Vajad kellegagi rääkida?
Küsi julgelt abi LasteAbi
Logi sisse
✍🏽 Avalikusta oma sahtlis olevad luuletused! Luuletus.ee Sulge

Keemia praktikum KT - sarnased materjalid

reaktsioon, gaas, mool, naoh, moolid, mõõte, indikaator, hape, kolb, määramiseks, lähteaine, reaktsioonivõrrand, graafik, pipett, ühikud, kippi, kraan, segust, destil, areomeeter, töövahend, ainehulk, molaarmass, osarõhk, gaase, boyle, mariotte, const, lussac, vesilahuste, kraani, happega, büretis, filterpaberi, rõhud, lugem, indikaatorid
thumbnail
11
doc

Praktikumi KT vastused

Kordamisküsimused Mõisted 1. Mool ­ aine hulk, mis sisaldab 6,02 10 23 ühe ja sama aine ühesugust osakest. 2. Molaarmass ­ on ühe mooli aine mass grammides, dimensiooniks on g/mol. 3. Avogardo seadus ­ Kõikide gaaside võrdsed ruumalad sisaldavad ühesugusel temperatuuril ja rõhul võrdse arvu molekule. 4. Daltoni seadus ­ Keemiliselt inaktiivsete gaaside segu üldrõhk võrdub segu moodustavate gaaside osarõhkude summaga. Osarõhk on rõhk, mida avaldaks gaas, kui teisi gaase segus poleks. 5. Gaasi suhteline tihedus ­ on ühe gaasi massi suhe teise gaasi massi samadel tingimustel. Gaasi suhteline tihedus on ühikuta suurus ja näitab, mitu korda on antud gaas teisest raskem või kergem. 6. Gaasi absoluutne tihedus ­ ühe kuupdetsimeetsi gaasi mass normaaltingimustel. 7. Ideaalgaaside seadused ­ Boyle´i seadus ­ Konstantsel temperatuuril on kindla koguse gaasi maht (V)

Keemia alused ii
167 allalaadimist
thumbnail
11
doc

Keemia Praktikumi KT vastused

Kordamisküsimused Mõisted 1. Mool ­ aine hulk, mis sisaldab 6,02 10 23 ühe ja sama aine ühesugust osakest. 2. Molaarmass ­ on ühe mooli aine mass grammides, dimensiooniks on g/mol. 3. Avogardo seadus ­ Kõikide gaaside võrdsed ruumalad sisaldavad ühesugusel temperatuuril ja rõhul võrdse arvu molekule. 4. Daltoni seadus ­ Keemiliselt inaktiivsete gaaside segu üldrõhk võrdub segu moodustavate gaaside osarõhkude summaga. Osarõhk on rõhk, mida avaldaks gaas, kui teisi gaase segus poleks. 5. Gaasi suhteline tihedus ­ on ühe gaasi massi suhe teise gaasi massi samadel tingimustel. Gaasi suhteline tihedus on ühikuta suurus ja näitab, mitu korda on antud gaas teisest raskem või kergem. 6. Gaasi absoluutne tihedus ­ ühe kuupdetsimeetsi gaasi mass normaaltingimustel. 7. Ideaalgaaside seadused ­ Boyle´i seadus ­ Konstantsel temperatuuril on kindla koguse gaasi maht (V)

Keemia alused
36 allalaadimist
thumbnail
6
docx

Keemia praktikumi KT

saab loendada ja mida on arvuliselt tohutult palju. 2. Molaarmass - on ühe mooli aine mass grammides, dimensiooniks on g/mol. 3. Avogadro seadus - Kõikide gaaside võrdsed ruumalad sisaldavad ühesugusel temperatuuril ja rõhul võrdse arvu molekule (või väärisgaaside korral aatomeid). 4. Daltoni seadus - Keemiliselt inaktiivsete gaaside segu üldrõhk võrdub segu moodustavate gaaside osarõhkude summaga. Osarõhk on rõhk, mida avaldaks gaas, kui teisi gaase segus poleks. 5. Gaasi suhteline ja absoluutne tihedus: a. Suhteline tihedus - on ühe gaasi massi suhe teise gaasi massi samadel tingimustel (V, P, T). Gaasi suhteline tihedus on ühikuta suurus ja näitab, mitu korda on antud gaas teisest raskem või kergem. b. Absoluutne tihedus - normaaltingimustel ehk 1 kuupdetsimeetri gaasi mass normaaltingimustel

