Determinandid Kompleksarvud Lineaarkujutus ja teisendus Ruutvormid Def.1-eeskirja £, mis seab hulga V igale elemendile x Kui hulgas on määratud mingisugune tehe ja selle hulga mistahes kahe Kahe vektorruumi V ja W korral määratud kujutust nimetatakse F= ruutvorm, lineaarvorm: vastavusse hulga W teatava elemendi y, nimetatakse kujutuseks elemendiga sooritatud tehte tulemus osutub alati selle sama hulga lineaarkujutuseks, kui on täidetud tingimus £(*+)=*£() Ruutvormi kordajatest saab moodustada nxn järku hulgast V hulka W. elemendiks, siis öeldakse, et hulk on vaadeldava tehte suhtes +*£() sümmeetrilise maatriksi. At=A. Ruutvormi maatrikskuju: Def.2-kui m
Determinandi D mis tahes reanumbri i korral kehtib D = (1<=j<=n)aijAij = ai1Ai1 + ai2Ai2 + ... + ainAin (arendis i-nda rea järgi) ja mis tahes veerunumbri j korral kehtib D = (1<=i<=n)aijAij = a1jA1j + a2jA2j + ... + anjAnj (arendis j-nda veeru järgi), kus Aij = (-1)i+j Mij ja Mij on determinant, mis tekib determinandist i-nda rea ja j-nda veeru kõrvaldamisel 8. Kui determinandi mingis reas või veerus on kõik arvud nullid, siis determinandi väärtus võrdub nulliga 9. Determinantide teooria põhivalemid. Ruutmaatriksi A = ||a ij|| Rnxn determinandi |A| = D mis tahes reanumbrite i ja k korral kehtib võrdus a i1Ak1 + ai2Ak2 + ... + ainAkn = iAk = (1<=j<=n)aijAkj = D, kui i=k ja 0, kui ik, kus Akj on determinandi D elemendi akj alamdeterminant. Analoogiliselt mis tahes veerunumbrite j ja k korral a1jA1k + a2iA2k + ... + aniAnk = jBk = (1<=j<=n)aijAik = D, kui j=k ja 0, kui jk 10. kui A ja B on ühte ja sama järku ruutmaatriksid, siis nende maatriksite
MAATRIKS: Maatriks nimetatakse ümarsulgudesse paigutatud reaalarvude tabelit, milles on eristatavad read ja veerud. Maatriksi mõõtmed Maatriksit, milles on m rida ja n veergu nimetatakse täpsemalt (m,n)- maatriksiks ning arvupaari (m,n) selle maatriksi mõõtmeteks. Maatriksi järk Omadus, mis esineb ainult ruutmaatriksil: Näiteks Mat(n,n) nim. n-järku maatriksiks. Maatriksi elemendid nimetatakse reaalarve, milledest maatriks koosneb. Maatriksi ja maatriksite hulga tähistused Maatrikseid tähistatakse tavaliselt suurte ladina tähtedega: A, B,....X, Y, Z. Maatriksite elemente tähistatakse vastavate väikeste ladina tähtedega, mis võivad olla varustatud ka indeksitega: a, b, c, jne. Kõigi (kõikvõimalike mõõtmetega) maatriksite hulka tähistame edaspidi Mat abil ning kõigi (m, n)-maatriksite hulka tähistame edaspidi Mat(m, n) abil. Ruutmaatriks maatriks, mille ridade arv on võrdne veergude arvuga, s.t. m=n Ristkülikmaatriks maatriks, mille ridade arv
Lineaarkujutus ja teisendus. Olgu hulgad V, W vektorruumid. Aksioom1 Kahe vektorruumi V ja W korral määratud kujutust f: V W nimetatakse lineaarkujutuseks, kui on täidetud tingimus : f ( a + b) = f (a) + f (b). Järeldus1 Olgu = = 1 f ( a + b) = f ( a ) + f ( b ) lineaarkujutuse distributiivsus vektorite liitmise suhtes. Järeldus2 = 0 f ( a ) = f (a ) lineaarkujutuse kommutatiivsus skalaariga korrutamise suhtes. Järeldus3 = = 0 f ( 0 ) = 0 Aksioom2 Vektorruumi V korral määratud lineaarset kujutust f : V V nimetatakse selle vektorruumi V lineaarteisenduseks vektorruumist V iseendasse tagasi. Lineaarkujutuste f ja g korral lepitakse kokku rääkida ka nende summast f + g ja kujutuste korrutamisest reaalarvuga f. Lineaarkujutiste liitmisel ja korrutamisel arvuga lepitakse kokku järgmises:
