Vajad kellegagi rääkida?
Küsi julgelt abi LasteAbi
Logi sisse
Ega pea pole prügikast! Tõsta enda õppeedukust ja õpi targalt. Telli VIP ja lae alla päris inimeste tehtu õppematerjale LOE EDASI Sulge

FK I KT spikker - sarnased materjalid

entalpia, soojusefekt, entroopia, keskk, soojushulk, standardne, helmholtzi, gibbs, ainevahetus, siseenergia, gibbsi, olekuv, soojusmahtuvus, standartne, parameetrid, isobaar, ümbritsevast, olekuparameetrid, olekuvõrrand, sõltuvus, lõpmata, muudatus, homogeenne, ühesugused, heterogeenne, energiaülekanne, termiline, adiabaatne, soojusvahetus
thumbnail
10
doc

Füüsikalise keemia kontrolltööde kordamisküsimused

olekuvõrrand, reaalgaasi olekuvõrrand) Olekufunktsioon ­ suurus, mis sõltub ainult süsteemi olekust, aga mitte selle oleku saavutamise viisist. Z = f(x, y) on olekufunktsioon, kui tema lõpmata väike muudatus dZ on täisdiferentsiaal: Z Z dZ = dx + dy x y y x Protsessifunktsioon ­ süsteemis toimuvat protsessi iseloomustav suurus, sõltub protsessi läbiviimise viisist, tähistatakse väiketähega (töö w, soojushulk q) Homogeenne süsteem ­ süsteem, mille omadused on tema kõigis osades ühesugused või muutuvad ühest kohast teise üleminekul pidevalt. Heterogeenne süsteem ­ süsteem, mis koosneb mitmest erisuguste omadustega osast ­ faasist. Avatud süsteem ­ toimub nii energia- kui ka ainevahetus ümbritseva keskkonnaga Suletud süsteem ­ puudub ainevahetus ümbrusega, aga võib toimuda energiaülekanne kas töö (mehaaniline toime) või soojusena (termiline toime).

Füüsikaline keemia
243 allalaadimist
thumbnail
1
docx

Mõisted füüsikalise ja kolloidkemia I vahetestiks

Adiabaatne protsess/süsteem ­ puudub soojusvahetus Olekuparameetrid ­ suurused, millega saab TD süsteemi väliskeskkonnaga olekut iseloomustada Avatud süsteem ­ toimub energia ja ainevahetus Olekuvõrrand ­ süsteemi olekut iseloomustav ümbritseva keskkonnaga parameetrite omavaheline sõltuvus Borni algoritm ­ Born koostas abivahendi seoste Paisumistöö ­ töö, mis on tingitud ruumalamuutusest leidmiseks olekufunktsioonide omavahelistes sõltuvustes. Protsessifunktsioon ­ süsteemis toimuvat protsessi Nelinurgas on 2 noolt, 1 ülalt alla, 2. Vasakult paremale

Füüsikaline ja Kolloidkeemia
12 allalaadimist
thumbnail
8
doc

Füüsikaline keemia TTÜ lühikonspekt

See on eraldatud ümbritsevast piirpinnaga. Olekuparameetrid ­ termodünaamilist süsteemi iseloomustavad suurused n. U,H,G,F. Olekuvõrrand ­ Parameetrite omavaheline sõltuvus n. ideaalgaasi olekuvõrrand Olekufunktsioon ­ süsteemi olekust sõltuv suurus, sellele vastandub protsessifunktsioon (vt.all). On täisdiferentisaalina Protsessifunktsioon ­ süsteemis toimuvat protsessi iseloomustav suurus, sõltub protsessi läbiviimise viisist, tähistatakse väiketähega (töö w, soojushulk q) Homogeenne süsteem ­ süsteem, kus omadused on kõikjal ühesugused või muutuvad ühtlaselt Heterogeenne süsteem ­ süsteem, mille võib jaotada erinevate omadustega osadeks (faasid) Faasid ­ süsteemi osad, mida iseloomustavad faasisiseselt ühtlased termodünaamilised suurused ja mis on eraldatud piirpinnaga ülejäänud faasidest. Koostisosad ­ kõik süsteemi keemilised ühendid, millega saab süsteemi iseloomustada

