Vajad kellegagi rääkida?
Küsi julgelt abi LasteAbi
Logi sisse Registreeri konto
✍🏽 Avalikusta oma sahtlis olevad luuletused! Luuletus.ee Sulge

Füüsika eksam - sarnased materjalid

steem, elektrilaeng, magnetv, imet, elektriv, nkumise, punktmass, udude, rdeline, nkumine, amplituud, vektoriaalne, telg, impulss, iesti, kinemaatika, nkumised, veev, hineb, vabav, rvale, valguslaine, eritakistus, olekuv, mber, ujooned, steemis, vastastikm, sooritatud, nkumisi, peopesa, tehnoloogiast, kolmes, isotermilise, paisu, transformaator
thumbnail
14
pdf

FÜÜSIKA EKSAM

1. Kinemaatika põhimõisteid (punktmass, taustsüsteem, keha asukoht, nihkevektor). ● põhiülesanne on leida keha asukoht mistahes ajahetkel. ● Mehaaniline lliikumine on keha asendi muutumine teiste kehade suhtes ruumis aja jooksul. ● Keha asukohta määramiseks on vajalik taustsüsteem( taustkeha ja koordinaatteljed) ● Aeg on skalaarne suurus, pidev, ei sõltu keha liikumsest. ● punktmass- füüsikalise keha mudel, mille puhul keha mass loetakse koondatuks ühte ruumipunkti. ● taustsüsteem- mingi taustkehaga seotud ruumiliste ja ajaliste koordinaatide süsteem. ● nihkevektor- füüsikaline suurus, vektor liikuva keha algasukohast keha lõppasukohta. Nihke pikkus sõltub liikumise trajektoorist, liikumiskiirusest ja liikumisajast. 2. Kiirus. Ühtlane ja ühtlaselt muutuv liikumine. ● Kinemaatika üheks põhisuuruseks on kiirus ● ühtlane sirgjooneline liikumine ehk ühtlane liikumine- keha või masspunkti sirgjoonelin

Füüsika
17 allalaadimist
thumbnail
31
doc

Füüsika eksam.

Juhi valispind on seega samapotentsiaalipind. Juhi omadust nõrgendada elektrostaatiline väli enda sisemuses nullini kasutatakse näiteks seadmete varjestamisel. Kui juhti viia täiendavalt ühemärgilisi vabu laengukandjaid, nii et juhi kui terviku summaarne laeng hakkab erinema nullist, siis nende laengute omavahelise tõukejõu tõttu paigutuvad need laengukandjad üksteisest võimalikult kaugele, s.t. kogunevad juhi pinnale. Juhile antud elektrilaeng koguneb elektrostaatilisel juhul alati juhi välispinnale. 39. Juhi mahtuvus. Kondensaator. Laengute süsteem ja elektrivälja energia. Mingi juhi mahtuvus näitab, kui suur laeng tuleb anda sellele juhile, et suurendada tema potentsiaali ühe ühiku võrra. Mahtuvuse ühik on üks kulon voldi kohta ehk 1F (farad, soti füüsiku M.Faraday järgi). [C]=1C/V=1F Kerakujuliste juhtide mahtuvus on üliväike ja nende kasutamine elektrilaengute

Füüsika
844 allalaadimist
thumbnail
11
doc

Füüsika eksam

Elektrilise induktsiooni nähtus Kui juht satub elektrivälja hakkavad vabad laengukandjad liikuma. Positiivsed hakkavad liikuma elektrivälja suunas ja negatiivsed vastassuunas. Seal, kus jõujooned sisenevad tekib negatiivne laeng ja seal, kus jõujooned väljuvad tekib positiivne laeng. Elektrostaatiliseks induktsiooniks nimetatakse erinimeliselt laetud laengute eraldumist elektrivälja asetatud juhis. Näiteks kui elektrivälja asetatud metallkeha kaheks osaks jaotada, siis on mõlemal osal elektrilaeng. Need laengud on suuruselt võrdsed ja märgilt vastupidised. 62. Dielektrikus ei saa laengukandjad vabalt liikuda. Nad võivad vaid pisut nihkuda asendist, milles nad olid elektrivälja puudumisel. Suhteliseks dielektriliseks läbitavuseks nimetatakse füüsikalist suurust, mis näitab, mitu korda on elektrivälja tugevus homogeenses materjalis väiksem väljatugevusest vaakumis. Dielektriline läbitavus iseloomustab aine polariseerumisvõimet

Füüsika
393 allalaadimist
thumbnail
18
docx

Füüsika Eksam

1. Kinemaatika põhimõisteid (käsitleb liikumist ja liikumisoleku muutusi ilma nende muutuste põhjusi lahkamata.) Punktmass - idealiseeritud objekt, mille puhul keha mass loetakse koondatuks ühte ruumipunkti. Keha võib vaadelda punktmassina, kui selle mõõtmed on antud ülesande kontekstis tühiselt väikesed. Punktmassi kinemaatiline võrrand ⃗r =⃗r (t) . Taustsüsteem- kehade süsteem, mille suhtes kehade kinemaatikat vaadeldakse. keha asukoht- Keha asukoha määramiseks on vajalik taustsüsteem (taustkeha ja koordinaatteljed )