Keemia aluste praktikum
22 allalaadimist
thumbnail
5
doc

Keemia aluste praktikumi arvestustöö

I.Ideaalgaaside seadused Mool on ainehulk, mis sisaldab 6,02·1023 ühesugust osakest. Molaarmass (M, g/mol) on ühe mooli aine molekulide (aatomite,ühe mooli ioonide) mass grammides. Avogadro seadus. Kõikide gaaside võrdsed ruumalad sisaldavad ühesugusel temperatuuril ja rõhul võrdse arvu molekule (või väärisgaaside korrla aatomeid). Daltoni seadus. Keemileselt inaktiivsete gaaside segu üldrõhk võrdub segu moodustavate gaaside osarõhkude summaga, Osarõhk on rõhk, mis avaldaks gaas, kui teise gaase segus pooleks. Püld = p1 + p 2 + ... = p i pi = Püld X i X i -vastava gaasi moolimurd segus Gaasi suhteline tihedus on ühe gaasi massi suhe teise gaasi massi samadel tingimustel (P,V, T) . GST on ühikuta suurus ja näitab, mitu korda on antud gaas teisest raskem või kergem m M D= 1 = 1 m2 M 2 Gaasi absoluutne tihedus normaaltingimustel e 1 dm3 gaasi mass normaaltingimustel M gaas [ g mol ] 0 = dm 3 [

Keemia alused
146 allalaadimist
thumbnail
2
doc

Labori kontrolltöö kordamisküsimuste vastused

lubjakivitükikesi. HCl valatakse ülemisse nõusse, millest see voolab läbi anuma keskel oleva toru alumisse nõusse ja edasi läbi kitsenduse, mis takistab lubjakivitükkide sattumist alumisse nõusse, keskmisse nõusse, Puutudes kokku lubjakiviga, algab süsinikdioksiidi eraldumine CaCO3 + 2HCl CaCl2 + CO2 + H2O Tekkiv süsinikdioksiid väljub kraani kaudu. Kui kraan sulgeda, siis sdo rõhk keskmises nõus tõuseb ja hape surutakse tagasi alumisse ning toru kaudu ka osaliselt ülemisse nõusse. Kui hape on keskmisest nõust välja tõrjutud, reaktsioon lakkab. (Puhta süsinik- Dioksiidi saamiseks tuleks see juhtida veel läbi absorberi(te), mille ülesanne on siduda HCl aurud ja niiskus.) Millised parameetrid ja miks tuleb alati üles märkida, kui mõõdetakse gaaside mahtu? Rõhk ja temperatuur, sest nende kahe teguri muutumisel muutub ka gaasi ruumala

Keemia alused ii
94 allalaadimist
thumbnail
13
doc

Keemia praktikumi kontrolltöö küsimused

Puutudes kokku lubjakiviga algab CO2 eraldumine vastavalt reaktsioonile. Milliseid gaase on võimalik saada Kippi aparaadi abil? CO2 Kuidas määratakse CO2 suhtelist tihedust õhu suhtes?(töövahendid, töö käik, arvutused) Tarvis läheb CO2'e ballooni, korgiga varustatud seisukolbi, kaalusid, mõõtesilindrit, termomeetrit ja baromeetrit. Esmalt tuleb kolvi kaelale teha viltpliiatsiga märge korgi alumise serva kohale. Seejärel kaaluda kolb koos korgiga ning märkida üles mass m 1. Järgmiseks tuleb juhtida balloonist süsinikdioksiidi 7-8 minuti vältel kolbi. Jälgida, et vooliku ots ei oleks tihedalt vastu kolvi põhja. Sulgeda kolb kiiresti ning kaaluda uuesti, märkides üles m2'e. Jätkata kolvi täitmist süsinikdioksiidiga senikaua, kuni m2 ja m1 vahe jääb vahemikku 0.17-0.22g. Kolvi mahu määramiseks tuleb see täita,kuni viltpliiatsi märgini veega, ning määrate vee ruumala mõõtesilindri abil [V].

Keemia alused ii
335 allalaadimist
thumbnail
23
pdf

Labori töövõtted-Kordamisküsimused

klaasnõust. CO​2 saamiseks pannakse keskmisse nõusse (2) paekivitükikesi. Soolhape valatakse ülemisse nõusse (1), millest see voolab läbi toru alumisse nõusse (3) ja edasi läbi kitsenduse (4), mis takistab lubjakivi tükkide sattumist alumisse nõusse, keskmisse nõusse (2). Puutudes kokku lubjakiviga algab CO​2 eraldumine vastavalt reaktsioonile. Tekkiv CO​2 väljub kraani (5) kaudu. Kui kraan sulgeda, siis CO​2 rõhk keskmises nõus tõuseb ja hape surutakse tagasi alumisse ning toru kaudu ka osaliselt ülemisse nõusse. Kui hape on keskmisest nõust välja tõrjutud, reaktsioon lakkab. Puhta CO​2 saamiseks tuleks see juhtida veel läbi absorberi(te) (6), mille ülesandeks on siduda HCl aurud ja veeaur. 2. Kuidas määratakse CO​2​ suhtelist tihedust õhu suhtes (töövahendid, töö käik, arvutused)? Töövahendid: Kippi aparaat/balloon; seisukolb korgiga; kaalud; mõõtesilinder; termomeeter; baromeeter.