Füüsikaline ja kolloidkeemia
211 allalaadimist
thumbnail
5
doc

Rakenduskeemia

(elektronjuhtivus), on elektrolüütide lahuses laengukandjateks ioonid (ioonjuhtivus). Protsessid looduses toimuvad iseeneslikult vaid ühes suunas, kuigi TD I seaduse järgi pole keelatud protsesside toimumine ka vastupidises suunas. Iseeneslikud protsessid on mittepöörduvad. Iga protsess, mille jaoks on S>q/T toimub iseeneslikult Iga protsess isoleeritud süsteemis (S>0) toimub iseeneslikult Kui isoleeritud süsteem on tasakaalus, omab entroopia maksimaalset väärtust. ­ Iseeneslik protsess ei pruugi olla kiireEntroopia Iseeneslike protsessidega kaasneb energia ja aine jaotuse korrapära kahanemine ehk siis korrapäratuse kasv. Entroopia kasvab: sulamisel, aurustumisel, T-i tõstmisel, gaasi paisumisel, tahke aine lahustumisel jne Termodünaamikas mõõdetakse korrapäratust entroopiaga S. Mida suurem on korrapäratus, seda suurem on ka entroopia. Isoleeritud süsteemis toimuvad iseeneslikud protsessid entroopia kasvu suunas.

Rakenduskeemia
83 allalaadimist
thumbnail
6
doc

Keemia alused: Termodünaamika

2. Selgitage järgmisi mõisteid: olekuparameetrid, olekufunktsioonid, protsessi funktsioonid, intensiivsed ja ekstensiivsed suurused. Tooge näiteid! ­ Olekuparameetrid - Neande all mõistetakse füüsikalisi makrosuurusi, mis määravad kindlaks töötava keha oleku, mida saab mõõta.; Olekufunktioonid ­ süsteemi olekufunktsioonid on sellised süsteemi olekut iseloomustavad suurused, mis ei sõltu oleku saavutamise viisist: tihedus, siseenergia (kõrgus merepinnast). Olekufunktsiooni erinevus kahe oleku vahel sõltub ainult nendest olekutest, aga mitte viisist, kuidas ühest teise liiguti.; Protsessi funktsioonid - Mehaaniline töö kui protsessi funktsioon sõltub sellest, kuidas td süst. läheb üle algolekust lõppolekusse. Mehaaniline töö loetakse posit. td süst. paisumisel (mahu suurenemisel), negatiivseks aga komprimeerimisel (mahu väh.).; Intensiivsed suurused - Intensiivseteks nim

Keemia alused
14 allalaadimist
thumbnail
2
doc

Soojustehnika teooria eksamiks

vahemikus 0- kindlaks töötava keha oleku. Intensiivseteks nim. siseenergiaks, mis on keha molekulide kulg -ja 100C, alla 0 on ta tahkes ja üle 100 gaasilises. Aine selliseid töötava keha parameetreid, mis ei sõltu pöörlemisliikumiseenergia, aatomite võnkumisenergia jt. faasilise oleku väljendamiseks kasut. faasimuutuse termodün.süsteemis oleva keha massist või osakeste energiate summa. siseenergia antakse tavaliselt keha 1kg diagramme. Nt. pt- diagramm, Ts- diag., Pv, hs- diag. arvust. Intensiivne parameeter on nt. rõhk ja temp. kohta. Siseenergia on ekstensiivne suurus. Siseen. kui Aditiivseteks e. ekstensiivseteks termodün parameetriteks olekufunktsiooni väärtuse määravad keha kaks on parameetrid, mis on proport-sionaalsed süsteemis meelevaldset olekuparameetrit, sagedamini valitakse olevate kehade massiga või osakeste arvuga. Nt

Soojustehnika
727 allalaadimist
thumbnail
4
doc

FKI- eksami küsimused/ vastused

w rev - w 0 1. Selgitage järgmisi keemilise termodünaamika kuumemalt kehale külmemale. Kui gaas paisub mahust põhimõisted:termodünaamiline süsteem, vaakumisse siis x suureneb , q paisub, saabub tasakaal. tasakaal,temperatuur. 5. Töö, soojuse ja siseenergia arvutamine ideaalgaasile , kokkusurumisel: Kuidas on defineeritud absoluutne temperatuuriskaala? isotermilise, isokoorilise ja isobaarilise protsessi korral. Termodünaamiline süsteem ­ süsteem eeldab et ta oleks V2 V1 piiritletud

