Vajad kellegagi rääkida?
Küsi julgelt abi LasteAbi
Logi sisse

Mat. tõestuse põhimõtted (0)

1 Hindamata
Punktid
Vasakule Paremale
Mat-tõestuse põhimõtted #1 Mat-tõestuse põhimõtted #2 Mat-tõestuse põhimõtted #3 Mat-tõestuse põhimõtted #4 Mat-tõestuse põhimõtted #5 Mat-tõestuse põhimõtted #6 Mat-tõestuse põhimõtted #7 Mat-tõestuse põhimõtted #8 Mat-tõestuse põhimõtted #9 Mat-tõestuse põhimõtted #10 Mat-tõestuse põhimõtted #11 Mat-tõestuse põhimõtted #12 Mat-tõestuse põhimõtted #13 Mat-tõestuse põhimõtted #14 Mat-tõestuse põhimõtted #15
Punktid 50 punkti Autor soovib selle materjali allalaadimise eest saada 50 punkti.
Leheküljed ~ 15 lehte Lehekülgede arv dokumendis
Aeg2009-02-10 Kuupäev, millal dokument üles laeti
Allalaadimisi 40 laadimist Kokku alla laetud
Kommentaarid 0 arvamust Teiste kasutajate poolt lisatud kommentaarid
Autor jaanuar3 Õppematerjali autor
Infotehnoloogia baasaine

Sarnased õppematerjalid

thumbnail
15
doc

Matemaatiliste tõestuste meetodid

kehtivus piirkonda.A nt aks e ette s uvaline x mil le korral eeldus P(x) on tõene j a kas utades definits ioone, eelnevaid tulemus i j a reegleid j äreldataks e et Q(x) on tõene. Ots en e tões tu s e m eetod tähendab tões tus e es itamis t kuj ul K ui P (x) on tõene x D .korral, s iis on ka Q(x) tõene Tões tus e üldis e es itus ega tutvu mis eks vaatleme j ärgmis t näidet: Toereem 1 : Iga m j a n Z korral, kui m j a n on paaris arvud, s iis on s eda ka m+ n T ões tu s : O lgu m j a n paaris arvud, s iis s aame nad es itada kuj ul m= 2*k1 j a n= 2*k2 ning m+ n s aame es itada kuj ul m+ n= 2*k1+ 2*k2= 2*(k1+ k2)= 2*k Et k= k1+ k2 Z , s iis 2*k on paaris arv ehk m+ n on paaris arv. Teoree m 2: K ui a ja b Q , s iis ka a+ b Q . a1 b1 Tões tus . Et a j a b on rats ionaalarvud, s iis võime kirj utada a kuj ul a ja b .

Matemaatika
thumbnail
17
doc

Relatsioonid ja funktsioonid

Relatsioonid ja funktsioonid 1. Relatsioon Lähtu me ees pooldefineeri tud hulkade Cartes ius e korrutis es t ehk ris tkorrutis es t (öeldaks e ka ots ekorrutis ) A × B tähendab kõiki järj es tatud paaride hulka (a,b), kus a A j a b B. N 1: A ntud on hulgad A= { 1,2} j a B={ 1} Leia me : A × B= { (1,1),(2,1)} B × A ={ (1,1),(1,2)} J äreldus : A × B B × A Hu lga A × B alam h ulk a R n im etatak s e b in aars eks relats ioon ik s hu lgas t A hu lk a B K ui (a,b) R, s iis kirj utataks e ka aRb. J uhul kui a pole s eotud b-ga s iis kirj utataks e a R b . Erij uhul kui B=A , s iis R on binaars e relats ioon hulgal A . (alterna tiivne levinud tähis tus on A x B : A B ) Relatsiooni (vastavuse) määramispiirkond D om(R )= { a A |leidub b B nii et (a,b) R } (doma in of R) Relatsiooni (vastavuse) muutumispiirkond R ange(R )= { b B | leidub a A nii et (a,b) R} (range of R) N 2: A ntud on hulgad A= { 2,3,4} j a B={ 3,4,5,6,7} . D efinee

Matemaatika ja statistika
thumbnail
17
doc

Relatsioonid ja funktsioonid

Relatsioonid ja funktsioonid 1. Relatsioon on hulk paare Lähtu me ees pooldefineeri tud hulkade Cartes ius e korrutis es t ehk ris tkorrutis es t (öeldaks e ka ots ekorrutis ) A × B tähendab kõiki järj es tatud paaride hulka (a,b), kus a A j a b B. N 1: A ntud on hulgad A= { 1,2} j a B={ 1} Leia me : A × B= { (1,1),(2,1)} B × A ={ (1,1),(1,2)} J äreldus : A × B B × A Hu lga A × B alam h ulk a R n im etatak s e b in aars eks relats ioon ik s hu lgas t A hu lk a B K ui (a,b) R, s iis kirj utataks e ka aRb. J uhul kui a pole s eotud b-ga s iis kirj utataks e a R b . Erij uhul kui B=A , s iis R on binaars e relats ioon hulgal A . (alterna tiivne levinud tähis tus on A x B : A B ) Relatsiooni (vastavuse) määramispiirkond , tähis on Dom(R) D om(R )= { a A |leidub b B nii et (a,b) R } (doma in of R) Relatsiooni (vastavuse) muutumispiirkond R ange(R )= { b B | leidub a A nii et (a,b) R} (range of R) N 2: A ntud on hulgad A= {