keemiast laialdaselt
76 allalaadimist
thumbnail
10
docx

Keedusoola määramine liiva-soola segus

Laboratoorne töö 1 Keedusoola määramine liiva-soola segus 1. Milleks ja kuidas te kasutasite areomeetrit? Joonistage põhimõtteline pilt! Kasutasime keedusoola lahuse tiheduse määramiseks. Skaalalt lugesime tiheduse näidu järgi, milleni areomeeter lahusesse sukeldus. 2. Millisel seadusel põhineb areomeetri kasutamine? Archimedese seadusel: igale vedelikus või gaasis asetsevale kehale mõjub üleslükkejõud, mis on võrdne selle keha poolt väljatõrjutud vedeliku või gaasi kaaluga. 3. Millest sõltub lahuste tihedus? Lahustunud aine sisaldusest lahuses. 4. Kas lahuste tihedus on suurem või väiksem kui lahusti tihedus? Lahuste tihedus on suurem kui lahusti tihedus 5

Keemia
7 allalaadimist
thumbnail
9
doc

Keemia aluste praktikumi kontrolltööd

Laboratoorne töö 1 Keedusoola määramine liiva-soola segus 1. Milleks ja kuidas te kasutasite areomeetrit? Joonistage põhimõtteline pilt! Kasutasime keedusoola lahuse tiheduse määramiseks. Skaalalt lugesime tiheduse näidu järgi, milleni areomeeter lahusesse sukeldus. 2. Millisel seadusel põhineb areomeetri kasutamine? Archimedese seadusel: igale vedelikus või gaasis asetsevale kehale mõjub üleslükkejõud, mis on võrdne selle keha poolt väljatõrjutud vedeliku või gaasi kaaluga. 3. Millest sõltub lahuste tihedus? Lahustunud aine sisaldusest lahuses. 4. Kas lahuste tihedus on suurem või väiksem kui lahusti tihedus? Lahuste tihedus on suurem kui lahusti tihedus 5

Keemia alused
58 allalaadimist
thumbnail
22
pdf

KEEMIA PRAKTIKUMI KÜSIMUSED

KEEMIA PRAKTIKUMI KÜSIMUSED PRAKTIKUM NR 1 1. Milleks ja kuidas te kasutasite areomeetrit? Joonistage põhimõtteline pilt! Areomeetrit kasutasin lahuse(keedusoolalahuse) tiheduse määramiseks. Asetasin selle ettevaatlikult lahusesse (raskusega osa all) kuni see jäi vedelikku hõljuma, jälgisin et aeromeeter oleks keskel (ei puutuks kokku anuma seintega) ning seejärel vaatasin mõõtskaalalt vastava tulemuse. 2. Millisel seadusel põhineb areomeetri kasutamine? Archimedese seadusel. Igale vedelikus või gaasis asetsevale kehale mõjub üleslükkejõud, mis on võrdne selle keha poolt väljatõrjutud vedeliku või gaasi kaaluga. 3. Millest sõltub lahuste tihedus?

Keemia ja materjaliõpetus
106 allalaadimist
thumbnail
10
docx

Praktikumi KT vastused

Laboratoorne töö 1 Keedusoola määramine liiva-soola segus 1. Milleks ja kuidas te kasutasite areomeetrit? Joonistage põhimõtteline pilt! Kasutasime keedusoola lahuse tiheduse määramiseks. Skaalalt lugesime tiheduse näidu järgi, milleni areomeeter lahusesse sukeldus. 2. Millisel seadusel põhineb areomeetri kasutamine? Archimedese seadusel: igale vedelikus või gaasis asetsevale kehale mõjub üleslükkejõud, mis on võrdne selle keha poolt väljatõrjutud vedeliku või gaasi kaaluga. 3. Millest sõltub lahuste tihedus? Lahustunud aine sisaldusest lahuses. 4. Kas lahuste tihedus on suurem või väiksem kui lahusti tihedus? Lahuste tihedus on suurem kui lahusti tihedus 5

Keemia ja materjaliõpetus
724 allalaadimist
thumbnail
12
docx

Keedusoola määramine liiva-soola segus

Laboratoorne töö 1 Keedusoola määramine liiva-soola segus 1. Milleks ja kuidas te kasutasite areomeetrit? Joonistage põhimõtteline pilt! Areomeetreid kasutatakse toiduainetetööstuses (näiteks veini alkoholi- või piima rasvasisalduse määramiseks), laborites lahuste kontsentratsiooni määramiseks, hapete (eelkõige akuhappe) kontsentratsiooni määramiseks. Tavaline areomeeter koosneb kinnisest õhuga täidetud klaastorust, mille ühes otsas on elavhõbedast või tinast ballast. Toru külge on kinnitatud skaala. Areomeeter tuli asetada lahusesse ja skaalalt sai lugeda vedeliku tiheduse. 2. Millisel seadusel põhineb areomeetri kasutamine? Archimedese seadusel: igale vedelikus või gaasis asetsevale kehale mõjub üleslükkejõud, mis on võrdne selle keha