Füüsika
17 allalaadimist
thumbnail
8
docx

FÜÜSIKA EKSAM

Kinemaatika ja dünaamika — Punktmass. - Keha mille mõõtmed on lihtsuse mõttes jäetud arvestamata — Taustsüsteem. - Taustsüsteemi moodustavad taustkeha ja temaga seotud koordinaatteljed — Keha asukoht. - Keha asukohta ruumis saab määrata teades keha liikumisseadust — Nihkevektor. - r  Sirgjoonelise liikumise korral on punkti kohavektoriks tema nihe — Kiirus. - Kiirus on vektoriaalne suurus. Sirgjoonelise liikumise korral võrdub keskmine kiirus nihke ja selle sooritamiseks kulunud aja suhtega — Ühtlane ja ühtlaselt muutuv liikumine. Sellist liikumist, mille kiirus muutub mistahes võrdsete ajavahemike jooksul ühesuguse väärtuse võrra, nimetatakse ühtlaselt muutuvaks liikumiseks. Selline liikumine mille kiirus ei muutu on ühtlane kiirus — Kiirendus. Kiirendus a  on vektoriaalne suurus, mis iseloomustab kiiruse muutu ajaühikus ehk kiiruse muutumise kiirust. — Pöörlemise kinemaatika. Jäikade

Füüsika ii
45 allalaadimist
thumbnail
105
doc

Füüsika konspekt

Näiteks mootori jõul hakkab laev üha kiiremini liikuma. Mida tugevam on jõud, seda suurem on kiirendus. GRAVITATSIOONISEADUS Gravitatsiooniseadus on gravitatsioonijõudu iseloomustav loodusseadus: Kaks punktmassi tõmbavad teineteist jõuga, mis on võrdeline nende masside korrutisega ja pöördvõrdeline nendevahelise kauguse ruuduga. Gravitatsiooniseaduse valem: Kus: F on kahe punktmassi vaheline gravitatsioonijõud G on gravitatsioonikonstant m1 on esimese keha punktmass m2 teise keha punktmass r on kehade vaheline kaugus. SI (Rahvusvaheline mõõtühikute süsteem) ühikutes mõõdetakse gravitatsioonijõudu njuutonites (N), masse kilogrammides (kg) ja kaugust meetrites (m). Konstant G on võrdne 6,67 × 10-11 N m2 kg-2. Gravitatsiooni jõudu nimetatakse ka raskusjõuks, mida saab arvutada järgmise valemi kaudu: 21 F- raskusjõud m- keha mass

Füüsika
282 allalaadimist
thumbnail
24
pdf

Füüsika 1 eksam

1) Taustsüsteem liigub sirgjooneliselt kiirendusega a r r r r Fi = m a , seejuures Fi a Fi on inertsijõud; a on süsteemi kiirendus 2) Mitteinertsiaalne taustsüsteem pöörleb ümber telje nurkkiirusega . r Fi = m 2 r , Inertsijõud on suunatud tsentrist väljapoole. Seda jõudu nimetatakse ka tsentrifugaaljõuks. 3) Inertsiaalne taustsüsteem pöörleb ümber telje kiirusega ja punktmass liigub selle taustsüsteemi suhtes kiirusega v. Näiteks maakera. r r FC = 2m v × Viimast nimetatakse Coriolise jõuks 14. Gravitatsioon. Raskusjõud: Newtoni gravitatsiooniseadus, gravitatsioonijõudude superpositsiooniprintsiip, gravitatsioonikiirendus, raskusjõud, vaba langemise kiirendus. Gravitatsioonijõud Teisisõnu tõmbejõud mõjub alati, kui on 2 massiga keha. Jõud on mõlemale kehale sama, aga vastassuunaline. G m1 m2

Füüsika
193 allalaadimist
thumbnail
18
odt

Füüsika eksam

1 unts = 28,4 g 4.SI-süsteemi põhiühikud SI algseteks põhiühikuteks olid pikkuse ühik meeter, massi ühik kilogramm, aja ühik sekund, temperatuuri ühik kelvin, elektrivoolu tugevuse ühik amper ja valgustugevuse ühik kandela. Aastal 1971 lisati neile ka ainehulga ühik mool. 5.Füüsikalised üldmudelid ja objektid. Too näiteid. Selliseid mudeleid, mis on kasutatavad kogu füüsikas, nimetatakse füüsika üldmudeliteks. Füüsika üldmudeliks on näiteks keha ja ka punktmass. Väljad on mitteainelised objektid. Väljade tunnuseks on see, et nad mõjutavad kehi ja omavad energiat. Näiteks Maa gravitatsiooniväli tekitab inimesele mõjuva raskusjõu, elektriväli sunnib juuksed peas püsti tõusma ning elektri- ja magnetvälja koos mõjutavad silma närvirakke selliselt, et tajume valgust. Mitteainelisteks ehk väljalisteks objektideks on veel näiteks heli ja soojus. Kehad on ainelised objektid. Kehadeks on näiteks inimene, kivi, vihmapiisk ja Päike

