2. Permutatsioonid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 3. Determinandi m~oiste. Omadused . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 4. Laplace'i teoreem. Determinandi arendamine rea ja veeru j¨argi . . . 34 5. Teoreem maatriksite korrutise determinandist . . . . . . . . . . . . . . . . . . . . 40 6. P¨o¨ordmaatriks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 II. Vektorruum u ¨le reaalarvude 7. Vektorruumi m~oiste. Omadused . . . . . . . . . . . . . . . . . . . . . . . . . . .

Algebra ja geomeetria
55 allalaadimist
thumbnail
96
pdf

ALGEBRA JA GEOMEETRIA

SISUKORD I. Maatriksid ja determinandid 1. Maatriksi m˜oiste. Tehted ja nende omadused . . . . . . . . . . . . . . . . . . . . . . 4 2. Permutatsioonid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 3. Determinandi m˜oiste. Omadused . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 4. Laplace’i teoreem. Determinandi arendamine rea ja veeru j¨argi . . . 34 5. Teoreem maatriksite korrutise determinandist . . . . . . . . . . . . . . . . . . . . 40 6. P¨o¨ordmaatriks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 II. Vektorruum u ¨le reaalarvude 7. Vektorruumi m˜oiste. Omadused . . . . . . . . . . . . . . . . . . . . . . . . . . .

Algebra ja geomeetria
19 allalaadimist
thumbnail
32
pptx

Prantsusmaa

ma a s u s an t Pr An Ha t s V rm i s o l me I X Põ h r s o kl ik n 20 a s oo 10 s l e Vabariik tsus Pran Riik Euroopas is e , u e F anca , R e publiq F r a nce n im etus: lik Amet Pindala 5

Geograafia
22 allalaadimist
thumbnail
104
pdf

Konspekt

4 ¨ Ulesandeid 4.1 ¨ Ulesanne Arenda determinant teise rea ning kolmanda veeru j¨argi ning ar- vuta tema v¨a¨artus m~olemal viisil. V~ordle tulemusi. 4 3 -5 0 3 2 0 -5 1 0 -2 3 0 1 -3 4 4.2 ¨ Ulesanne Arvuta determinant omaduste (vt teoreem 2) abil. 3 6 5 6 4 5 9 7 8 6 6 12 13 9 7 = · · · = 5 4 6 6 5 4 2 5 4 5 3 4.3 Vandermonde'i determinant Arvuta n-j¨arku Vandermonde'i determinant 1 1 ... 1 x1 x2 ... xn Vn (x1 , . . . , xn ) := x21 x22 ... x2n = ··· = (xk - xi )

Lineaaralgebra
510 allalaadimist
thumbnail
177
pdf

ÜHE MUUTUJA MATEMAATILINE ANALÜÜS

. . . . . . . . . . . . 33 2.1.4 Tähtsad piirväärtused . . . . . . . . . . . . . . . . . . . . . . . . . . 34 2.2 Koonduvuseteooria neli printsiipi . . . . . . . . . . . . . . . . . . . . . . . . 35 2.2.1 Monotoonsuseprintsiip . . . . . . . . . . . . . . . . . . . . . . . . . . 35 2.2.2 Bolzano–Weierstrassi teoreem . . . . . . . . . . . . . . . . . . . . . . 36 2.2.3 Cauchy kriteerium . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 2.2.4 Cantori teoreem üksteisesse sisestatud lõikudest . . . . . . . . . . . . 38 2.2.5 Reaalarvu kümnendesitus . . . . . . . . . . . . . . . . . . . . . . . . 39 2.2.6 Arv e . . . . . . . . . . . . . . . . . . . .