Keemia ja materjaliõpetus
10 allalaadimist
thumbnail
5
docx

Keemia praktikumi kontrolltöö kordamine

1. Milleks ja kuidas te kasutasite areomeetrit? Joonistage põhimõtteline pilt! Aeromeetrit kasutatakse lahuse tiheduse määramiseks. Aeromeeter sukeldatakse lahusesse ning loeme skaalalt näidu. 2. Millisel seadusel põhineb areomeetri kasutamine? Archimedese seadusel: igale vedelikus või gaasis asetsevale kehale mõjub üleslükkejõud, mis on võrdne selle keha poolt väljatõrjutud vedeliku või gaasi kaaluga. 3. Millest sõltub lahuste tihedus? Tihedus sõltub lahuse massist ja mahust, lahustunud aine sisaldusest lahuses 4. Kas lahuste tihedus on suurem või väiksem kui lahusti tihedus? Lahuste tihedus on

Keemia ja materjaliõpetus
38 allalaadimist
thumbnail
6
docx

Keemia aluste praktikumi KT küsimusi ja ülesandeid

Keemia aluste praktikumi KT küsimusi ja ülesandeid 1. Kippi aparaadi tööpõhimõte. Reaktsioonivõrrand CO2 saamiseks Kippi aparaadis. CO2 gaasi tekitamiseks (vesiniku) paigutatakse tahke aine (tsink) reaktori ülemisse ossa, hape (lahjendatud HCl) valatakse lehtrisse, kust ta valgub reaktori alumisse ossa. Pärast viimase täitumist satub hape tahke ainega kokkupuutesse. Keemilise reaktsiooni tulemusena tekkinud gaas väljub reaktorist kraani kaudu. 2. Milliseid gaase on võimalik saada Kippi aparaadi abil? Kippi aparaadi abil on võimalik saada gaase, mida võib saada tahkete ainete reageerimisel happega. Näiteks süsinikdioksiidi kaltsiumkarbonaadist soolhappe toimel. 3. Kuidas määratakse CO2 suhtelist tihedust õhu suhtes (töövahendid, töö käik, arvutused)? Kaalun kolvi, seejärel kolvi CO2-ga, seejärel täidan kolvi veega (vett 250 ml nagu gaasigi)

Keemia alused
9 allalaadimist
thumbnail
28
docx

Keemia aluste protokoll 1: Ideaalgaaside seadused

temperatuur T [K] on universaalse gaasikonstandi väärtus R = 8,314 J/mol ⋅ K. 0 0 3 P ∙V m 101325 Pa ∙ 0,0224138 m R= 0 = =8,314 J / mol ∙ K T 273,15 K Daltoni seadus. Keemiliselt inaktiivsete gaaside segu üldrõhk võrdub segu moodustavate gaaside osarõhkude summaga. Osarõhk on rõhk, mida avaldaks gaas, kui teisi gaase segus poleks. Näiteks sisaldab õhk mahuliselt 21% hapnikku ja 79% lämmastikku. Kui üldrõhk on 1,0 atm, pO2 pN2 siis hapniku osarõhk = 0,21 atm ja lämmastiku osarõhk = 0,79 atm. Üldrõhu pO2 ∙ 759 = 157 mmHg.

Keemia alused
4 allalaadimist
thumbnail
12
docx

NaCl sisalduse määramine liiva ja soola segus

ainest kui konkreetsest reaktsioonist ja sisaldab sisuliselt moolvahekorrale vastavat informatsiooni. Kontsentratsiooni määramine tiitrimisega Tiitrimine on protseduur, kus reaktsiooniks kulunud ühe aine täpse kontsentratsiooniga lahuse koguse järgi leitakse teise aine lahuse kontsentratsioon. Büretti kasutades mõõdetakse täpselt ühe lahuse maht, teist lahust doseeritakse täpse mahuga pipeti abil. Näiteks soolhappe tiitrimisel täpse kontsentratsiooniga NaOH lahusega toimub reaktsioon HCl + NaOH NaCl + H2O Töövahendid Kaalud, kuiv keeduklaas, klaaspulk, lehter, kooniline kolb, mõõtesilinder (250 cm3), areomeeter, filterpaber. Kasutatud uurimis- ja analüüsimeetodid ning metoodikad Kuiva keeduklaasi kaaluti 5-9 g liiva ja soola segu täpsusega 0,01 g. NaCl lahustati klaaspulgaga segades vähese koguse (~50 cm3) destilleeritud veega. Lahus filtreeriti. Jäägile keeduklaasis lisati NaCl täielikuks väljapesemiseks liivast

Keemia alused
15 allalaadimist
thumbnail
22
docx

Lahuste valmistamine, kontsentratsiooni määramine

Ja lahustunud aine massi leidmiseks saab tuletada seose C m ∗C maine=V lahus∗p lahus= = lahus 100 100 2. Molaarne kontsentratsioon (CM) Molaarne kontsentratsioon näitab lahustund aine moolide arvu ühes kuupdetsimeetris (ühes liitris) lahuses 0 maine( g) V gaas (dm 3) n aine(mol) naine= naine = C M= g dm 3 V lahus( dm 3) M aine( ) V m( ) mol mol Ja lahustunud aine massi saab leida Maine=Vlahus* CM*Maine 3. Molaalsus (Cm) Molaalsus näitab lahustunud aine moolide arvu 1 kg lahustis n aine(mol)

