Vajad kellegagi rääkida?
Küsi julgelt abi LasteAbi
Logi sisse

Relatsioonid ja funktsioonid (0)

1 Hindamata
Punktid

Lõik failist

Relatsioonid ja funktsioonid
1. Relatsioon on hulk paare
Lähtume eespooldefineeritud hulkade Cartesiuse korrutisest ehk ristkorrutisest (öeldakse ka otsekorrutis)
AB tähendab kõiki järjestatud paaride hulka (a,b), kus aA ja bB.
N1: Antud on hulgad A={1,2} ja B={1}
Leiame:
AB={(1,1),(2,1)}
BA={(1,1),(1,2)}
Järeldus: AB BA
Hulga AB alamhulka R nimetatakse binaarseks relatsiooniks hulgast A hulka B
Kui (a,b) R, siis kirjutatakse ka aRb. Juhul kui a pole seotud b-ga siis kirjutatakse aRb . Erijuhul kui B=A, siis R on binaarse relatsioon hulgal A.
(alternatiivne levinud tähistus onA x B : A B )
Relatsiooni (vastavuse) määramispiirkond , tähis on Dom(R)
Dom(R)={aA|leidub bB nii et (a,b) R } (domain of R)
Relatsiooni (vastavuse) muutumispiirkond
Range(R)={ bB | leidub aA nii et (a,b) R} (range of R)
N2: Antud on hulgad A={2,3,4} ja B={3,4,5,6,7}.
Defineerida
Vasakule Paremale
Relatsioonid ja funktsioonid #1 Relatsioonid ja funktsioonid #2 Relatsioonid ja funktsioonid #3 Relatsioonid ja funktsioonid #4 Relatsioonid ja funktsioonid #5 Relatsioonid ja funktsioonid #6 Relatsioonid ja funktsioonid #7 Relatsioonid ja funktsioonid #8 Relatsioonid ja funktsioonid #9 Relatsioonid ja funktsioonid #10 Relatsioonid ja funktsioonid #11 Relatsioonid ja funktsioonid #12 Relatsioonid ja funktsioonid #13 Relatsioonid ja funktsioonid #14 Relatsioonid ja funktsioonid #15 Relatsioonid ja funktsioonid #16 Relatsioonid ja funktsioonid #17
Punktid 100 punkti Autor soovib selle materjali allalaadimise eest saada 100 punkti.
Leheküljed ~ 17 lehte Lehekülgede arv dokumendis
Aeg2013-08-06 Kuupäev, millal dokument üles laeti
Allalaadimisi 6 laadimist Kokku alla laetud
Kommentaarid 0 arvamust Teiste kasutajate poolt lisatud kommentaarid
Autor kuido01 Õppematerjali autor

Sarnased õppematerjalid

thumbnail
17
doc

Relatsioonid ja funktsioonid

Relatsioonid ja funktsioonid 1. Relatsioon Lähtu me ees pooldefineeri tud hulkade Cartes ius e korrutis es t ehk ris tkorrutis es t (öeldaks e ka ots ekorrutis ) A × B tähendab kõiki järj es tatud paaride hulka (a,b), kus a A j a b B. N 1: A ntud on hulgad A= { 1,2} j a B={ 1} Leia me : A × B= { (1,1),(2,1)} B × A ={ (1,1),(1,2)} J äreldus : A × B B × A Hu lga A × B alam h ulk a R n im etatak s e b in aars eks relats ioon ik s hu lgas t A hu lk a B K ui (a,b) R, s iis kirj utataks e ka aRb. J uhul kui a pole s eotud b-ga s iis kirj utataks e a R b . Erij uhul kui B=A , s iis R on binaars e relats ioon hulgal A . (alterna tiivne levinud tähis tus on A x B : A B ) Relatsiooni (vastavuse) määramispiirkond D om(R )= { a A |leidub b B nii et (a,b) R } (doma in of R) Relatsiooni (vastavuse) muutumispiirkond R ange(R )= { b B | leidub a A nii et (a,b) R} (range of R)

Matemaatika ja statistika
thumbnail
15
doc

Mat. tõestuse põhimõtted

Matemaatiliste tõestuste meetodid 1. Otsesed tõestuse meetodid M ate maa tiline s üs teem koos neb aks ioomides t, teoreemides t, definits ioonides t ja defineeri ma ta obj ektides t. A ks ioom on laus e, mid a eeldataks e tõene olevat. D ef in its ioon i kas utataks e uute konts epts ioonide ja mõis t ete s elgitamis eks teadaolev ate mõis te te kaudu. T eoreem on väide, mis on tões tatud. L em m a - väiks ema is es eis va tähts us ega teoree m, mis on enamas t i abiks teoree mi de tões ta mis e l. Järeld u s - toeree mis t ots es elt järelduv tule mus N äited: D efineeri ma ta obj ektid: punktid, jooned D efinits ioon: Kolmnurg a ümber mõ õt on võrdne s elle kol mnurga külgede s ummag a

Matemaatika ja statistika
thumbnail
15
doc

Matemaatiliste tõestuste meetodid

Matemaatiliste tõestuste meetodid 1. Otsesed tõestuse meetodid M ate maat ilin e s üs teem koos neb aks ioomides t, teoreemides t, definits ioonides t ja defineeri ma ta obj ektides t. A ks ioom on laus e, mid a eeldataks e tõene olevat. D ef in its ioon i kas utataks e uute konts epts ioonide ja mõis t ete s elgitamis eks teadaolev ate mõis te te kaudu. Teoreem on väide, mis on tões tatud. L em m a - väiks e ma is es eis va tähts us ega teoreem, mis on ena mas ti abiks teoreemide tões ta mis e l. Järeld u s - toeree mis t ots es elt j ärelduv tule mus N äited: D efineeri ma ta obj ektid: punktid, jooned D efinits ioon: Kolmnurga ümber mõõ t on võrdne s elle kolmnurga külgede s ummaga