Füüsika
10 allalaadimist
thumbnail
29
doc

Füüsika

Füüsika kordamisküsimused 1. JÄIGA KEHA MEHHAANIKA 1.1. Kinemaatika 1.1.1. Inertsiaalne taustsüsteem: Liikumise kirjeldamine ajas ja ruumis. Keha asukoht ruumis- taustsüsteemide suhtes. Jäik keha ­ millel arvestatavad deformatsioonid puuduvad. Masspunktiks nimetatakse keha, mille mõõtmed võime arvestamatta jätta võrreldes kaugusega teiste kehadeni. 1) a + b summa 2) a - b vahe 3) a jab korrutis a *b =a * b * sin 4) a * b = a * b * cos skalaarkorrutis Taustsüsteemi, milles kehtib Newtoni I seadus, nimetatakse inertsiaalseks. Iga taustsüsteemi, mis liigub inertsiaalse suhtes ühtlaselt ja sirgjooneliselt, nimetatakse samuti inertsiaalseks. Üleminek ühelt in

Füüsika
354 allalaadimist
thumbnail
52
pdf

Füüsika eksamiks kordamine

Vana teooria on uue teooria piirjuhtum. Nii on omavahel seotud erinevad valdkonnad. Puudub kindel piir valdkondade vahel. 3) Mis on mudel füüsikas? Tooge kaks näidet kursusest. Füüsikaline mudel on keha või nähtuse kirjeldamise lihtsustatud vahend, mis on varustatud matemaatilise tõlgendusega. füüsikaline mudel võimaldab kirjeldada füüsikalise objekti või nähtuse antud hetkel vajalikke omadusi lihtsustatult. Näited: punktmass, ideaalse gaasi mudel. 4) Mis on mateeria ja millised on tema osad? Mateeria on kõik meid ümbritsev loodus. Mateeria esineb aine ja välja kujul. 5) Mis on ruum ja aeg? Ruum ja aeg on mateeria ja selle liikumise eksisteerimise ja iseloomustamise keskkond. 6) Mida tähendab aja ja ruumi homogeensus? Ruumi homogeensus: iga punkt ruumis on füüsikaliselt samaväärne. Aja homogeensus: vabade objektide jaoks on kõik ajahetked samaväärsed.

Füüsika
18 allalaadimist
thumbnail
15
doc

Füüsika eksam

piirjuhtum. Nii on omavahel seotud erinevad valdkonnad. Puudub kindel piir valdkondade vahel. Nt. Einsteini relatiivsusteooria täiendas Galilei koordinaatide teisendusi väga suurte kiiruste korral. 3. Mis on mudel füüsikas? Tooge kaks näidet kursusest. mudel on keha või nähtuse kirjeldamise lihtsustatud vahend, mis on varustatud matemaatilise tõlgendusega. füüsikaline mudel võimaldab kirjeldada füüsikalise objekti või nähtuse antud hetkel vajalikke omadusi lihtsustatult. näited: punktmass, ideaalse gaasi mudel 4. Mis on mateeria ja millised on tema osad? Mateeria on kõik meid ümbritsev loodus. Mateeria esineb aine ja välja kujul. 5. Mis on ruum ja aeg? Ruum ja aeg on mateeria ja selle liikumise eksisteerimise ja iseloomustamise keskkond. 6. Mida tähendab aja ja ruumi homogeensus? Ruumi homogeensus: iga punkt ruumis on füüsikaliselt samaväärne. Aatom on samaväärne samasorti aatomiga Marsil. Aja homogeensus: vabade objektide jaoks on kõik ajahetked samaväärsed. 7

Füüsika
967 allalaadimist
thumbnail
66
docx

Füüsika I konspekt

Tähis ω. Kehtib seos ω=2πf Harmooniliseks nimetatakse võnkumist, milles võnkuv suurus muutub ajas sinusoidaalse seaduspärasuse järgi. Kiirenduse võrduse võib üles kirjutada ka järgmisel kujul x´ +ω02x=0, mis on harmoonilise võnkumise diferentsiaalvõrrand. Seda seost peavad rahuldama kõik võnkumised, mis kujutavad harmoonilist võnkumist. Matemaatiliseks pendliks nimetatakse idealiseeritud süsteemi, mis koosneb kaalutust ja venimatust niidist, mille otsas ripub punktmass. Matemaatilise pendli küllalt heaks praktiliseks lähenduseks on pika peene niidi otsas rippuv raske kuulike. Matemaatilise pendli võnkeperiood T= 2 π √ l g , kus l on pendli pikkus ja g raskuskiirendus Vedrupendel on spiraalvedru otsas rippuv keha. Kui vedru mass on palju väiksem keha massist, siis võnkeperiood T= 2 π √ m