Algebra I
8 allalaadimist
thumbnail
24
rtf

Lineaaralgebra eksam

mingile reale skalaarikordse mingi teise rea juurde liitmine 2. mingi rea korrutamine nullist erineva skalaariga (3. kahe rea omavaheline vahetamine) Kui maatriks B on saadud maatriksist A ridade ja veergude elementaarteisendustega, siis r(A) = r(B) Maatriksi A astaku r(A) leidmiseks teisendatakse see maariks ridade ja veergude elementaarteisendustega selliseks maatriksiks B, mille astak r(B) on maatriksi B kujust hõlpsasti leitav. (r(B) suurune ühikmaatriks, ülejäänud nullid) 21. Teoreem maatriksi astakust (tõestusega). Järeldusi sellest. Kui maatriksi A astak on k, siis maatriksil A leidub k lineaarselt sõltumatut reavektorit, millede lineaarse kombinatsioonina avalduvad kõik reavektorid. A = ||aij|| Kmxn. Olgu r(A) = k ja reavektorid 1 = (a11; a12; ...; a1n) Kn ; ...; m = (am1; am2; ...; amn) Kn => leidub k-ndat järku nullist erinev miinor M i1, ...;ikj1;...jk 0 ja kõrgemat järku miinorid on nullid. Üldsust kitsendamata võib eeldada M1,..,k1,..,k 0

Lineaaralgebra
197 allalaadimist
thumbnail
64
pdf

Kolokvium 1 materjal

TTU¨ Matemaatikainstituut http://www.staff.ttu.ee/math/ Ivar Tammeraid http://www.staff.ttu.ee/itammeraid/ ¨ US MATEMAATILINE ANALU ¨ I Elektrooniline ~oppevahend Tallinn, 2001 Tr¨ ukitud versioon: Ivar Tammeraid, Matemaatiline anal¨ uu ¨ Kirjastus, ¨s I, TTU Tallinn 2001, 227 lk, ISBN 9985-59-289-1 ¨ Raamatukogu Viitenumber http://www.lib.ttu.ee TTU ~opikute osakonnas 517/T-15 c Ivar Tammeraid, 2001 Sisukord 0.1. Eess~ ona K¨aesoleva ~ oppevahendi aluseks on autori poolt viimastel aastatel Tallinna Tehnika¨ ulikoo- lis bakalaureuse~ oppe u ¨li~ opilastele peetud u ¨he muutuja funktsiooni diferentsiaal- ja inte- graalarvutuse loengud nimetuse "Matemaatiline anal¨ uu¨s I" all. Siiski ei ole tegu pelgalt u ¨hel semestril esitatu kirjapanekuga. Lisatud on

Matemaatiline analüüs
65 allalaadimist
thumbnail
142
pdf

Matemaatiline analüüs I

Matemaatiline anal¨ uu¨s I Jaan Janno ii Sisukord 1 Funktsioonid ja nendega seotud m~ oisted 1 1.1 Reaalarvud ja Arvtelg. Absoluutv¨a¨artuse m~oiste. Reaalarvudest koosnevad hulgad. . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 J¨a¨ avad ja muutuvad suurused. Funktsiooni m~oiste ja esitusviisid. 3 1.3 Funktsioonide liigid. Konstantne funktsioon. Astme-, eksponent- ja trigonomeetrilised funktsioonid. . . . . . . . . . . . . . . . . . 6 1.4 P¨o¨ ordfunktsiooni m~oiste. Logaritmfunktsioon. Arkusfunktsioonid. 8 1.5 Tehted funktsioonidega. Elementaarfunktsioon. Pol¨ unoom ja ratsionaalfunktsioon. . . . . . . . . . . . . . . . . . . . . . . . . . 18 1.6 Ilmutatud ja ilmutamata funktsioonid. Parameetrilisel kujul an- tud jooned ja funktsioonid. . . . . . . . . . . . . . . . . . . . . . 19 1.7 H¨uperboolsed trigonomeetrilised funktsio

