Vajad kellegagi rääkida?
Küsi julgelt abi LasteAbi
Ega pea pole prügikast! Tõsta enda õppeedukust ja õpi targalt. Telli VIP ja lae alla päris inimeste tehtu õppematerjale LOE EDASI Sulge
Add link

Kategooria lineaaralgebra - 42 õppematerjali

Matemaatika >> Lineaaralgebra
thumbnail
0
jpg

Lineaaralgebra teooria KT determinant

docstxt/14485675418433.txt...

Lineaaralgebra
150 allalaadimist
thumbnail
4
pdf

Lineaaralgebra I osaeksam 2013

Kompleksarvu mõiste, imaginaarühik, kaaskompleksarv, kompleksarvude võrdsus ja nulliga võrdumise tingimus. Kompleksarvu moodul, argument ja trigonomeetriline kuju. Kompleksarvuks z nimetatakse avaldist z = a + bi, (1) kus a ja b on reaalarvud ja i on nn. imaginaarühik, mis on määratud võrdustega i = - 1 või i 2 = -1 . Kaht kompleksarvu z = a + bi ja z = a - bi , mis erinevad ainult imaginaarosa märgi poolest, nimetatakse kaaskompleksarvudeks. Kokkuleppe põhjal 1) kaht kompleksarvu z1 = a1 + b1i ja z 2 = a 2 + b2 i loetakse võrdseteks ( z1 = z 2 ) , kui a1 = a 2 ja b1 = b2 , s.t. kui nende reaalosad on võrdsed ja imaginaarosad on võrdsed; 2) kompleksarv võrdub nulliga, s.o. z = a + bi = 0 siis ja ainult siis, kui a = 0 ja b = 0. z = a + bi = r cos + i sin ehk z = r (cos + i sin ) Avaldist võrduse paremal poolel nimetatakse kompleksarvu z = a + bi trigonomeetriliseks kujuks; suurust r nimetatakse kompleksarvu z mooduliks ja suur...

Lineaaralgebra
401 allalaadimist
thumbnail
0
jpg

Lineaaralgebra ülesannete töö lineaarvõrrandisüsteem

docstxt/14485678596976.txt...

Lineaaralgebra
115 allalaadimist
thumbnail
9
doc

Lineaaralgebra

Kompleksarvu mõiste, imaginaarühik, kaaskompleksarv, kompleksarvude võrdsus ja nulliga võrdumise tingimus. Kompleksarvu moodul, argument ja trigonomeetriline kuju. Kompleksarvuks z nimetatakse avaldist z = a + bi , (1) kus a ja b on reaalarvud ja i on niinimetatud imaginaarühik, mis on määratud võrdustega i = -1 või i 2 = -1 ; Kaht kompleksarvu z = a + bi ja z = a - bi , mis erinevad ainult imaginaarosa märgi poolest, nimetatakse kaaskompleksarvudeks. Kokkuleppe põhjal 1) kaht kompleksarvu z1 = a1 + b1i ja z2 = a2 + b2i loetakse võrdseteks ( z1 = z2 ) , kui a1 = a2 ja b1 = b2 , s.t. kui nende reaalosad on võrdsed ja imaginaarosad on võrdsed; 2) kompleksarv võrdub nulliga, s.o....