Füüsika
72 allalaadimist
thumbnail
11
doc

Füüsika konspekt

Mehaanika Mehaaniline liikumine Ühtlane sirgjooneline liikumine: v=const. Ühtlaselt muutuv liikumine: a=const. Algkiirust omava keha kiirus: v=v + at Teepikkus: s=v t + at²/2 Keskmine kiirus: v =v + at/2 Seos teepikkuse ja kiiruse vahel: s=(v²-v ²)/2a Vaba langemine algkiiruseta: h=gt²/2 ; algkiirusega: h=v t - gt²/2 Teepikkuseks nimetatakse füüsikas trajektoori pikkust, mille liikuv keha või punktmass läbib mingi ajavahemiku jooksul. Nihe ehk nihkevektor: suunatud sirglõik, mis ühendab keha alg- ja lõppasukohta. Hetkkiirus näitab kiirust antud ajahetkel. Vektoriaalne suurus. v=s/t Kiirendus näitab, kui palju muutub kiirus ajaühikus. Vektoriaalne suurus. Tähis a. a=(v-v )/t (s ­ nihe, l ­ teepikkus, v ­ kiirus, t ­ aeg, vk. ­ keskmine kiirus, a ­ kiirendus, v ­ lõppkiirus, v0 ­ algkiirus) Perioodiline liikumine

Füüsika
200 allalaadimist
thumbnail
16
doc

Füüsika eksam2

63. Lähtudes alljärgnevast joonisest, tuletage vedeliku voolamise pidevuse võrrand. 64. Formuleerige Bernoulli seadus ja nimetage võrrandis esinevad liidetavad. Mis on nende põhjuseks? Dünaamiline rõhk tekib vee liikumise ehk kineetilise energia tõttu, hüdrostaatiline voolava aine nurga all olemise ehk selle potentsiaalse energia tõttu ja staatiline on väline rõhk. 65. Kasutades alljärgnevat joonist, tuletage harmooniliselt võnkuva keha võrrand so. liikumisvõrrand ja perioodi arvutamise valem. k m F a l x 0 x Perioodi arvutamise valem: 2 T = 0 66. Kasutades alljärgnevat joonist, tuletage füüsikalise pe

Füüsika
427 allalaadimist
thumbnail
27
doc

Füüsika

-) Kumerpeeglid hajutavad valgust. * Sfäärilise peegli elemendid. O F P 4.1. Mehaanika 4.1.1. Kinemaatika * Kinemaatika ehk mehaaniline liikumine * Liikumine ­ keha asukoha muutumine teatud aja jooksul. -) Liikumine on pidev ajas ja ruumis. -) Liikumine on suhteline. Liikumist kirjeldavate suuruste väärtused sõltuvad taussüsteemist. b * Punktmass ­ selline keha, millel mõõtmeid pole, aga tal on mass. * Trajektoor ­ joon, mida mööda keha liigub. * Teepikkus ­ vahemaa, mida keha läbib liikudes punktist a, punkti b. a nihe * Nihe ­ alguskohast mööda sirgjoont mõõdetav kaugus. -) sirgjooneline liikumine ­ liikumine, kui trajektor on sirge. -) kõverjooneline liikumine ­ liikumine, kui trajektor ei ole sirge.

Füüsika
26 allalaadimist
thumbnail
10
doc

Füüsika eksamiks

I.1.Mehhaanika 1.1.Kinemaatika 1.1.1.Inertsiaalne taustsüsteem Liikumise kirjeldamine peab toimuma ajas ja ruumis.Ruumis määratakse keha asukoht taustsüsteemi suhtes.Taustsüsteemis kehtib Newtoni 1 seadus.Iga taustsüsteemi,mis liigub inertsiaalse suhtes ühtlaselt ja sirgjooneliselt,nimetatakse samuti inertsiaalseks. Üleminek ühest inertsiaalsest süsteemist teisesse: Galillei teisendus: keha koordinaate arvestades,et aeg külgeb mõlemas süsteemis ühtemoodi. x=x'+V0*t x-I süsteem y=y' x'-II süsteem z=z' t=t' Keha kiirus on esimeses süsteemis: V=V'+V0 Dünaamika võrrandid ei muutu üleminekul Ist inertsiaalsest taustsüsteemist teisesse,see tähendab,et nad on invariantsed koordinaatide teisenduste suhtes. 1.1.2.Ühtlane sirgliikumine Keha liikumise tegelik tee on trajektoor. Nihkvektoriks s¯ nimetame keha liikumise trajektoori alg-ja lõpppunkti ühendavat vektorit.Olgu nihe S¯ ajavahemikku t jooksul,s