Füüsikaline keemia
236 allalaadimist
thumbnail
54
pdf

SOOJUSTEHNIKA EKSAMI VASTUSED

Töötava keha olekuparameetrid. Neande all mõistetakse füüsikalisi makrosuurusi, mis määravad kindlaks töötava keha oleku. Intensiivseteks nim. selliseid töötava keha parameetreid, mis ei sõltu termodün.süsteemis oleva keha massist või osakeste arvust. Intensiivne parameeter on nt. rõhk ja temp. Aditiivseteks e. ekstensiivseteks termodün parameetriteks on parameetrid, mis on proportsionaalsed süsteemis olevate kehade massiga või osakeste arvuga. Nt. maht, energia, entroopia, entalpia. Parameetreid, mille kaudu iseloomustatakse soojuse ja töö vastastikust muundumist, nim. termilisteks olekuparameetriteks. Termodünaamilise keha termilisteks olekuparameetriteks on erimaht (tihedus), rõhk ja temp. Soojuslikeks oleku-parameetriteks on aga suurused, mis iseloomustavad termodünaamilise süst. energeetilist olukorda. Nendeks on: siseenergia u,[J/kg]; entalpia h,[J/kg]; entroopia s,[J/kg]. Sõltumatud olekuparameetrid on: 1.Erimaht(keha massiühiku maht) v=1/, [m3/kg]. 2

Soojustehnika
46 allalaadimist
thumbnail
23
doc

Füüsikaline- ja kolloidkeemia

ümbritsevast keskkonnast eraldada ja eksperimentalselt uurida. Termodünaamika ajalugu Õpetus termiliste protsesside soojusefektidest ja tööst. Klassikaline termodünaamika tekkis 19.sajandi keskel. Tänapäeval uurimisobjekt: erinevate energiavormide vastastikused üleminekud mitmesugustes füüsikaliste ja keemilistes protsessides. Süsteemid ja ümbritsev keskkond Süsteemide jaotus teda väliskeskkonnaga siduvate protsesside järgi: ­ avatud - toimub nii energia- kui ka ainevahetus ümbritseva keskkonnaga ­ suletud - puudub ainevahetus ümbrusega, aga võib toimuda energiaülekanne kas töö (mehaaniline toime) või soojusena (termiline toime). ­ isoleeritud - puudub nii energia- kui ka ainevahetus. Väliskeskkonnaga pole ei mehhaanilist ega soojuslikku kontakti. Süsteemide jaotus omaduste järgi eri ruumipunktides: - homogeenne - mille omadused on tema kõigis osades ühesugused või muutuvad ühest kohast teise üleminekul pidevalt

Füüsikaline ja kolloidkeemia
50 allalaadimist
thumbnail
19
docx

Füüsikaline keemia konspekt

eraldada ja eksperimentalselt uurida. Termodünaamika ajalugu Õpetus termiliste protsesside soojusefektidest ja tööst. Klassikaline termodünaamika tekkis 19.sajandi keskel. Tänapäeval uurimisobjekt: erinevate energiavormide vastastikused üleminekud mitmesugustes füüsikaliste ja keemilistes protsessides. Süsteemid ja ümbritsev keskkond Süsteemide jaotus teda väliskeskkonnaga siduvate protsesside järgi: ­ avatud - toimub nii energia- kui ka ainevahetus ümbritseva keskkonnaga ­ suletud - puudub ainevahetus ümbrusega, aga võib toimuda energiaülekanne kas töö (mehaaniline toime) või soojusena (termiline toime). ­ isoleeritud - puudub nii energia- kui ka ainevahetus. Väliskeskkonnaga pole ei mehhaanilist ega soojuslikku kontakti. Süsteemide jaotus omaduste järgi eri ruumipunktides: - homogeenne - mille omadused on tema kõigis osades ühesugused või muutuvad ühest kohast teise üleminekul pidevalt