Matemaatika
42 allalaadimist
thumbnail
142
pdf

Matemaatilise analüüsi konspekt TTÜ's

Matemaatiline anal¨ uu¨s I Jaan Janno ii Sisukord 1 Funktsioonid ja nendega seotud m~ oisted 1 1.1 Reaalarvud ja Arvtelg. Absoluutv¨a¨artuse m~oiste. Reaalarvudest koosnevad hulgad. . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 J¨a¨avad ja muutuvad suurused. Funktsiooni m~oiste ja esitusviisid. 3 1.3 Funktsioonide liigid. Konstantne funktsioon. Astme-, eksponent- ja trigonomeetrilised funktsioonid. . . . . . . . . . . . . . . . . . 6 1.4 P¨o¨ordfunktsiooni m~oiste. Logaritmfunktsioon. Arkusfunktsioonid. 8 1.5 Tehted funktsioonidega. Elementaarfunktsioon. Pol¨ unoom ja ratsionaalfunktsioon. . . . . . . . . . . . . . . . . . . . . . . . . . 18 1.6 Ilmutatud ja ilmutamata funktsioonid. Parameetrilisel kujul an- tud jooned ja funktsioonid. . . . . . . . . . . . . . . . . . . . . . 19 1.7 H¨uperboolsed trigonomeetrilised funktsioonid. . . . . . . . .

Matemaatiline analüüs
47 allalaadimist
thumbnail
89
docx

Matemaatiline maailmapilt

ehk sümbolites: Kui A, siis B Kui ¬B, siis ¬A. Öeldakse ka, et need laused on loogiliselt samaväärsed. Näide1: Lause: ,,Kui nelinurk on rööpkülik, siis tema diagonaalid poolitavad teineteist." Pöördvastandlause: ,,Kui nelinurga diagonaalid ei poolita teineteist, siis nelinurk ei ole rööpkülik." Kehtigu teoreem: Kui A, siis B. Sel juhul öeldakse, et A on piisav tingimus selleks, et kehtiks B. Samuti öeldakse, et B on tarvilik tingimus selleks, et kehtiks A. Näide: Lause: Kui tuleb riiklik toetus, siis saame ürituse läbi viia. Riiklik toetus on piisav selleks, et üritust läbi viia. Ürituse läbiviimiseks on tarvilik, et oleks riiklik toetus. Kui koos teoreemiga (Kui A, siis B) kehtib ka pöördteoreem (Kui B, siis A), siis võetakse

Matemaatika
49 allalaadimist
thumbnail
615
doc

Europarlamenti kandideeriad

#Sissejuhatus Euroopa Parlamendi valimistel moodustab Eesti Vabariik he valimisringkonna. See thendab, et kikides valimisjaoskondades saab valida htesid ja samu kandidaate erinevalt Riigikogu valimistest. Eestist valitakse europarlamenti kuus saadikut, kokku on Euroopa Parlamendis 732 saadikut 25-st Euroopa Liidu riigist. Riigikogus esindatud erakondade esinumbrid europarlamendi valimisnimekirjades on Kristiina Ojuland Reformierakonnast, Edgar Savisaar Keskerakonnast, Tunne Kelam Isamaa ja Res Publica Liidust, Ivari Padar Sotsiaaldemokraatlikust Erakonnast, Marek Strandberg Eestimaa Rohelistest ja Anto Liivat Rahvaliidust. Eesti Reformierakond esitas 12 kandidaati, Eestimaa hendatud Vasakpartei 6, Eesti Keskerakond 12, Erakond Isamaa ja Res Publica Liit 12, Vene Erakond Eestis 6, Erakond Eesti Kristlikud Demokraadid 3, Sotsiaaldemokraatlik Erakond 12, Erakond Eestimaa Rohelised 12, Libertas Eesti Erakond 6, Eestimaa Rahvaliit 12, Pllumeeste Kogu 2 kandidaati. ksikkandidaatidena soovi