Füüsika
798 allalaadimist
thumbnail
15
doc

Füüsika I eksami piletid

§36. Rõhk, Pascali seadus, Archimedese seadus. Vedelatele ja gaasilistele kehadele on isel. see, et nad ei avalda vastupanu nihkele, seepärast muutub nende kuju kui tahes väikeste jõudude mõjul. Vedeliku või gaasi ruumala muutmiseks aga peab neile rakendama lõplikke välisjõudusid. Ruumala muutudes tekivad vedelikus või gaasis elastsusjõud, mis lõpptulemusena tasakaalus-tavad välisjõudude mõju. Vedelike ja gaaside elastsusom. avalduvad selles, et nende osade vahel, aga samuti nendega kok-kupuutes olevatele kehadele mõjuvad jõud, mille suurus sõltub vedeliku või gaasi kokkusurumise astmest. Selle mõju esel.-seks kasutatavat suurust nim. rõhuks. Pinnatükikese S ja pindalaühiku kohta tuleva jõu f väärtus määrab rõhu vedelikus. Seega rõhk p avaldub valemiga: p=f/S. Kui jõud, millega vedelik mõjub pinnatü-kikesele S, on jaotunud ebaühtlaselt, määrab eelnev valem rõhu keskmise väärtuse. Rõhu määramiseks antud punktis tuleb võtta suhe f/S piirväärt

Füüsika
1096 allalaadimist
thumbnail
69
docx

FÜÜSIKA 1 eksami vastused

Üldmõisted 1 Vektor ­ suurus, mis omavad arvväärtust ja suunda. Mudeliks on geomeetriline vektor, mis on esitatav suunatud lõiguna. Vektoril on algus- ehk rakenduspunkt ja lõpp-punkt. Näiteks jõud, kiirus ja nihe. Skalaarid ­ suurus, mis omab arvväärust aga mitte suunda. Mudeliks on reaalarv! Näiteks temperatuur, rõhk ja mass. 2 Tehted vektoritega ­vektoreid a ja b saab liita geomeetriliselt, kui esimese vektori lõpp-punkt ja teise vektori alguspunkt asuvad samas kohas. Liidetavate järjekord ei ole oluline. Kahe vektori lahutamise tehte saab asendada lahutatava vektori vastandvektori liitmisega, ehk b asemel tuleb -b. Vektori a komponendid ax ja ay same leida valemitega Vektori pikkuse ehk mooduli saab Pikkuse-nurga saab avaldada tead

Füüsika
108 allalaadimist
thumbnail
24
pdf

FÜÜSIKA EKSAMI KONSPEKT

elektrivälja puhul. Magnetlaengu puudumine ei lase defineerida isegi mitte väljatugevust, rääkimata potentsiaalist. Magnetväli ei ole kunagi tsentraalsümmeetriline. Magnetvälja tekkimiseks on kaks võimalust:  Liikuvate laetud osakeste ümber on magnetväli. Magnetväli ümbritseb vooluga juhti. Selliseid magneteid nimetatakse elektromagnetiteks.  Elektrivälja võivad tekitada elementaarlaengud. Magnetväli on iga osakese põhiomadus nagu mass ja elektrilaeng. Kui teatud materjalides elektronide magnetväljad liituvat, ümbritseb materjali magnetväli. Selliseid materjale nimetatakse püsimagnetiteks. Magnetvälja iseloomustab magnetvälja vektor B . Vektorit B nimetatakse magnetilise induktsiooni vektoriks, ühik Tesla. Magnetvälja saab kujutada jõujoonte abil. Magnetvälja jõujooned väljuvad magneti põhjapooluselt ja sisenevad lõunapoolusel. Magneti erinimelised poolused tõmbuvad ja samanimelised tõukuvad. Maa

Füüsika
69 allalaadimist
thumbnail
18
doc

Füüsika riigieksami konspekt

= 120 % = 20% m Akas = = 120 J 100% Q1 = 600 J Q -? Akas - ? 3. kursus ELEKTROMAGNETISM Elektriväli Elektrilaeng on mitme tähendusega mõiste. Keha elektrilaeng q näitab keha osalemise intensiivsust elektromagnetilises vastastikmõjus. Huvitav on massi ja laengu vahekord: mass võib ilma laenguta olemas olla, aga laeng ilma massita ehk laengukandjata mitte kunagi. Elektron kannab negatiivset laengut, prooton positiivset. Keha kui terviku laeng sõltubki nende arvulisest suhtest, sest qe = q p . [ q ]SI =1C (kulon). Elektroni ja prootoni laengut qe = q p = e =1,6 10 -19 C nimetatakse elementaarlaenguks