Matemaatika
thumbnail
7
doc

Hulgateooria põhimõisted

P aradoks : a) H abemeaj aj a puzle- kapten käs ib rühma habemeaj aj ale aj ada habet kõikidel kompan ii liikmete l, eeldus el et rühma liik med ei tohi is e habet aj ada. O lles kõigi teis te habemed aj anud, kas vab talle endale habe. Enda habet ei s aa ta aj ada, s es t nii rikuks ta kapteni käs ku. Kui ta aga enda habet ei aj a, s iis ta peaks ühtpidi kapteni käs u järgi enda habet aj ama (kõikidel liik me tel). D ef: Hu lk A on k ollek ts ioon k orrek ts elt d ef in eeritu d ob jek tid es t, n ii et iga ob jek ti k orral k eh tib ük s järgevas t k ah es t võim alu s es t - x k u u lub h u lk a A , k irju tam e x A - x ei ku u lu h u lk a A , k irju tam e x A H ulki tähis tame s uurte tähtedega j a nende ele men te väikes te tähtedeg a. Tühihulk Ø ={ } N äited hulkada defineerimis es t j a kas uta mis es t N 1. A ntud hulgad { a) x | x on reaalarv ja kehtib x 2 = 1} -1 ja 1

Algebra ja analüütiline geomeetria
thumbnail
7
doc

Hulgateooria põhimõisted

P aradoks : a) H abemeaj aj a puzle- kapten käs ib rühma habemeaj aj ale aj ada habet kõikidel kompan ii liikmete l, eeldus el et rühma liik med ei tohi is e habet aj ada. O lles kõigi teis te habemed aj anud, kas vab talle endale habe. Enda habet ei s aa ta aj ada, s es t nii rikuks ta kapteni käs ku. Kui ta aga enda habet ei aj a, s iis ta peaks ühtpidi kapteni käs u järgi enda habet aj ama (kõikidel liik me tel). D ef: Hu lk A on k ollek ts ioon k orrek ts elt d ef in eeritu d ob jek tid es t, n ii et iga ob jek ti k orral k eh tib ük s järgevas t k ah es t võim alu s es t - x k u u lub h u lk a A , k irju tam e x A - x ei ku u lu h u lk a A , k irju tam e x A H ulki tähis tame s uurte tähtedega j a nende ele men te väikes te tähtedeg a. Tühihulk Ø ={ } N äited hulkada defineerimis es t j a kas uta mis es t N 1. A ntud hulgad { a) x | x on reaalarv ja kehtib x 2 = 1}

Matemaatika ja statistika
thumbnail
32
pptx

Prantsusmaa

ma a s u s an t Pr An Ha t s V rm i s o l me I X Põ h r s o kl ik n 20 a s oo 10 s l e Vabariik tsus Pran Riik Euroopas is e , u e F anca , R e publiq F r a nce n im etus: lik Amet Pindala 5

Geograafia
thumbnail
37
doc

Teoreetilibe informaatika kordamisküsimused

Paradoksid: Russelli ehk habemeajaja paradoks (hulga esitamine predikaadi abil): P(X) = true, kui argumendina esitatud hulk pole iseenda elemendiks. P(X) = false, kui argumendina esitet hulk on iseenda elemendiks. Kontrollime hulka Y = {X | P(X)} Eeldades, et Y kuuluks hulka Y, saame P(Y) = false => Y ei kuulu hulka Y Eeldades, et Y ei kuulu hulka Y, saame P(Y) = true => Y kuulub Y Paradokside elimineerimine hulkade hierarhia ja klassifitseerimisega. 2. Relatsioonid. Ekvivalentsi- ja järjestusseosed. Relatsioon ehk seos hulkade A ja B vahel on alamhulk A x B-le. Seos hulgal A on alamhulk A x A-le. Pöördrelatsioon R-1 on relatsiooni täiend. aRb -> Elemendid a ja b on seoses R Refleksiivsus - iga a korral aRa (a on iseendaga seoses) Sümmeetria ­ iga a korral aRb => bRa (kõik seosed on vastastikused) Transitiivsus ­ iga a korral aRb && bRc => aRc (põhimõtteliselt järjestusseos)

Teoreetiline informaatika
thumbnail
186
pdf

Vahvlist südamed

€; ka F- ftiEZSg =o;5-E+=i3"- -€s t..;.F s q;:= ')'4= ft€ '9= :*i J y=B?Tii itE nt =:> 3 ?- 2-.VG !E'ii=:;riVf i: - i-Yg=- E 5 Et F>^Y,= -,r d s'ir& -c -- == =Ei==': E-=F.*:-€=v2.2; = =.g ,-J; = Z d.i:X:G€{'=13ag4. i-- -,-Yt EglPcElit'=qro- = g r^ 3 - l, Z T >a -c.- tr

Kirjandus




Meedia

Kommentaarid (0)

Kommentaarid sellele materjalile puuduvad. Ole esimene ja kommenteeri



Sellel veebilehel kasutatakse küpsiseid. Kasutamist jätkates nõustute küpsiste ja veebilehe üldtingimustega Nõustun