Keemia
13 allalaadimist
thumbnail
28
docx

Keemia praktikum nr2: Keemiline tasakaal ja reaktsioonikiirus

Molaarne kontsentratsioon (CM) Molaarne kontsentratsioon näitab lahustunud aine moolide arvu ühes dm3 (ühes liitris) lahuses. naine [mol ] maine [ mol ] C M= = V la hus [dm 3 ] M aine [ g /mol ] ∙V lahus [ dm 3 ] 1.5 maine [g] naine = M aine [ g /mol] V 0 gaas [ dm 3 ] naine= 3 V m [dm /mol] Lahustunud aine massi saab leida maine=V la h us ∙C M ∙ M aine 1.6 Molaalsus (Cm) Molaalsus näitab lahustunud aine moolide arvu 1 kilogrammis lahustis naine [mol] maine [ g ] Cm = = 1.7 mla h usti [kg] M aine ∙ [ g /mol ] (m −m l ahus aine ) [ kg ] Moolimurd (CX)

Keemia alused
5 allalaadimist
thumbnail
16
docx

Lahuste valmistamine, kontsentratsiooni määramine

Tiitrimine on protseduur, kus reaktsiooniks kulunud ühe aine täpse kontsentratsiooniga lahuse koguse järgi leitakse teise aine lahuse kontsentratsioon. Büretti kasutades mõõdetakse täpselt ühe lahuse maht, teist lahust doseeritakse täpse mahuga pipeti abil. Tiitrimisel lisatakse lahusele indikaatorit ­ ühendit, mille värvus sõltub lahuse happesusest. Siin töös kasutatakse indikaatorina fenoolftaleiini, mis on soolhappelahuses värvitu, kuid NaOH aluselises lahuses punane. Stöhhiomeetriline punkt ­ hetk, mil kogu soolhape on ära reageerinud ja indikaator muudab juba ühest liiaga lisatud NaOH tilgast tekkinud aluselises lahuses värvust, määratakse ühe tilga täpsusega. Tiitrimisel pipeteeritakse koonilisse kolbi täpne kogus soolhapet, lisatakse indikaator ning kolbi ringikujuliste liigutustega pidevalt segades, lisatakse büretist tilkhaaval NaOH lahust kuni värvuse muutuseni.

Keemia
22 allalaadimist
thumbnail
7
docx

Keemia alused Protokoll 1

TTÜ keemiainstituut Anorgaanilise keemia õppetool YKI0020 Keemia alused Laboratoorne Töö pealkiri: töö nr. Õpperühm: Töö teostaja: Õppejõud: Töö teostatud: Protokoll Protokoll esitatud: arvestatud: Sissejuhatus Ideaalgaas– gaas, mille molekulide vahelised kaugused on suured, mistõttu jõud nende vahel on väikesed ja seetõttu sageli jäetakse arvestamata. Gaaside maht sõltub oluliselt temperatuurist ja rõhust. Gaasiliste ainete mahtu väljendatakse tavalaliselt kokkuleppeliselt normaaltingimustel, kus temperatuur on 273,15 K (0 ⁰C) ja rõhk 101 325 Pa (0,987 atm; 750 mm Hg). Kasutatakse ka standardtingimusi, kus temperatuur on 273,15 K ja rõhk 100 000 Pa (0,987 atm; 750 mm Hg). Avogadro seadus

Keemia alused
6 allalaadimist
thumbnail
14
docx

Keemia alused Protokoll 2

Ekvivalentmass sõltub nii ainest kui konkreetsest reaktsioonist ja sisaldab sisuliselt moolvahekorrale vastavat informatsiooni. Kontsentratsiooni määramine tiitrimisega – tiitrimine on protseduur, kus reaktsiooniks kulunud ühe aine täpse konts. lahuse koguse järgi leitakse teise aine lahuse konts. Büretti kasutades mõõdetakse täpselt ühe lahuse maht, teist lahust doseeritakse täpse mahuga pipeti abil. Nt soolhappe tiitrimisel täpse kontsentratratsiooniga NaOH lahusega toimub reaktsioon Vastavalt HCl ja NaOH moolsuhtele 1:1 saab soolhappe otsitava kontsentratsiooni leida Tiitrimisel lisatakse lahusele indikaatorit. Stöhhiomeetriline punkt – hetk, mil kogu soolhape on ära reageerinud ja indikaator muudab juba ühest liiaga lisatud NaOH tilgast tekkinud aluselises lahuses värvust. Eksperimentaalne töö 1 NaCl sisalduse määramine liiva ja soola segus Töö eesmärk: Lahuste valmistamine tahketest ainetest, kontsentratsiooni

Keemia alused
11 allalaadimist
thumbnail
5
docx

Keemia alused, protokoll 2.