Füüsika
1329 allalaadimist
thumbnail
18
doc

Füüsika riigieksami konspekt

= 120 % = 20% m Akas = = 120 J 100% Q1 = 600 J Q -? Akas - ? 3. kursus ELEKTROMAGNETISM Elektriväli Elektrilaeng on mitme tähendusega mõiste. Keha elektrilaeng q näitab keha osalemise intensiivsust elektromagnetilises vastastikmõjus. Huvitav on massi ja laengu vahekord: mass võib ilma laenguta olemas olla, aga laeng ilma massita ehk laengukandjata mitte kunagi. Elektron kannab negatiivset laengut, prooton positiivset. Keha kui terviku laeng sõltubki nende arvulisest suhtest, sest qe = q p . [ q ]SI =1C (kulon). Elektroni ja prootoni laengut qe = q p = e =1,6 10 -19 C nimetatakse elementaarlaenguks

Füüsika
45 allalaadimist
thumbnail
7
doc

Füüsika valemid

I. MEH AANIK A I. Kinemaatika Koordinaat Nihe Kiirus Kiirendus Ühtlane sirgjooneline s liikumine x = x 0 + vt s = vt v= a =0 t Ühtlaselt muutuv at 2 at 2 v 2 - v 02 v - v0 x = x0 + v0 t + s = v0 t + s= v = v 0 + at

Füüsika
151 allalaadimist
thumbnail
34
docx

Füüsika eksami konspekt

Füsa eksami konspekt 1, Liikumise kirjeldamine Taustsüsteem on mingi kehaga seotud ruumiliste ja ajaliste koordinaatide süsteem. Kohavektor on vektor, mille alguspunkt ühtib koordinaatide alguspunktiga. Trajektoor on keha või ainepunkti teekond liikumisel ruumis või tasandil. Trajektoori saab korrektselt kasutada ainult punktmassi korral. Kiirus on vektoriaalne suurus, mis võrdub nihke ja selle sooritamiseks kulunud ajavahemiku suhtega (kiirusvektor on igas trajektoori punktis suunatud mööda trajektoori puutujat selles punktis). Kiirendus on kiiruse muutus ajaühikus. (Kiirendusvektor lahutub kiirenevalt liikuva keha trajektoori igas punktis trajektoori puutuja sihiliseks tangentsiaalkiirenduseks ning sellega risti olevaks normaalkiirenduseks ehk tsentrifugaalkiirenduseks) 2,* Ühtlaselt muutuv sirgjooneline liikumine. a=consT =>kolmikvalem, Keha liigub sirgjoonelisel trajektooril, kusjuures tema kiirendus on nii suunalt kui suuruselt muutumatu ning samasihilise kiirusega

Füüsika
44 allalaadimist
thumbnail
50
docx

Füüsika eksamiks kordamine

29. Milline on füüsikaline pendel? Tuletada valem füüsikalise pendli perioodi arvutamiseks. Füüsikaline pendel on keha, mis on riputatud masskeskmest kõrgemale. k 2π ω20 = ω0= m T T= 2 π √m 2 π ω0 = √k =2 π m k √ 30. Millist pendlit võib lugeda matemaatiliseks pendel? Tuletada valem matemaatilise pendli võnkeperioodi arvutamiseks. Matemaatiline pendel on punktmass, mis on riputatud kaalutu ja venimatu niidi otsa. √ ml 2 I =ml 2 T =2 π √ mgl =2 π √ l g 31. Milline on pikilaine ja milline on ristlaine? Millised suurused iseloomustavad lainetust ja kuidas need suurused on omavahel seotud? Laine on häirituse edasikandumine ruumis. Ristlaine osakesed liiguvad risti

Füüsika
77 allalaadimist
thumbnail
7
docx

FÜÜSIKA RIIGIEKSAM: MÕISTED

Mehaanika Mehaaniline liikumine ühtlane sirgjooneline liikumine - Ühtlaseks sirgjooneliseks liikumiseks nimetatakse sellist liikumist, mille puhul trajektooriks on sirge ja keha läbib mistahes võrdsetes ajavahemikes on võrdsed teepikkused. ühtlaselt muutuv liikumine - Ühtlaselt muutuvaks liikumiseks nimetatakse liikumist, mille puhul keha kiirus muutub võrdsetes ajavahemikes võrdsete suuruste võrra. taustsüsteem - Taustsüsteem on mingi taustkehaga seotud ruumiliste ja ajaliste koordinaatide süsteem. teepikkus - Trajektoor, mille keha läbib teatud ajavahemiku jooksul. nihe - Sirglõik, mis ühendab keha liikumise algusasukohta lõppasukohaga. hetkkiirus ­ Keha kiirus teatud ajahetkel. kiirendus ­ Näitab kui palju muutub kiirus ajaühikus. liikumise suhtelisus ­ Keha liikumine sõltub taustsüsteemi valikust. Ei ole olemas absoluutselt liikumatut taustsüsteemi. Seega mehaaniline liikumine on alati suhteline. liikumisvõrrand ­ Võrrand, mis kirjeldab mõnda liikumist

Füüsika
303 allalaadimist
thumbnail
13
docx

Konspekt füüsika eksamiks!