Lineaaralgebra
907 allalaadimist
thumbnail
5
docx

Lineaaralgebra Eksami küsimuste vastused

Kompleks arvude põhimõiste,põhilised definatsioonid. K.arvude liitmine,korrutamine,jagamine algebralisel kujul. DEF. k.arvuks nim. Arvufoori (a,b) kus a,bR. esitatakse z=a+bi (a-reaalosa,b- imaginaar osa,i- imaginaar ühik). Põhimõiste olgu z1=a1+b1i,z2=a2+b2i z1=z2 kui a1= a2 ja b1=b2, z=0 kui a=0 ja b=0,k-arvu z1=a1-b1i nim.kaas k-arvuks z1=a1+b1i. Arvutamine z1+z2= (a1+a2)+(b1+b2)i, z1-z2= (a1-a2)+(b1-b2), z1*z2= (a1+b1i)*(a2+b2), 2. K.geomeetriline kujutamine, trigonomeetriline kuju.korrutamine ja jagamine trigonomeetrilisel kujul. geomeetriline kujutamine k-arv/reaalarvu paar (a,b).saab k-arvu z=a+bi kujutada xy tasandil kus kordinaadid a-reaal osa, b- imaginaar osa ja vastavalt X-telg k-arvu reaal telg ja Y-telg ­ imaginaar telg.XY tasandi iga punkt M(x,y) ongi z=x+iy trigonomeetriline kuju tähistame nurk X-teljel ja vektori pikkus r ,siis a=rcos ja b=rcos.avaldist z=r(cos+isin) ongi trigon...

Lineaaralgebra
933 allalaadimist
thumbnail
2
docx

Lineaaralgebra - Maatriksid, 1. KT

1 (m x n) järku maatriksit A nimetatakse m · n elemendist moodustatud tabelit, milles on m-rida ja n-veergu Def. 2 Maatriksid A ja B loetakse võrdseks, kui nad mõlemad on sama järku ja nende maatriksite kõik vastavad elemendid on võrdsed Def. 3 (m x n) järku A ja B järku maatriksite A ja B summaks nimetatakse sama järku maatriksit -> A+B, mille elementideks on lähtemaatriksite A ja B kõigi vastavate elementide summa. Def. 4 (m x n) järku Maatriksi korrutiseks arvuga lambda nimetame maatriksit, mille elementideks on maatriksi kõigi elementide korrutised arvuga lambda. Def. 5 (m x n) järku A vastandmaatiksiks (-A) nimetatakse sama järku maatriksit, mille elementideks on lähtemaatriksi A kõigi elementide vastandväärtused Def. 6 (m x n) järku maatrikiste A ja B vaheks nimetatame sama järku maatriksi (A-B), mis loetakse võrseks maatriksi A ja maatriksi (-1)*B summa Def. 7 (m x k) järku maatriksi A ja (k x n) järku...

Lineaaralgebra
447 allalaadimist
thumbnail
2
docx

Lineaaralgebra - 3. KT teooria

Järeldused: 1) ==1, f(a+b)=f(a)+f(b) ­ aditiivsus 2) =0 f(*a)= *f(a) ­ homogeensus 3) =0, =0; f=0vektor (0V, 0W) Vektorruumi V korral määratud lineaarkujutust f nimetatakse selle vektorruumi V lineaarteisenduseks. Lineaarteisenduse liigid: vektori lüke, pööre, peegeldamine sirgest, korrutamine arvuga. Lineaarkujutuse vektorruumiks L nimetatakse vektorruumi, kui on rahuldatud järgnevad tingimused: Lineaarkujutust võib korrutada arvuga a*f Def: lineaarkujutise distributiivsus (f+g)*(a)=f(a)+f(g) Def: (*f)*(a)=*f(a) Öeldakse, et kujutused f ja g on võrdsed, kui on rahuldatud võrdus f(a)=g(a) f=g f+g=g+f ­ kommutatiivsus (f+g)+h=f+(g+h) ­ assotsiatiivsus f+=f ­ nullkujutis f+(-f)= ­ vastandkujutis Geomeetrilises mõttes pakuvad huvi need vektorid, mis säilitavad oma sihi teatava lineaarteisenduse korral. f(x)=*x vek...

Lineaaralgebra
400 allalaadimist
thumbnail
0
rar

Lineaaralgebra KT1 lahendustega

docstxt/135973148286.txt...

Lineaaralgebra
286 allalaadimist
thumbnail
0
rar

Lineaaralgebra KT2 lahendustega

docstxt/135973155872.txt...

Lineaaralgebra
335 allalaadimist
thumbnail
0
jpg

Lineaaralgebra ülesannete töö kompleksarvud

docstxt/14485677651408.txt...

Lineaaralgebra
101 allalaadimist
thumbnail
0
rar

Lineaaralgebra kodutööd 2-7

docstxt/13832274760759.txt...