Tiitrimine on protseduur, kus reaktsiooniks kulunud ühe aine täpse kontsentratsiooniga lahuse koguse järgi leitakse teise aine lahuse kontsentratsioon. Büretti kasutades mõõdetakse täpselt ühe lahuse maht, teist lahust doseeritakse täpse mahuga pipeti abil. Tiitrimisel lisatakse lahusele indikaatorit ­ ühendit, mille värvus sõltublahuse happesusest. Siin töös kasutatakse indikaatorina fenoolftaleiini, mis on soolhappelahuses värvitu, kuid NaOH aluselises lahuses punane. Stöhhiomeetriline punkt ­ hetk, mil kogu soolhape on ära reageerinud ja indikaator muudab juba ühest liiaga lisatud NaOH tilgast tekkinud aluselises lahuses värvust, määratakse ühe tilga täpsusega. Tiitrimisel pipeteeritakse koonilisse kolbi täpne kogus soolhapet, lisatakse indikaator ning kolbi ringikujuliste liigutustega pidevalt segades, lisatakse büretist tilkhaaval NaOH lahust kuni värvuse muutuseni. Eksperimentaalne töö 1

Keemia alused
63 allalaadimist
thumbnail
16
doc

Keemia alused

elektrone, nimetatakse redutseerijaks, see aine ise seejuures oksüdeerub (tema oksüdatsiooniaste kasvab). Ainet või iooni, mis seob oma struktuuri elektrone, nimetatakse oksüdeerijaks, aine ise seejuures redutseerub (tema oksüdatsiooniaste kahaneb). Redoksreaktsiooni toimumiseks loob võimaluse redutseerija ja oksüdeerija otsene või kaudne kontakt (voolu juhtiva aine/materjali vahendusel). Redoksreaktsioone saab esitada ka kahe poolreaktsioonina. Näiteks tsingi reaktsioon soolhappega Tuntumad oksüdeerijad on kloor, broom, hapnik, lämmastikhape, kaaliumpermanganaat, kaaliumdikromaat jt. Tuntumad redutseerijad on vesinik, süsinikoksiid, süsinik, metallid, jodiidioonid (I.), sulfiidioonid (S2.) jt. Mõni aine võib olla nii oksüdeerija kui ka redutseerija. Näiteks vesinikperoksiid on jodiidiooni suhtes oksüdeerija, permanganaatiooni suhtes redutseerija. Kuna redoksreakstioonid toimuvad elementide oksüdatsiooniastme muutusega, siis tuleb

Keemia alused
247 allalaadimist
thumbnail
6
docx

Keemia alused II protokoll

Konsentratsiooni määramine tiitrimisega Tiitrimine on protseduur, kus reaktsiooniks kulunud ühe aine täpse kontsentratsiooniga lahuse koguse järgi leitakse teise aine lahuse kontsentratsioon. Büretti kasutades mõõdetakse täpselt ühe lahuse maht, teist lahust doseeritakse täpse mahuga pipeti abil. Tiitrimisel lisatakse lahusele indikaatorit ­ ühendit, mille värvus sõltublahuse happesusest. Siin töös kasutatakse indikaatorina fenoolftaleiini, mis on soolhappelahuses värvitu, kuid NaOH aluselises lahuses punane. Stöhhiomeetriline punkt ­ hetk, mil kogu soolhape on ära reageerinud ja indikaator muudab juba ühest liiaga lisatud NaOH tilgast tekkinud aluselises lahuses värvust, määratakse ühe tilga täpsusega. Tiitrimisel pipeteeritakse koonilisse kolbi täpne kogus soolhapet, lisatakse indikaator ning kolbi ringikujuliste liigutustega pidevalt segades, lisatakse büretist tilkhaaval NaOH lahust kuni värvuse muutuseni. Eksperimentaalne töö 2 Katse 1

Keemia alused
86 allalaadimist
thumbnail
32
doc

Orgaaniline keemia

võrdne esimest järku tuletisega kontsentratsioonist aja järgi: dc v =± . (2) dt Keemilise reaktsiooni kiirus sõltub paljudest teguritest. Põhilisemad nendest on reageerivate ainete iseloom ja kontsentratsioon, rõhk (kui reaktsioonist võtavad osa gaasilised ained), temperatuur, katalüsaatori juuresolek. Heterogeensete protsesside korral, kui reaktsioon toimub faasidevahelisel piirpinnal, sõltub reaktsiooni kiirus selle piirpinna suurusest (seega ainete peenestatuse astmest) ja omadustest. Reaktsiooni kiiruse sõltuvus kontsentratsioonist lihtsate (s.o. ühestaadiumiliste) homogeensete reaktsioonide korral on määratud massitoimeseadusega: reaktsiooni kiirus on võrdeline reageerivate ainete kontsentratsioonide korrutisega (astmetes, mis vastavad reaktsiooni võrrandi kordajatele).