1. Sissejuhatus. Mõõtühikud SI ­ rahvusvaheline mõõtühikute süsteem A ­ põhiühikud B ­ tuletatud ühikud C ­ täiendavad ühikud Eesliite nimetus Kordsus algühiku suhtes Eesliite tähis Tera 1012 T Giga 109 G Mega 106 M Kilo 103 K Hekto 102 h Deka 10 Da Detsi 10-1 D Senti 10-2 C Milli 10-3 M Mikro 10-6 µ Nano 10-9 N Piko 10-12 P 1 min = 60 s 1 h = 60 min = 3600 s 1 = rad

Füüsika
122 allalaadimist
thumbnail
38
doc

Füüsika EKSAMIPILETID

Liikumise suhtelisus tähendab seda, et erinevatekehade suhtes võib liikumine väga erinev olla. Näiteks meile tundub, nagu Maa oleks paigal ja Päike tiirleks ümber meie. Samas teame, et Maa tegelikult pöörleb ümber oma telje ja tiirleb samas suure kiirusega (30 km/s) ümber Päikese. 3.3. Kuidas mõõdetakse teepikkust? 2 Teepikkuseks nimetatakse füüsikas trajektoori pikkust, mille liikuv keha või punktmass läbib mingi ajavahemiku jooksul. Tähis s. s = v · t, kus s - teepikkus, v - kiirus, t - aeg. 3.4. Millised on teepikkuse mõõtühikud? Teepikkuse mõõtühikud on rahvusvahelises mõõtühikute süsteemis 1 meeter. (mm, cm, m, km)NT: 1000 m = 1 km, 1/100 m = 1 cm 3.5. Poiss läks kodust mööda sirget teed metsa suunas. Läbinud 120 m, märkas ta, et oli noa maha unustanud. Läinud 45 m tagasi, leidis ta noa siiski teisest taskust üles

Füüsika
78 allalaadimist
thumbnail
26
odt

Füüsika eksam dünaamika

3)    Kulgliikumise dünaamika põhimõisted •Mass (+ mõõtühik) Mass m on kehade inertsusemõõt. Mass  on skalaarne suurus [m]SI =1kg •Inerts (+ inertsus) Inertsus on keha omadus säilitada oma liikumisolekut •Inertsiaalne taustsüsteem Samal ajal kõik inertsiaalsed taustsüsteemid on absoluutselt ekvivalentsed ja ükski mehaaniline katse (antud taustsüsteemi raames) ei võimalda kindlaks teha, kas süsteem liigub ütlaselt sirgjooneliselt või on  paigal. Inertsiseaduse kontroll  võimaldabki kindlaks teha, kas taustsüsteem liigub ühtlaselt sirgjooneliselt (või on paigal) või  mitte. •Jõud (+ mõõtühik) Jõud on ühe keha mõju teisele, mille tulemusena muutub kehade  liikumisolek või nad deformeeruvad. Jõud on alati vektorsuurus. (F)SI=1N •Newtoni 3 seadust (+ valemid ja joonised) Iga keh

Dünaamika
45 allalaadimist
thumbnail
14
doc

Füüsika Eksam II-1

I variant 1) Magnetväli vaakumis. Amperi seadus. Paigalseisva laengu puhul magnetvälja ei täheldata. Magnetväli tekib koos liikuvate laengute ehk elektrivooluga. Magnetvälja põhiomadus on, et ta mõjutab välja asetatud liikuvat laengut ehk elektrivoolu jõuga. Seda nim. magnetiliseks jõuks. Seega: Elektrivool on nii magnetvälja tekitaja kui ka selle mõju vastuvõtja. Amper`i I seadus: Juhile avalduv jõud on võrdelised voolutugevuse ja juhi pikkusega ning oleneb juhi asendist magnetväljas ja magnetvälja tugevusest. F=k1BIlsin kus võrdetegur k1=1 B - induktiivsus (tesla T) 2) Elektrimahtuvus. Elektrostaatikas tähendab elektrimahtuvuse mõiste laengut, mis kulub keha laadimiseks teatud potensiaalini. Keha potensiaal kasvab võrdeliselt talle antud laeguga. q. potensiaal (fii) qC ehk C=q - järelikult: Elektrimahtuvus on laeng, mis tuleb anda juhile, et muuta selle potensiaali ühe ühiku võrra. 1CV=1F (Farad- mahtuvuse ühik) Kera mahtuvus