1. Maatriksi mõiste, järk, tähistused, liigid. Maatriks on ristkülikukujuline arvude tabel, milles on m-rida ja n-veergu ja mis on ümbritsetud ümarsulgudega. Maatriksit tähistatakse suure tähega: Maatriksi järk tähistab maatriksi mõõtmeid: A on m*n järku maatriks. Liigid: · Ruutmaatriks (m=n) · Diagonaalmaatriks ruutmaatriks, mille peadiagonaalis arvud, muud elemendid 0-d. · Ühikmaatriks diagonaalmaatriksi erijuht. Peadiagonaali elemendid 1-d. Täh E. · Nullmaatriks kõik nullid. Täh . 2. Tehted maatriksitega (korrutamine arvuga, liitmine, lahutamine, korrutamine). · Korrutamine arvuga: korrutades maatriksit reaalarvuga, muutuvad kõik elemendid, selle arvu korra suuremaks. · Maatriksite liitmine: mõõtmed peavad olema samad. Ühemaatriksi elemendid liidetakse teise maatriksi vastavate elementidega: A = (a ij) ja B = (bij) A+B =(cij) kus cij = aij + bij. ·
Lineaarkujutiseks nimetatakse kahe vektorruumi V ja W vahel olevat kujutist, kui on rahuldatud tingimus: f(*a+*b)=*f(a)+*f(b). Järeldused: 1) ==1, f(a+b)=f(a)+f(b) aditiivsus 2) =0 f(*a)= *f(a) homogeensus 3) =0, =0; f=0vektor (0V, 0W) Vektorruumi V korral määratud lineaarkujutust f nimetatakse selle vektorruumi V lineaarteisenduseks. Lineaarteisenduse liigid: vektori lüke, pööre, peegeldamine sirgest, korrutamine arvuga. Lineaarkujutuse vektorruumiks L nimetatakse vektorruumi, kui on rahuldatud järgnevad tingimused: Lineaarkujutust võib korrutada arvuga a*f Def: lineaarkujutise distributiivsus (f+g)*(a)=f(a)+f(g) Def: (*f)*(a)=*f(a) Öeldakse, et kujutused f ja g on võrdsed, kui on rahuldatud võrdus f(a)=g(a) f=g f+g=g+f kommutatiivsus (f+g)+h=f+(g+h) assotsiatiivsus f+=f nullkujutis f+(-f)= vastandkujutis Geomeetrilises mõttes pakuvad huvi need vektorid, mis säilitavad oma sihi teatava lineaarteisenduse korral. f(x)=*x vektorid kollinaarsed Nullvektoris
Lineaarvõrrandsüsteem-nim. Võrrandisüsteemi kujul {a11x1+..+a1nxn=b1 ; am1x1+.. +amnxn=bm. Arve aij nim lvs kordajateks, arvud b1..bm on vabaliikmed ja x1..xn on tundmatud. Süsteemi võrrandite arv m ja tundmatute arv n on sõltumatud. Sellist võrrandisüsteemi nimetatakse lineaarseks võrrandisüsteemiks, sest otsitavad suurused x1.. xn esinevad ainult lineaarsetes tehetes, st neid on vaid liidetud ja skalaariga korrutatud. Def. Arvude järjendit c1.. cn nim lvs lahendiks, kui tundmatute asendamisel nende arvudega (loomulikus järjekorras, st x1 = c1.. xn = cn) on süsteemi kõik võrrandid rahuldatud. Võrrsüsteemi nim kooskõlaliseks, kui tal leidub vähemalt 1 lahend. Kui lahendid puuduvad, nim sõsteemi vasturääkivaks. Võrrsüs kõigi lahendite hulka nim võrrsüs lahendihulgaks e üldlahendiks. Igal lvs-l kas lahend puudub, on ühene lahend või on lõpmata palju lahendeid. Cramer. Def. Öeldakse, et lvs-i korral on tegemist Crameri peajuhuga, kui 1)tundmatute arv võrd
AT 49.Maatriksi elemendi täiendusmiinor- tähis Mij . Kui maatriksist ära jätta i-s rida ja j-s veerd, siis saadud (n-1)-järku ruutmaatriksi determinanti nimetatakse elemendi aij täiendusmiinoriks. 50.maatriksi elemendi algebraline täiend- Arvu (−1)i+ j M ij nimetatake elemendi aij algebralieks täiendiks 51.Determinandi arendus rea või veeru järgi- determinantide teooria põhivalem väidab, et maatriksi A determinant on võrdne summaga n +a ¿ A ¿ =∑ aik A ik | A|=ai 1 A i 1+ ai 2 Ai 2 +⋯ k=1 Analoogiline valem kehtib, kui maatrikis A fikeerime j-nda veeru ja arvutame selle veeru elementide algebralied täiendid siis n
Kõik kommentaarid