Lineaaralgebra
131 allalaadimist
thumbnail
0
jpg

TTÜ Lineaaralgebra teooria KT maatriks

docstxt/14485676894844.txt...

Lineaaralgebra
71 allalaadimist
thumbnail
0
rar

Lineaaralgebra kodused tööd

docstxt/14523352570162.txt...

Lineaaralgebra
60 allalaadimist
thumbnail
2
pdf

Lineaaralgebra

i 1 või i²1 =r(cos+sin) Transporeeritudmaatriks: Maatriksi A transporeeritud maatriks AT saadakse kui Kompleksarv: kirjutatakse maatriksi A read vastavateks veergudeks. Avaldis x iy,kus x ja y on reaalarvud ja i on niinimetatud Kordumine: nA imaginaarühik. pAT 1* 2=r1*r2*(cos(1+2) +i sin(1+2))...

Lineaaralgebra
89 allalaadimist
thumbnail
24
rtf

Lineaaralgebra eksam

Kompleksarv kui reaalarvude paar. Tehted kompleksarvudega. Tehete omadused. Kompleksarvu algebraline kuju. Tuletatavad tehted ja nende omadused. Kompleksarvuks nimetatakse reaalarvude paari (x,y). C = {(x;y) | x, y R} Tehted kompleksarvudega: z1 = (x1; y1) C; z2 = (x2; y2) C 1. liitmine: z1 + z2 = (x1 + x2; y1 + y2) 2. korrutamine: z1 * z2 = (x1x2 - y1y2; x1y2 + x2y1) Kompleksarvudega tehete omadused 1. liitmine on kommutatiivne, st z1 + z2 = z2 + z1 z1, z2 C korral 2. liitmine on assotsiatiivne, st (z1 + z2) + z3 = z1 + (z2 + z3) z1, z2, z3 C korral 3. liitmise suhtes leidub nullelement (reaalarv 0, 0 + z = z + 0 = z z C korral), st leidub C, nii et z + = + z = z z korral; = (0; 0) = 0 4. igal kompleksarvul z = (x; y) = x + yi leidub (liitmise suhtes) vastandarv, st selline arv w C, et z + w = w + z = 0; w = -z 5. korrutamine on kommutatiivne, st z1z2 = z2z1 z1, z2 C korral 6. korrutamine on assotsiatiiv...

Lineaaralgebra
182 allalaadimist
thumbnail
5
doc

Crameri teoreem lineaarsete võrrandisüsteemide lahendamiseks

Crameri teoreem lineaarsete võrrandisüsteemide lahendamiseks See teoreem kehtib meelevaldsete lineaarsete võrrandisüsteemide lahendamiseks, kus võrrandite ja tundmatute arvud on võrdsed. Lisaks peavad võrrandisüsteemid olema korrastatud. Kui lineaarse võrrandisüsteemi maatriksi determinant on nullist erinev, siis avalduvad tundmatud murdudena, mille nimetajaks on süsteemi maatriksi determinant ja mille lugejad on maatriksi, mis saadakse süsteemi maatriksist vastava tunmatu kordajate veeru asendamisel vabaliikmete veeruga, determinandid. Kui maatriks täidab Crameri teoreemi eeldusi, siis öeldakse, et tegemist on Crameri peajuhtumiga. Seega Crameri peajuhtumil 1) m=n, 2) |A| 0. Tähendab, Crameri peajuhul on lineaarsel võrrandisüsteemil üksainus lahend, mis avaldub valemitega x1=|A1|/|A| x2=|A2|/|A| .. xn=|An|/|A| Determinantide omadused, determinandi arendus rea (veeru) järgi Omadus 1. Transponeerimisel (r...