Ühiskonnaõpetus
12 allalaadimist
thumbnail
51
pdf

Enno Paisu konspekt

df f u' = du df dy = dx dx Seda omadust nimetatakse diferentsiaali invariantsuseks. df dy = du du Sellest, kas me kirjutame ta sõltumatu muutuja x suhtes või sõltuva muutuja u suhtes... © 2001 - Ivari Horm ([email protected]), Toomas Sarv 20 Funktsiooni kasvamine ja kahanemine. Rolle'i teoreem (tõestusega). Definitsioon 1 Vaatleme funktsiooni y = f (x) vahemikus (a, b) Olgu x1 < x 2 , x1 , x 2 (a, b) 1) kui f ( x1 ) < f ( x2 ) f ( x) on kasvav; 2) kui f ( x1 ) f (x2 ) f ( x) on mittekahanev; 3) kui f ( x1 ) > f (x2 ) f ( x) on kahanev; 4) kui f ( x1 ) f (x2 ) f ( x) on mittekasvav. Olgu f (x) kasvav vahemikus (a, b) x = x 2 - x1

Matemaatiline analüüs
179 allalaadimist
thumbnail
51
pdf

Matemaatilise analüüsi konspekt

df f u' = du df dy = dx dx Seda omadust nimetatakse diferentsiaali invariantsuseks. df dy = du du Sellest, kas me kirjutame ta sõltumatu muutuja x suhtes või sõltuva muutuja u suhtes... © 2001 - Ivari Horm ([email protected]), Toomas Sarv 20 Funktsiooni kasvamine ja kahanemine. Rolle'i teoreem (tõestusega). Definitsioon 1 Vaatleme funktsiooni y = f (x) vahemikus (a, b) Olgu x1 < x 2 , x1 , x 2 (a, b) 1) kui f ( x1 ) < f ( x2 ) f ( x) on kasvav; 2) kui f ( x1 ) f (x2 ) f ( x) on mittekahanev; 3) kui f ( x1 ) > f (x2 ) f ( x) on kahanev; 4) kui f ( x1 ) f (x2 ) f ( x) on mittekasvav. Olgu f (x) kasvav vahemikus (a, b) x = x 2 - x1

Matemaatiline analüüs
11 allalaadimist
thumbnail
67
pdf

Konspekt

I )V I i l J D FQN- st AAglSae{r.r D t} TL0F$.,x. AALDA',JDM0(]T0)ATS6A DV o v r ( * ) d x "s ( X ) = O ( . ) t-.,-^ u(") rb st) * o,&-d {r-.-r"l.,tv'cor^- cl- . _Nt Jrct++ .i q=o JSSf a!-hl v-t As&.rpsl,$.Bt (.rfn,t")a* -!ffln,= J6q-+^s I Nodor^rr r e ("r) o,w l,) l.,o-t.,q4d^L-" = (r) ro-tq^'d a o.- t(') M x )d r + l . l ( 1 ( * ) ) d f u = _ 9=++ t "O t) ! x g'(x& (rt t' t u(,itxt)1'(u)) .tu =e

Dif.võrrandid
234 allalaadimist
thumbnail
571
doc

Mikolaj Kopernik

#;h_èMZ-C}#v#R^#&#*;Y9`0#? #SVrM6+#1nM#Z3j1##Kv? #P^###ocQEz0#qq#z4?Um? #a#z##[#[##J%#J@ ##GI_- k#G Z t%d #S##jRc#mg# 3#m#|s<|#ATW#:6c *[` # [X #<#Q##> 4mT~*i6#- - ,u#U#Ayrmb#44lq#x#ZQml#d##{ :uZG3r?S#T0l-c#n U%y#%]90# zw[*wV1Q####n##c4$r##Xy.APio*E## #s I#wN#x>j=5Yr5O#^4 ;#}#Mahi%[8,GR- _6mx-U#y#y!d3h&?u.-,'#'- `8Vvoq#}3Km4h2O6Nv<- 9/w+FkF"+! R2#R#dOuc#Gi9[#s# #V#MQB#]#S##O7u#wnV 8'#:#m($#:| Q?}su[## P~<#g7#kAj#Kj^/#$U#JR X$Kx ? p#~4+7(} QY#V U?y# Y#p? AYHv.QMt_##Y<$14 g[J#/3Q- z"#? [#!6~T##in#9 #Oj+X0_UN~##*]7)@? ###?K}B#5S aEF#@#{ ## FsTyc[ T `8=O5ny#N##&t&####M# L~DZC2I#M%Vw#fo##aM,`+##i- m##=8 o@,n1e#o3X- ~, $n)#n##)PN^v@nNO8'5Z+##nDw b#vy$|^.TM;#Li N#o##'? o.##N