Füüsikaline ja kolloidkeemia
114 allalaadimist
thumbnail
22
docx

Füüsikaline ja kolloidkeemia

Elavhõbe termomeetris – suletud f. Taim – avatud Füüsiline keemia kästileb keemilisi nähtuseid ja seaduspärasusi füüsika printsiipidega. 2. Kirjelda kolme viisi, kuidas saab tõsta siseenergiat avatud süsteemis! Millisega neist meetodidest saab tõsta siseenergiat suletud süsteemis? Kas mõni kõlbab ka isoleeritud süsteemi energia tõstmiseks? Siseenergiat saab tõsta töö tegemisega, temperatuuri tõstmisega. Suletud süsteemis siseenergia väheneb, isoleeritud süsteemis siseenergia ei muutu, sest puudub soojusvahetus ümbritseva keskkonnaga. Suletud süsteemi siseenergia muutus ∆ U üleminekul algolekust lõppolekusse on võrdne süsteemile antava soojushulga q ja tema heaks tehtava töö w summaga. Süsteem võib ka energiat kaotada, st teha tööd või anda ära mingi osa soojusest. Seega muutub suletud süsteemi energia energiavahetuse tõttu keskkonnaga. 3. Protsessifunktsioonid

Füüsika
10 allalaadimist
thumbnail
8
docx

Kordamine füüsikalise ja kolloidkeemia protokollide vastamiseks

Kordamine füüsikalise ja kolloidkeemia protokollide vastamiseks Vaja on vastata 1) 1. Soola integraalse lahustumissoojuse määramine 1. Esimene termodünaamika põhiseadus. Termodünaamika esimene seadus sätestab, et keha siseenergia (U) saab muutuda tänu soojushulgale (Q), mis saadakse väliskeskkonnast ning tööle (A), mida süsteem teeb välisjõudude vastu:U = Q - A, kus Q on soojushulk, mille keha saab väliskeskkonnalt ning A on töö, mida keha teeb välisjõudude vastu (juhul kui keha annab soojust ära, siis on Q negatiivne; kui välisjõud teevad tööd, siis on Apositiivne). Termodünaamika I seadus on üldise energia jäävuse seaduse konkreetne väljendus termiliste protsesside korral. Jäävuse seaduse järgi on süsteemi energia tema oleku üheseks funktsiooniks. Väliskeskkonnast isoleeritud süsteemi koguenergia on jääv. Mitmesuguste protsesside korral

Füüsikaline keemia
233 allalaadimist
thumbnail
12
doc

Soojustehnika - küsimused vastustused

Termodünaamika on teadus erinevate energialiikide muutus S= S2- S1 = s1s2 dQ/ T [J/(kg*K)]. Entroopia on vastastikustest muundumistest. Termodünaamika hõlmab ekstensiivne suurus. Entroopia kui olekufunktsiooni väärtuse mehaanilisi, soojuslike, elektrilisi, keemilisi, elektromagnetilisi ja määravad kaks meelevaldset olekuparameetrit. Gaasi entroopia muid nähtuseid. Tehnilise termodünaamika põhi ülesanne on väärtus normaaltingimustel loetakse nulliks. teoreetiliste aluste loomine, soojusmootorite, soojusjõu seadmete, soojus transformaatoritele. 4. Isohooriline protsessiks nim. sellist protsessi, kus Termodünaamilise süsteemi all mõistetakse kehade kogu, termodünaamilise süsteemi soojuslikul mõjutamisel selle maht

Soojustehnika
89 allalaadimist
thumbnail
38
docx

Füüsikaline keemia

b) jahutusvedelik külmkapi jahustussüsteemis; -suletud c) pommkalorimeeter, milles põletatakse benseeni; - isoleeritud d) automootoris põlev bensiin; - suletud e) elavhõbe termomeetris; - isoleeritud f) taim – avatud 2. Kirjelda kolme viisi, kuidas saab tõsta siseenergiat avatud süsteemis! Millisega neist meetoditest saab tõsta siseenergiat suletud süsteemis? Kas mõni neist meetoditest kõlbab ka isoleeritud süsteemi energia tõstmiseks? – avatud - toimub nii energia- kui ka ainevahetus ümbritseva keskkonnaga – suletud - puudub ainevahetus ümbrusega, aga võib toimuda energiaülekanne kas töö (mehaaniline toime) või soojusena (termiline toime). – isoleeritud - puudub nii energia- kui ka ainevahetus. Väliskeskkonnaga pole ei mehhaanilist ega soojuslikku kontakti. Siseenergiat avatud süsteemis saab tõsta: – paisumistöö: w = -Pex∆V (töö, mille tulemusena muutub süsteemi ruumala) – raskuse tõstmine: w = mg∆h – elektriline töö: w = φ∆q

