Referaat Ligikaudsed arvud Sisukord Sisukord................................................................................................................................ -2- Sissejuhatus.......................................................................................................................... -3- Ligikaudne arv ja selle tüvenumbrid.................................................................................... -3- Ligikaudse arvutuse eeskirjad............................................................................................... -4- Kokkuvõte.............................................................................................................................-4- Kasutatud kirjandus............................................................................................................. -5- Ligikaudne arv ja selle tüvenumbrid Ligikaudse arvu tüvenumbriteks nimetatakse selle arvu kirjutises olevaid õigeid numbreid, välja arvatud kü
Ligikaudsed arvud Ligikaudse arvu tüvenumbriteks nimetatakse selle arvu kirjutises olevaid õigeid numbreid, välja arvatud kümnendmurru alguses olevad nullid (avanullid). Tüvenumbrid moodustavad arvu tüve. Tüvenumbrid algavad alati nullist erineva numbriga ning viimasele tüvenumbrile vastav kümnendjärk määrab ligikaudse arvu vea ülemmäära. Praktilistes ülesannetes kasutame arve, mis on saadud mõõtmise teel. Need iseloomustavad antud suurust vaid ligikaudselt, erinedes täpsest suurusest teatava vea võrra. Täpse arvu A ja tema ligikaudse väärtuse ehk lähendi korral nimetatakse lähendi veaks suurust | A- |. Tavaliselt me täpset arvu A ei tea, seega pole teada ka lähendi viga. Saab aga hinnata, millist arvu lähendi viga ei ületa. Viimast nimetatakse lähendi vea ülemmääraks ehk absoluutseks veaks. Arvu x absoluutset viga märgitakse sümboliga x või ka x. Kui arvu A lähendi vea ülemmäär on , siis seda märgitakse jÃ
Ligikaudne arvutamine Arvu standardkuju Arvu saab esitada järguühikute kaudu 1999= 1*1000+9*100+9+10+9*1 Kõik järguühikud on avaldatavad ka astmetena 1000= 103 100= 102 10=101 1=100 0,1=10-1 0,01=10-2 0,001=10-3 Standardkuju Standardkuju on arv mis on 2 teguri korrutis millest üks on 1-10 ja teine on 10. aste 1999=1,999*103 20000=2*104 345=3,45*102 Ligikaudsed arud. Arvude ümardamine Ligikaudsed tulemused saame mõõtmisel või arvutamisel. Täpsed arvud saame loendamisel või mõnikord ka arvutamisel. Loendamisel saame ligikaudse arvu kui objekte on palju või need muudavad loendamisel asukohta. Ligikaudsete arvudega arvutamisel need ümardatakse. Ülespoole ümardame kui esimene ärajääv number on 5,6,7,8,9. Allapoole ümardame kui see number on 0,1,2,3,4. Kümnelisteni 2345~2350 239~240 34802 ~34800 Sajalisteni 2345~2300 239 ~200 3840
1.ptk Üksliikmed 8.klass Õpitulemused Näited 1.Üksliige - korrutis, mis koosneb muutujatest ja on normaalkujulised; ja arvudest ei ole normaalkujulised 2.Üksliikme kordaja - esimesel kohal olev kordaja on 10 arvuline tegur normaalkujulises üksliikmes 3.Sarnased üksliikmed - üksliikmed, mis ja on sarnased, sest täheline osa on erinevad ainult kordaja poolest või ei erine üldse samasugune 4.Üksliikme teisendamine normaalkujule - kirjutame arvuliste tegurite korrutise esimesele kohale ning asendame samade muutujate korrutised astmetega astmealuste tähestikulises järjekorras 5.Üksliikmete koondamine - tuleb teha vastav Õ ül.161 tehe vaid üksliikmete kordajatega, täheline osa jääb muutmata NB k
Ligikaudne arv ja selle tüvenumbrid .Ligikaudse arvutuse eeskirjad Matemaatika referaat : Nimi : Klass : Õpetaja Tallinn 2011 Sisukord 2 Mis on ligikaudsed arvud?..........................................3 .1 Mis on tüvenumbrid?................................................3 .2 Ligikaudse arvutuse eeskirjad.......................................4 .3 Kasutatud kirjandus..................................................6 .4 ?Mis on ligikaudsed arvud .1 3 Ligikaudne arv (ka lähend või lähismurd)  mingi arvuga A (ülesande lahendiga, mõõdetava
................................................................ 10 Ratsionaalarvulise astendajaga aste........................................................................................11 Tehted astmete ja juurtega......................................................................................................11 Irratsionaalavaldise teisendamine...........................................................................................11 Ligikaudsed arvud.................................................................................................................. 11 Täpsed ja ligikaudsed arvud............................................................................................... 12 Absoluutne viga..................................................................................................................12 Relatiivne viga (suhteline viga)..........................................................................
Ligikaudne arvutamine 1. Arvu standardkuju. Iga arvu saab esitada järguühikute kaudu, : 1999 = 1*1000 + 9*100 + 9*10 + 9*1 kui ka standardkujul ehk siis kui arv esitatakse 10 astmetel. Kirjutades arvu standardkujul, siis saame selle esitada nii : x = a * 10 ehk näiteks : 1888 = 1,888 * 10 Mitme tehtega ülesande puhul saab lahenduse leida nii : (4,2 * 10 ) * (3,5 * 10 ) = 4,2 * 3,5 * 10 = 14,7 * 10 2. Ligikaudsed arvud, ümardamine. Ronald Romu väljus kodust 7.42, et jõuda 7.53 väljuva bussiga tööle. Buss jäi aga ummikusse, seega Ronald jõudis tööle alles 8.15. Ta sai bossi käest kõvasti pahandada ning pidi lubama õhtul kauem töötada. Seetõttu jäi Ronald maha 17.20 väljuvast rongist, millega ta pidi koju minema. Ronald hakkas jalgsi poole kilomeetri kaugusel asuva kodu poole kõmpima, kuna tema buss enam ei käinud. Ta ostis tee peal 300 grammi pähkleid ja 2 pudelit vett.
4) (am)n = am × n Näiteks: (3²)5 = 3 2 × 5 = 310 = 59049 Astme astendamisel võime astendajad korrutada ning saadud tulemusega astendada antud alust. n 22 a an 1 1 1 5) = n Näiteks: = 2 = = 0, 25 b b 2 2 4 6) Murru astendamisel võime astendajad korrutada ning saadud tulemusega astendada antud alust. Ligikaudsed arvud Täpsed ja ligikaudsed arvud Kõik mõõtmisel saadud tulemused on ligikaudsed. Samuti ka ümardamisel saadud arvud. Arvu tüvenumbrid Ligikaudse arvu tüvenumbriteks loetakse kõiki õigeid numbreid, v.a. kümnendmurru alguses olevad nullid ning täisarvu lõpus olevad numbrid. Näiteks: · Arvu 26,4 tüvenumbrid on 2, 6 ja 4 · Arvu 0,0270 tüvenumbrid on 2, 7 ja 0 · Arvu 4800,320 tüvenumbrid on 4, 8, 0, 0, 3, 2 ja 0. Absoluutväärtuselt suured ja väikesed arvud esitatakse sageli nn
Kõik kommentaarid