Keemia
91 allalaadimist
thumbnail
6
doc

Keemia aluste kokkuvõtlik konspekt

Tahkete ainete c alati 1, ei arvesta. II Reaktsiooni molekulaarsus ja järk. Reakt.- järk ­ kiiruse avaldises konts.-ide astmenäitajate summa. Reakt.-i molekulaarsus ­ näitab reakts.-i elementaaraktist osavôtvate osakeste arvu. 1) Monomolekulaarsed reaktsioonid: osaleb 1 molekul (ainult lagunemisreakt.) H22H. 2) Bimolek: H2+I22HI. 3) Trimolek: 2SO2 + O2 2SO3. Näited: Zn + 2HClZnCl2 + H2 (II järk, trimolek., v=k=c(HCl)2; CaCO3 CaO + CO2 (0 järk, v=k); Na2CO3 + H2O NaHCO3 + NaOH (v=kc(Na2CO3), vee c on const, sest seda väga palju). * Reaktsiooni kineetika sôltub, reakt. järgust * [kI = 1/t(ln C0/Ct)]; C0 ­ lähteainete c reakts. algul). [kII = 1/t(ln (C0-Ct)/(C0-Ct)]. III Reaktsiooni mehhanismid. Lihtreaktsioonid ­ kulgevad ühes etapid ja lôpuni. Reakts. vôrrand vastab elementaaraktile. Liitreaktsioonid ­ mitu etappi ja vôivad olla pöörduvad. Pöörduvad reaktsioonid: kulgevad üheaegselt môlemas suunas. N: A+B C+D;

Keemia alused
146 allalaadimist
thumbnail
9
docx

Keemia alused II - protokoll: Lahuste valmistamine, konsentratsiooni määramine

Tiitrimine on protseduur, kus reaktsiooniks kulunud ühe aine täpse kontsentratsiooniga lahuse koguse järgi leitakse teise aine lahuse kontsentratsioon. Büretti kasutades mõõdetakse täpselt ühe lahuse maht, teist lahust doseeritakse täpse mahuga pipeti abil. Tiitrimisel lisatakse lahusele indikaatorit ­ ühendit, mille värvus sõltublahuse happesusest. Siin töös kasutatakse indikaatorina fenoolftaleiini, mis on soolhappelahuses värvitu, kuid NaOH aluselises lahuses punane. Stöhhiomeetriline punkt ­ hetk, mil kogu soolhape on ära reageerinud ja indikaator muudab juba ühest liiaga lisatud NaOH tilgast tekkinud aluselises lahuses värvust, määratakse ühe tilga täpsusega. Tiitrimisel pipeteeritakse koonilisse kolbi täpne kogus soolhapet, lisatakse indikaator ning kolbi ringikujuliste liigutustega pidevalt segades, lisatakse büretist tilkhaaval NaOH lahust kuni värvuse muutuseni.

Keemia aluste praktikum
28 allalaadimist
thumbnail
18
docx

Ideaalgaaside seadused

P ja T aga rõhk ja temperatuur, mille juures maht V on antud või mõõdetud. Ühe mooli gaasilise aine korral: PV T = const = R R - universaalne gaasikonstant n mooli gaasi kohta kehtib jargmine seos: P*V = n*R*T m ehk Clapeyroni võrrand - PV = M RT 3. Daltoni seadus Keemiliselt inaktiivsete gaaside segu üldrõhk võrdub segu moodustavate gaaside osarõhkude summaga. Osarõhk on rõhk, mida avaldaks gaas, kui teisi gaase segus poleks. Näiteks sisaldab õhk mahuliselt 21% hapnikku ja 79% lämmastikku. Kui üldrõhk on 1,0 atm, siis hapniku osarõhk p(O2) = 0,21 atm ja lämmastiku osarõhk p(N2) = 0,79 atm. Üldrõhu 750 mm Hg korral saame aga hapniku osarõhuks p(O2) = 0,21⋅750 = 157,5 mm Hg. Osarõhk sõltub seega nii üldrõhust kui gaasi sisaldusest segus. Püld = p1+p2+... = Σpi pi = Püld * Xi Xi - vastava gaasi moolimurd segus.

Keemia alused
5 allalaadimist
thumbnail
14
docx

Süsinikdioksiidi molaarmassi määramine

lubjakivitükikesi. Soolhape valatakse ülemisse nõusse, millest see voolab läbi anuma keskel oleva toru alumisse nõusse ja edasi läbi kitsenduse, mis takistab lubjakivitükkide sattumist alumisse nõusse, keskmisse nõusse. Puutudes kokku lubjakiviga, algab CO2 eraldumine CaCO3 + 2HCl → CaCl2 + CO2 + H2O Tekkiv CO2 väljub kraani kaudu. Kui kraan sulgeda, siis CO2 rõhk keskmises nõus tõuseb ja hape surutakse tagasi alumisse ning toru kaudu ka osaliselt ülemisse nõusse. Kui hape on keskmisest nõust välja tõrjutud, reaktsioon lakkab. Puhta CO2 saamiseks tuleks see juhtida veel läbi absorberi(te), mille ülesanne on siduda HCl aurud ja niiskus. Antud töös kasutatakse aja ja reaktiivide kokkuhoiu mõttes süsinikdioksiidi balloonist. Töö käik Tehnilistel kaalul kaalun 300 ml kuiva kolvi koos korgiga (mass m1). Teen kolvi kaelale märke korgi alumise serva kohale. Juhin balloonist 7...8 minuti vältel kolbi süsinikdioksiidi.