Füüsikaline keemia
105 allalaadimist
thumbnail
3
docx

Rakenduskeemia

Kaitse mõjub kuni protektori täielikule oksüdeerumiseni. 5) Katmine korrosiooni-kindlama metalliga (Cr, Ni) ; inhibiitorite kasutamine Korrosiooni puhastamise liigid : galvaaniline, mehaaniline, elektrolüütiline, keemiline puhastus. Termodünaamika Süsteem võib olla : avatud (aine ja energiavahetus süsteemi ja keskkonna vahel ) ; suletud ( toimub energiavahetus ) ; isoleeritud (vahetust ei toimu ) . Olekufunktsioonid ­ suurused, mis ei sõltu oleku saavutamise viisist : siseenergia, entalpia, entroopia, vabaenergia. Töö ja soojus EI ole olekufunktsioonid ! Olekuparameetrid : temperatuur(T), rõhk(P), ruumala(V), ainehulk(n) . Siseenergia- süsteemi sumaarne võime teha tööd (U). Ühikuks 1 Dzaul. Siseenergia on süsteemi koguenergia. Me ei saa mõõta süsteemi koguenergiat, kuid saame mõõta energiamuutust. Kui tehakse tööd, siis süsteemi siseenergia KASVAB ! Soojus ­ energia, mis kantakse üle tänu temperatuuri erinevusele ­ energia voolab soojusena

Rakenduskeemia
67 allalaadimist
thumbnail
16
docx

TERMODÜNAAMIKA PÕHIMÕISTED

osakestevaheline vastastikmõju pV = nRT R – gaasi universaalkonstant; R = 8.314 J/molK (ehk 0.0820 dm3atm/molK); R = poVo/To; po – normaalrõhk (1 atm. ehk 101 325 Pa), To – normaaltemperatuur (0 °C ehk 273.15 K), Vo – molaarruumala normaaltingimustel (22.4 dm3/mol). olekufunktsioonid – funktsioonid, mis sõltuvad olekuparameetritest (siseenergia U, entalpia H, entroopia S, vabaenergia G). on määratud süsteemi olekuga, mitte sellega, kuidas see olek on saavutatud. protsessid soojusvahetuse järgi eksotermiline protsess – energia/soojus eraldub ΔH < 0 nt: keemiliste sidemete moodustamine / ühinemisreaktsioonid; tahkumine, kondensatsioon endotermiline protsess – energia/soojus neeldub ΔH > 0 nt: keemiliste sidemete lõhkumine / lagunemisreaktsioonid; sulamine, aurustumine

Füüsika
9 allalaadimist
thumbnail
80
pdf

Üldkeemia kordamisküsimuste vastused

saavad vedelikust lahkuda. Gaasiline Aine molekulid/aatomid liiguvad täiesti vabalt ja korratult. Pole kindlat ruumala ega kuju. Plasmaolek Aine koosneb elektriliselt laetud või neutraalsetest aatomitest ning vabadest elektronidest. Ioniseeritud gaas, kus on positiivse laenguga ioonid ja negatiivse laenguga elektronid. 15. Termodünaamika I seadus · Energia ei teki ega kao, vaid muundatakse mingiks teiseks vormiks. · Suletud süsteemi siseenergia väheneb, kuna soojus, mis läheb välja (ekso), ning töö, mida süsteem teeb, on negatiivsed; s.t süsteemi energia muutub. · Isoleeritud süsteemi siseenergia ei muutu, sest energiaülekanne puudub. · Tsüklilises protsessis on süsteemi töö võrdne ümbruselt saadud soojusega w=q. 16. Termodünaamika I seaduse matemaatiline avaldis · U = q + 17. Protsessid püsival ruumalal ja rõhul, entalpia,