Lineaaralgebra
177 allalaadimist
thumbnail
3
pdf

Lineaaralgebra, II osaeksami vastused, 2013

Lineaarse võrrandisüsteemi definitsioon. Võrrandisüsteemi kordajad, vabaliikmed, lahend. Süsteemi maatriks ja laiendatud maatriks. Lineaarseks võrrandisüsteemiks nimetatakse lõplikust arvust lineaarseist võrrandeist koosnevat a11 x1 + a12 x 2 + ...a1n xn = b1 süsteemi. Tema üldkuju on: (3) a 21 x2 + a 22 x 2 + ...a 2 n x n = b2 Arve a ij nimetatakse võrrandisüsteemi .................... a m1 x1 + a m 2 x 2 + ...a mn x n = bm kordajateks, arve b1 , b2 ,..., bm aga süsteemi vabaliikmeteks. Arve c1 , c 2 ,..., c n , mis rahuldavad süsteemi kõiki võrrandeid, nimetatakse võrrandisüsteemi lahendiks. Lineaarse võrrandisüsteemi (3) kordajatest moodustatud maatriksit nimetatakse süsteemi (3) maatriksiks. Maatriksi A täiendamisel vabaliikmete veeruga tekkinud maatriksit nimetatakse süsteemi (3) laiendatud maatriksiks. 2....

Lineaaralgebra
175 allalaadimist
thumbnail
4
doc

Lineaar algebra teooria kokkuvõte

Võrrandisüsteemi kujul {a11x1+..+a1nxn=b1 ; am1x1+.. +amnxn=bm. Arve aij nim lvs kordajateks, arvud b1..bm on vabaliikmed ja x1..xn on tundmatud. Süsteemi võrrandite arv m ja tundmatute arv n on sõltumatud. Sellist võrrandisüsteemi nimetatakse lineaarseks võrrandisüsteemiks, sest otsitavad suurused x1.. xn esinevad ainult lineaarsetes tehetes, st neid on vaid liidetud ja skalaariga korrutatud. Def. Arvude järjendit c1.. cn nim lvs lahendiks, kui tundmatute asendamisel nende arvudega (loomulikus järjekorras, st x1 = c1.. xn = cn) on süsteemi kõik võrrandid rahuldatud. Võrrsüsteemi nim kooskõlaliseks, kui tal leidub vähemalt 1 lahend. Kui lahendid puuduvad, nim sõsteemi vasturääkivaks. Võrrsüs kõigi lahendite hulka nim võrrsüs lahendihulgaks e üldlahendiks. Igal lvs-l kas lahend puudub, on ühene lahend või on lõpmata palju lahendeid. Cramer. Def. Öeldakse, et lvs-i korral on tegemist Crameri peajuhuga, kui 1)tun...

Lineaaralgebra
854 allalaadimist
thumbnail
2
doc

Lineaar algebra teooria2

Kompleksarve on kombeks tähistada väikese tähega z. Kompleksarvudel on mitmeid esitusviise ehk kujusid. Kõige levinum on kompleksarvu algebraline kuju. Def Kompleksarvuks (algebralisel kujul) nimetatakse arvu z = a + ib, kus a ja b on reaalarvud ja i on imaginaar ühik. Imaginaarühik, mida tähistatakse i, defi'kse võrdusega i2 = -1.Kõigi kompleksarvude hulka tähistatakse C. Def Kompleksarvu z = a + ib C korral nim arvu a R selle kompleksarvu reaalosax ja arvu b R nim selle kompleksarvu imaginaarosaks. Kaks kompleksarvu on võrdsed parajasti siis, kui 1) on võrdsed nende reaalosad, 2) on võrdsed nende imaginaarosad. Algebraline kuju on kompleksarvu kujudest kõige levinum. Kuid on ka teisi esitusviise. Kompleksarve nim arvudex, sest nendega saab sooritada aritmeetilisi tehteid: liitmist, lahutamist, korrutamist, jagamist. Komar liitmine ja lahutamine on kõige otstarbekam teha algebralisel kujul. Def. Ko...

Lineaaralgebra
472 allalaadimist
thumbnail
7
doc

Teooriatöö spikker loengutest 5 kuni 8

See on võimalik A4 kahe poole peale välja printida. Käsikirjas...

Lineaaralgebra
164 allalaadimist


Uutele kasutajatele e-mailiga aktiveerimisel
10 punkti TASUTA

Konto olemas? Logi sisse

Sellel veebilehel kasutatakse küpsiseid. Kasutamist jätkates nõustute küpsiste ja veebilehe üldtingimustega Nõustun