Keemia alused
6 allalaadimist
thumbnail
16
docx

Ideaalgaaside seadused

T n mooli gaasi kohta kehtib seos P∙ V =n∙ R ∙T (Clapeyroni võttand). Järgmiste ühikute korral – rõhk P [Pa]; mass m [g]; moolide arv n [mol]; maht V [m3]; temperatuur T [K] on universaalse gaasikonstandi väärtus R = 8,314 J/mol⋅K. Daltoni seadus: Keemiliselt inaktiivsete gaaside segu üldrõhk võrdub segu moodustavate gaaside osarõhkude summaga. Osarõhk on rõhk, mida avaldaks gaas, kui teisi gaase segus poleks. Osarõhk sõltub seega nii üldrõhust kui gaasi sisaldusest segus. Moolimurd: segu ühe komponendi moolide arv jagatud kõikide segus olevate komponentide moolide arvu summaga. Difusioon: aineosakeste soojusliikumisest tingitud protsess, mis viib kontsentratsioonide ühtlustumisele süsteemis. Gaasi suhteline tihedus: ühe gaasi massi suhe teise gaasi massi samadel tingimustel (V, P, T)

Eesti keel
1 allalaadimist
thumbnail
14
doc

KEEMIA KORDAMISKÜSIMUSED

NT: võib süsinik esineda mitmesuguses kristallvormis /grafiit, teemant, karbiin). Seda nim. ALLOTROOPIAKS Aatomite mõõtmed ja mass on väga väikesed (1,674*10 -27 kg) Arvutuste hõlbustamiseks on kasutusele võetud SÜSINIKUÜHIK, mis on 1/12 12/6 C aatommassist ja tema väärtus on 1,6*10-27 kg AATOMMASS ­ suhtearv, mis näitab, mitu korda on elemendi aatomi mass suurem 1/12 12/6 C aatommassist. NT: Ar(O)=16. 1.9 Avogadro arv. Mool. Molaarmass MOLEKULMASS ­ arv, mis näitab, mitu korda on aine molekuli mass suurem 1/12 6/23 C massist. NT: M(h2So4)=2+32+4*46=98 MOOL ­ ainehulga põhiühik, mis sisaldab niisama palju osakesi, kui on aatomeid 12 g C-s (nim. Avogadro arvuks: 6.02 *1023 osakest mooli kohta. MOLAARMASS ­ aine 1 mooli mass grammides. NT: M(H2O)=18 g/mol. EKVIVALENTMASS ­ aine mass, mis keemilistes reaktsioonides vastab 1,008 massiühikule vesinikule või 8 massiühikule hapnikule.

Keemia
119 allalaadimist
thumbnail
10
pdf

LAHUSED

ioonvõrega ­ läheb lahusesse ioonidena Kolloidlahused - lahused, kus lahustunud aine osakesed on palju suuremad (dosake molekulvõrega ­ läheb lahusesse molekulidena ~2-200 nm). Need osakesed on tekkinud paljude molekulide või aatomite liitumisel ja aatomvõrega ­ sageli mittelahustuvad nad on suhteliselt ebapüsivad. Vedelik, gaas Gaaside lahustuvus läheb lahusesse molekulidena Gaaside lahustuvus väheneb t° tõusuga ja suureneb rõhu kasvuga. Gaaside lahustuvus Molekulid võivad lahuses lahusti molekulide toimel kas osaliselt või täielikult ioonideks vees väheneb, kui vesi sisaldab lahustunud soolasid. jaguneda

27 allalaadimist
thumbnail
7
doc

KONSPEKT keemias

süsteemi, milles lahusti ja lahustunud ainete vahekorda saab muuta. Omaduste poolest on lahused segude ja keemiliste ühendite vahepealsed.Lahusti ja lahustunud aine vahekorda iseloomustatakse kontsentratsiooni abil.Kontsentratsioon näitab lahustunud aine sisaldust lahuses. Kasutusel on mitmed erinevadkontsentratsiooni väljendusviisid:1. Protsendiline (%) kontsentratsioon (massiprotsent)näitab, mitu massiosa lahustunud ainet on sajas massiosas lahuses.Näide: 4 %-line NaOH lahus. See tähendab, et 100 g lahuses on 4 g NaOH. NB! mõnikord (gaaside, vedelike korral) kasutatakse ka mahuprotsenti, see näitab mitu mahuosa lahustunud ainet on 100 mahuosas lahuses2. Molaarne kontsentratsioon (molaarsus) näitab lahustunud aine moolide arvu 1 liitris(=1dm3) lahuses Näide: 2 M H2SO4 lahus. See tähendab, et 1 liitris lahuses sisaldub 2 mooli H2SO4 2 M = 2 mol/l 3. Moolimurd (moolosa) on lahustunud aine moolide arvu suhe lahuse summaarsesse moolide arvu moolimurd = n1 /

Keemia
34 allalaadimist


Sellel veebilehel kasutatakse küpsiseid. Kasutamist jätkates nõustute küpsiste ja veebilehe üldtingimustega Nõustun