Füüsika
55 allalaadimist
thumbnail
19
doc

Matemaatika valemid.

1. Reaalarvud ja avaldised a, kui a 0 · Arvu absoluutväärtus ­ a = - a, kui a < 0 · Astme mõiste ja omadused a 0 = 1, kui a 0 a1 = a a n = a a a a, kui n N 2 1 a-k = , kui a 0 ja k Z või ak kui a > 0 ja k Q m n a m , kui a > 0, m Z ja n N a = n 2 0, kui a = 0, m N 1 ja n N1

Matemaatika
807 allalaadimist
thumbnail
38
pdf

Füüsika ülesannete lahendused 1-44

1. Vektorarvutused. 1. Murdmaasuusataja sõidab 1.00 km põhja poole ja siis 2.00 km itta. Maa on horisontaalne. Kui kaugel ja mis suunas asub ta lähtepunktist? Lahendus: Skeem.... Phytagorase teoreemi järgi saame kauguse - Ja nurga tangensi definitsiooni järgi leiame nurga Vastus: Suusataja kaugus alguspunktist on 2,24 km ja ta asub 63,4⁰ põhjast itta (võib ka öelda 90: - 63,4: = 26,6⁰ idast põhja) 2. Vektori pikkus on 3.00 m ja ta on suunatud x-teljest 45˚ päripäeva. Kui suured on selle vektori x- ja y-komponendid? Lahendus: Joonis Komponentide leidmiseks kasutame Valemeid ja kus D on vektori pikkus ja α vektori ja tema komponendi vaheline nurk.

Füüsika
61 allalaadimist
thumbnail
26
docx

Lineaaralgebra eksami kordamisküsimused vastused

regulaarne. Tähitatakse A−1 . Arvutamine T 1 A 11 A 12 A−1= ( | A| A 21 A 22 ) 54.regulaarne maatriks- n-järku maatriks A on regulaarne kui | A|≠ 0 55.singulaarne maatriks- n-järku maatriks A on singulaarne kui | A|=0 56.pöördmaatriksi omadused:  Kui n-järku maatriksil A leidub pöördmaatriks, siis nii maatrik A kui ka tema pöördmaatrik on regulaarsed  Maatriksi ja pöördmaatriksi determinandid on teineteie pöördarvud st. | A|∙| A−1|=1  Kui ruutmaatriksil on olemas pöördmaatriks, siis on ta määratud üheselt  Regulaarsete n-järku maatriksite A ja B korral kehtib valem ( AB)−1=B−1 A−1 A

Matemaatiline analüüs 1
124 allalaadimist
thumbnail
14
doc

KT spikker

4.Pöördmaatriksi definitsioon ja elementide leidmise eeskiri. Regulaarse ja singulaarse maatriksi mõisted. Def. 1. Maatriksi A pöördmaatriksiks nimetatakse sellist maatriksit B, mille korral AB = BA = E , (1) kus E on sobivat järku ühikmaatriks. Võrdustes (1) on korrutamine võimalik, kui A on ruutmaatriks. Seega pöördmaatriks võib leiduda ainult ruutmaatriksil. Teoreem 1. Maariksi A pöördmaatriks, juhul, kui ta eksisteerib, on üheselt määratud. Tõestus. Olgu B1 ja B2 maatriksi A pöördmaatriksid. Siis AB1 = B1 A = E , AB2 = B2 A = E ja B1 = B1E = B1 ( AB2 ) = ( B1 A ) B2 = EB2 = B2 , s.t. B1 = B2 ning teoreemi väide kehtib. Maatriksi A pöördmaatriksit tähistatakse A-1 . Seega