Matemaatika
thumbnail
7
doc

Hulgateooria põhimõisted

Hu lgateooria põh im õis ted N B ! Värv ilin e tek s t arves tu s es . H ulk on baas ter min iks nii ma te ma at ikas kui ka arvutiteadus es . J ärgnevalt tuvu me hulgateoori a põhikonts epts ioonidega ja hulkadele rakendatavate operats ioonidega. P aradoks : a) H abemeaj aj a puzle- kapten käs ib rühma habemeaj aj ale aj ada habet kõikidel kompan ii liikmete l, eeldus el et rühma liik med ei tohi is e habet aj ada. O lles kõigi teis te habemed aj anud, kas vab talle endale habe. Enda habet ei s aa ta aj ada, s es t nii rikuks ta kapteni käs ku. Kui ta aga enda habet ei aj a, s iis ta peaks ühtpidi kapteni käs u järgi enda habet aj ama (kõikidel liik me tel). D ef: Hu lk A on k ollek ts ioon k orrek ts elt d ef in eeritu d ob jek tid es t, n ii et iga ob jek ti k orral k eh tib ük s järgevas t k ah es t võim alu s es t - x k u u lub h u lk a A , k irju tam e x A - x ei ku u lu h u lk a A , k irju tam e x A H ulki tähis t

Matemaatika ja statistika
thumbnail
7
doc

Hulgateooria põhimõisted

Hulgateooria põhimõisted H ulk on baas ter min iks nii ma te ma at ikas kui ka arvutiteadus es . J ärgnevalt tuvu me hulgateoori a põhikonts epts ioonidega ja hulkadele rakendatavate operats ioonidega. P aradoks : a) H abemeaj aj a puzle- kapten käs ib rühma habemeaj aj ale aj ada habet kõikidel kompan ii liikmete l, eeldus el et rühma liik med ei tohi is e habet aj ada. O lles kõigi teis te habemed aj anud, kas vab talle endale habe. Enda habet ei s aa ta aj ada, s es t nii rikuks ta kapteni käs ku. Kui ta aga enda habet ei aj a, s iis ta peaks ühtpidi kapteni käs u järgi enda habet aj ama (kõikidel liik me tel). D ef: Hu lk A on k ollek ts ioon k orrek ts elt d ef in eeritu d ob jek tid es t, n ii et iga ob jek ti k orral k eh tib ük s järgevas t k ah es t võim alu s es t - x k u u lub h u lk a A , k irju tam e x A - x ei ku u lu h u lk a A , k irju tam e x A H ulki tähis tame s uurte tähtedega j a nende ele men te väik

Algebra ja analüütiline geomeetria
thumbnail
48
pdf

Maatriksid

¨ TARTU ULIKOOL MATEMAATIKA-INFORMAATIKA TEADUSKOND Puhta matemaatika instituut Aivo Parring ALGEBRA JA GEOMEETRIA Tartu 2005 SISSEJUHATUS K¨aesolevate m¨arkmete j¨arele tekkis vajadus 2000/01 ~oppeaastal, kui muudeti tollase matemaatikateaduskonna ~oppekavasid. Selle tulemusena l¨ ulitati ~oppekavasse algebra ja anal¨ uu¨tilise geomeetria sissejuhatavaid pea- t¨ukke k¨asitlev aine "Algebra ja geomeetria". Vahepeal on elu edasi l¨ainud. Matemaatikateaduskonnast on juba saanud matemaatika-informaatikatea- duskond. Nelja-aastasest bakalaureuse ~oppest on saamas kolmeaastane bakalaureuse ~ope. Uue ~oppekava kohaselt on selle ~oppeaine maht n¨ uu ¨d 40 tundi loenguid ja sama palju harjutusi. Iseseisvaks t¨o¨ oks on ette n¨ahtud 80 tundi. Semestri jooksul toimub 20 kahetunnilist loengu

Algebra ja geomeetria
thumbnail
96
pdf

ALGEBRA JA GEOMEETRIA

¨ TARTU ULIKOOL MATEMAATIKA-INFORMAATIKA TEADUSKOND Puhta matemaatika instituut Aivo Parring ALGEBRA JA GEOMEETRIA Tartu 2005 SISSEJUHATUS K¨aesolevate m¨arkmete j¨arele tekkis vajadus 2000/01 ˜oppeaastal, kui muudeti tollase matemaatikateaduskonna ˜oppekavasid. Selle tulemusena l¨ ulitati ˜oppekavasse algebra ja anal¨ uu¨tilise geomeetria sissejuhatavaid pea- t¨ukke k¨asitlev aine ”Algebra ja geomeetria”. Vahepeal on elu edasi l¨ainud. Matemaatikateaduskonnast on juba saanud matemaatika-informaatikatea- duskond. Nelja-aastasest bakalaureuse ˜oppest on saamas kolmeaastane bakalaureuse ˜ope. Uue ˜oppekava kohaselt on selle ˜oppeaine maht n¨ uu ¨d 40 tundi loenguid ja sama palju harjutusi. Iseseisvaks t¨o¨ oks on ette n¨ahtud 80 tundi. Semestri jooksul toimub 20 kahetunni

Algebra ja geomeetria
thumbnail
32
pptx

Prantsusmaa

ma a s u s an t Pr An Ha t s V rm i s o l me I X Põ h r s o kl ik n 20 a s oo 10 s l e Vabariik tsus Pran Riik Euroopas is e , u e F anca , R e publiq F r a nce n im etus: lik Amet Pindala 5

Geograafia




Meedia

Kommentaarid (0)

Kommentaarid sellele materjalile puuduvad. Ole esimene ja kommenteeri



Sellel veebilehel kasutatakse küpsiseid. Kasutamist jätkates nõustute küpsiste ja veebilehe üldtingimustega Nõustun