Füüsika ii
12 allalaadimist
thumbnail
116
pdf

BIOFÜÜSIKA ERIOSA

BIOFÜÜSIKA ERIOSA Konspekti koostamisel on kasutatud loengumaterjale, Silverthorni „Human physiology“, Sartoriuse „Biofüüsika“, mõmmi konspekti ja internetis leiduvat materjali.s 24) Bioloogiliste membraanide struktuur. Membraanid moodustavad 80% loomsete rakkude kuivkaalust. Rakumembraani paksus on umbes 8nm. 1972 Singer-Nicolsoni mudel, mille kohaselt fosfolipiidid on kaksikkihis(seda teati juba varem) ning lisaks on nende vahel valgud, mis on võimelised ringi liikuma. Demonstreerimiseks liideti inimese ja hiire rakud- algul olid hiire valgud ühel pool rakku ja inimese omad teisel pool, kuid 40 min pärast olid valgud ühtlaselt jaotunud. Ka lipiidid saavad ühe lipiidikihi piires üsna vabalt liikuda, kuid vertikaalne „flip- flop“ liikumine on väga aeglane.Valgud võivad ulatuda läbi kogu membraani või kinnitada sisse- või väljapoole. Funktsioonid on  struktuuri andmine-  ühendavad membraani tsütoskeletiga

Bioloogiline füüsika
61 allalaadimist
thumbnail
5
docx

Füüsika Mõisted

Absoluutselt elastne põrge on selline, mille käigus kehade summaarne kineetiline energia ei muutu: kogu kineetiline energia muutub deformatsiooni potentsiaalseks energiaks ja see omakorda muutub täielikult kineetiliseks energiaks. Pärast põrget kehad eemalduvad teineteisest. Absoluutselt mitteelastne põrge on selline, mille käigus osa summaarsest kineetilisest energiast muutub kehade siseenergiaks. Pärast põrget jäävad kehad paigale või liiguvad koos edasi. Aeg: ajahetke tähistab nn. jooksev aeg (kunas?), tähis t , ühik 1s; kestust tähistab ajavahemik (kui kaua), tähis t, ühik 1 s. Aineid jaotatakse vabade laengukandjate kontsentratsiooni järgi kolmeks: juhid, dielektrikud (isolaatorid) ja pooljuhid. Juhtides on vabade laengukandjate kontsentratsioon väga suur. Näiteks 1 cm3 metalli sisaldab ca 1022 ...1023 vaba elektroni. Seetõttu on metallid head elektrijuhid. Dielektrikutes ehk isolaatorites on vabu laengukandjaid väga vähe, 1 cm3 ca 106 .... 1015 . Pooljuhti

Füüsika
72 allalaadimist
thumbnail
5
docx

Füüsika I konspekt

· Kiirus: , maksimaalne kiirus . · Kiirendus: , maksimaalne kiirendus . · Energia: , , . · 3. Füüsikaline ja matemaatiline pendel. · Füüsikaline pendel on jäik keha, mis võngub raskusjõu mõjul ümber horisontaalse telje, mis ei läbi selle keha massikeset. Selle võnkeperiood , kus I on keha inertsimoment pöörlemistelje suhtes ja l ­ pöörlemistelje kaugus massikeskmest. · Matemaatiline pendel on kaaluta ja venimatu nööri otsas olev punktmass, mis on vajadusel saadav füüsikalisest pendlist, kui kogu mass koondada massikeskmesse. Selle võnkeperiood . · Vedrupendli võnkeperiood . · 4. Samasihiliste karmooniliste võnkumiste liitmine. · Samasihiliste ja sama sagedusega harmooniliste võnkumiste resultantvõnkumise amplituud avaldub: · · 5. Ristsuunaliste harmooniliste võnkumiste liitmine. · Kahe ristsuunalise sama sagedusega harmoonilisest võnkumisest osavõtva keha trajektooriks on ellips; erinevate

Füüsika
234 allalaadimist
thumbnail
14
docx

FÜÜSIKA KONSPEKT

FÜÜSIKA Looduse objektide koige pohilisemad ja uldisemad vastasmojud 1. gravitatsiooniline (koik kehad); 2. elektromagnetiline (elektriliselt laetud kehad); 3. nork (koik elementaarosakesed); 4. tugev (nukleonid). Sisemine nahtavushorisont on teadmiste piir liikumisel piki mootmete skaalat uha vaiksemate objektide poole.Mis on selle sees? Valine nahtavushorisont on teadmiste piir liikumisel piki mootmete skaalat uha suuremate objektide poole: Mis on selle taga? Füüsikaline maailmapilt Mehaaniline ? Kujunes valja 18. sajandi lopuks Galilei, Descartes'i, Huygens'i ja eelkoige Newtoni toode uldistamise tulemusena. ? Oluliseks peeti vaid kehi, nende liikumist ja vahetul kontaktil ilmnevat vastastikmoju. ? Vastastikmoju vahendajat ei tahtsustatud. Elektromagnetiline ? Kujunes valja 19. sajandi lopuks Faraday ja Maxwelli toode tulemusena. ? Erinevalt mehaanilisest maailmapildist t

Füüsika
5 allalaadimist


Sellel veebilehel kasutatakse küpsiseid. Kasutamist jätkates nõustute küpsiste ja veebilehe üldtingimustega Nõustun