Lineaaralgebra
265 allalaadimist
thumbnail
40
pdf

Kujutava geomeetria vihik (harjutusülesanded)

Tall i n na Teh n i kaUl i kool I nsen_erig raafi ka keskus , KUJUTAVA GEOMEETRIA tl t ,I.JLDKURSUS ., '1" ' HARJUTUSULESANDED , 4F,tZ tc,V/pl @ I i ,:' .f .,i | ;' 't , Uudpitdne lrliA lr e L- "K i uj Opper1hm -- ,t -T t 4 a E_n t I tL

Kujutav geomeetria
1117 allalaadimist
thumbnail
21
pdf

Elektrotehnika I Alalisvool

T I l/ Pe*.r (jk'r A !-*c-isvG{',(-ttr,l*-,Vr'*o **a-Llrik J.,'l,'Tq*ij ,{udo L!,a_ i*.fu nr!-^*,5 T R1 Rr Pb Rn,, i- => ---- !._ a . Ju k*, UA ue uh @ '-**'** E Kitr{,"f,f:Ts{

Elektrotehnika
399 allalaadimist
thumbnail
21
pdf

Alalisvooluahelad

T I l/ Pe*.r (jk'r A !-*c-isvG{',(-ttr,l*-,Vr'*o **a-Llrik J.,'l,'Tq*ij ,{udo L!,a_ i*.fu nr!-^*,5 T R1 Rr Pb Rn,, i- => ---- !._ a . Ju k*, UA ue uh @ '-**'** E Kitr{,"f,f:Ts{

Füüsika
21 allalaadimist
thumbnail
186
pdf

Vahvlist südamed

€; ka F- ftiEZSg =o;5-E+=i3"- -€s t..;.F s q;:= ')'4= ft€ '9= :*i J y=B?Tii itE nt =:> 3 ?- 2-.VG !E'ii=:;riVf i: - i-Yg=- E 5 Et F>^Y,= -,r d s'ir& -c -- == =Ei==': E-=F.*:-€=v2.2; = =.g ,-J; = Z d.i:X:G€{'=13ag4. i-- -,-Yt EglPcElit'=qro- = g r^ 3 - l, Z T >a -c.- tr

Kirjandus
7 allalaadimist
thumbnail
151
pdf

PM Loengud

V.Jaaniso Pinnasemehaanika 1. SISSEJUHATUS Kõik ehitised on ühel või teisel viisil seotud pinnasega. Need kas toetuvad pinnasele vundamendi kaudu, toetavad pinnast (tugiseinad), on rajatud pinnasesse (süvendid, tunnelid) või ehitatud pinnasest (tammid, paisud) (joonis 1.1). a) b) c) d) J o o n is 1 .1 P in n a s e g a s e o tu d e h i tis e d v õ i n e n d e o s a d .a ) p i n n a s e le t o e t u v a d ( m a d a l - j a v a iv u n d a m e n t) b ) p i n n a s t t o e t a v a d ( t u g is e in a d ) c ) p in n a s e s s e r a j a tu d ( tu n n e li d , s ü v e n d i d d ) p in n a s e s t r a j a tu d ( ta m m i d , p a is u d ) Ehitiste koormuste ja muude mõjurite tõttu pinnase pingeseisund muutub, pinnas deformeerub ja võib puruneda nagu kõik teisedki materjalid. See põhjustab

Pinnasemehaanika, geotehnika
200 allalaadimist
thumbnail
24
pdf

Rekursiooni ja keerukusteooria eksami konspekt

= 0,1,2,... korral. T: Olgu L = L (M ), kus M = (Q , Σ, δ , Q0 , F ) ja Q = {q0 ,1 , . . . , qn }. Valime p = n. Siis sõne z = a1a2...an+1 aktsepteerimiseks peab automaat M tegema n+1 sammu. Järelikult vähemalt 1 olek peab korduma. Järelikult uw ∈ L(M), uvw ∈ L(M), uv2w ∈ L(M) jne. Keel L = {0n1n|n > 0} pole regulaarne. Sellise keele jaoks on vaja mälu. 6 Myhill-Nerode teoreem. DEF: Olgu keele L ⊆ Σ* (keel on kõigi sõnede hulga alamhulk) jaoks antud ekvivalentsiseos HL ⊆ Σ* × Σ* selline, et xHLy kehtib parajasti siis, kui iga z ∈ Σ* korral kehtib xz ∈ L yz ∈ L (iga suvalise z lisamisel x ja y sappa, kuuluvad saadud xz ja yz mõlemad keelde L või ei kuulu mõlemad). Teoreem: Keel L on regulaarne parajasti siis, kui seose HL ekvivalentsiklasside hulk on lõplik.

Informaatika
79 allalaadimist
thumbnail
4
doc

Lineaar algebra teooria kokkuvõte

Maatriksi A astakut tähistatakse rank(A) või r(A). Def. Kui maatriksitel A ja B on ühesugused järgud ja astakud, siis nim neid maatrikseid ekvivalentseteks ja kirjutatakse A~B (omadused: 1)refleksiivuss iga A~A 2)sümmeetria A~B ­ B~A 3)transitiivsus A~B ja B~C ­ A~C). Astaku leidmine: tuleb maatriks elementaarteisenduste abil teisendada tereppmaatriksiks, seejärel kasutada teoreemi treppmaatriksi astakust. Kronecker-Capelli teoreem.Öeldakse, et maatriksi astak on r, kui selle maatriksi rea ja veeru elementidest saab moodustada vähemalt ühe 0-st erineva r-järku miinori ja mitte ühtegi 0-st erinevat r+1 järku miinorit. Pöördmaatriks.Kuna maatriksite korrutamine ei olnud kommutatiivne ja lisaks leidusid nullitegurid, siis ei saa rääkida maatriksite jagamisest, kuid teatud juhtudel leidub maatriksil pöördmaatriks. Def. Ruutmaatriksi A pöördmaatriksiks nim sellist matrx B, mis rahuldab tingimust AB=I=BA. Teoreem

Lineaaralgebra
863 allalaadimist
thumbnail
33
doc

Füüsika eksam vene keel

FÜÜSIKA II EKSAM 1. Q1Q2 F: R2 ur Q Q uuur F = k 13 2 R12 R 12 1 k= 4 0 Í ì2 k 9 109 Êë 2 - . . , , : - -- . - . . 2. , - , . . , , , , . ­ . . , . 1 22.09.2013 FÜÜSIKA II EKSAM ur 1 Qq ur F= R 4 0 R 3 ur F 1 Q ur = R q 4 0 R 3 ur F ur =E q ur ur F = qE ur 1 Q ur E= R 4 0 R 3 - . : - , ; - , , , . 1 Q (r ) = 4 0 r 2 22.09.2013 FÜÜSIKA II EKSAM 3. . uur ur ur R2 R2 ur ur 2 1 Rd R 1 dR A= Fd R = qQ 3 = qQ 2 = 1

Vene keel
6 allalaadimist
thumbnail
47
pdf

Lineaaralgebra ja analüütiline geomeetria

L+l''-. Ir + T Jr4 i- tr il ti I r l T i ^t-. I J I I I I I I l l I I I T 1 4.). il I rl .i ,: -tt f -l -l-liI- -J' rlll ii"lr ( x ot ''S - tt -t-f . t i ' t' l J 5 uctR6.e,t,4"y 4,)' ... Ahi 2 uu.4DLl,

Kõrgem matemaatika
321 allalaadimist


Sellel veebilehel kasutatakse küpsiseid. Kasutamist jätkates nõustute küpsiste ja veebilehe üldtingimustega Nõustun