Keemia
18 allalaadimist
thumbnail
28
pdf

Kordamisküsimuste vastused aines "Rakenduskeemia"

detekteerida ja identifitseerida. Määramispiir (ka kvantiseerimispiir) (limit of quantitation, LoQ) on madalaim analüüdi sisaldus proovis, mida antud metoodika võimaldab usaldusväärselt kvantitatiivselt määrata. 35. Termodünaamika I seadus. Termodünaamika I seadus ehk energia jäävuse seadus ütleb: energia ei teki ega kao, vaid muundatakse mingiks teiseks vormiks. 36. Termodünaamika I seaduse matemaatiline avaldis. U  q  37. Protsessid püsival ruumalal ja rõhul, entalpia, soojusmahtuvus. Siseenergia muut on võrdne soojusefektiga konstantsel ruumalal. Entalpia (kui rõhk ei muutu) Keemias toimub enamus reaktsioone aga konstantsel rõhul (lahtises anumas). Siin teeb süsteem saadud soojuse arvel ka tööd ja tema siseenergia muutus on selle võrra väiksem. Siseenergia pole piisavalt hea olekufunktsioon, kirjeldamaks süsteemiga toimunud muutusi. Konstantsel rõhul toimuvate protsesside kirjeldamiseks on parem entalpia H

Rakenduskeemia
27 allalaadimist
thumbnail
11
docx

Rakenduskeemia kokkuvõte

o Adsorptsioon o Aurustumine o Sulamine o Difusioon o Elektrolüüs · Termodünaamika on teadus energia muundumistest. · Süsteem võib olla o Avatud o Suletud o Isoleeritud o Homogeensed o Heterogeensed · Süsteemi olekufunktsioonideks (arvutatavad suurused) on sellised süsteemi olekut iseloomustavad suurused, mis ei sõltu oleku saavutamise viisist: o Siseenergia, o Entalpia, o Entropia, o Vabaenergia. · Olekuparameetrid on mõõdetavad suurused: o Temperatuur (T) o Rõhk (P) o Ruumala (V) o Ainehulk (n) o Kui mingis protsessis kolmest olekuparameetrist jääb üks muutumatus, siis on tegemist isoprotsessiga. · Protsessid: o P=konst ­ isobaarilised protsessid atmosfääri rõhul lahtises nõus kulgevad reaktsioonid

Rakenduskeemia
38 allalaadimist
thumbnail
17
ppt

Energia

mitte sellest kuidas süsteem antud olekusse on jõudnud Keskendutakse eelkõige muutustele . Muutus tähendab erinevust süsteemi lõppoleku ja algoleku vahel. Näiteks E = E(lõppolek) ­ E(algolek) Süsteemi olek on antud kõikide ainete hulkade ja kahega kolmest järgnevast parameetrist ­ rõhk P (Pa), temperatuur T (K), ruumala V (m3). Termodünaamika esimene seadus Ehk energia jäävuse seadus: isoleeritud süsteemi energia on jääv Suletud süsteemis võib siseenergia muutuda, kas soojuse q (J) või töö w (J) kaudu: E = q ­ w NB! Soojus ja töö ei ole olekufunktsioonid ja mõlemad sõltuvad sellest kuidas antud olek on saavutatud Paisumistöö w = PV Entalpia H on reaktsiooni soojusefekt konstantsel rõhul: H = E + PV Entalpia on olekufunktsioon Biokeemilistes protsessides on H ligikaudu võrdne E Näiteks palmitiinhappe oksüdatsioon: CH3(CH2)14COOH (tahke) + 23O2 (gaas) 16CO2 (gaas) + 16H2O (vedelik) H = -9958,7 kJ/mol ja E = -9941,4 kJ/mol NB

Keemia alused
21 allalaadimist
thumbnail
3
doc

Keemia eksami spikker

Homog süst om-d on kõikides osades samad. Heterog süst koosn 3) F.Mundi reegel ­ ühesug. tüüpi orbitaalid täit-d esmalt ühesug. Neid jag. N: kordinatsiooniarvu järgi, ligandite doonoraatomite mitmest eriom-ga osast e.faasist. Süst on avatud, kui tema ja spintkvantarvuga ekt-dena st.ekt-d asuvad antud alatasemel aga järgi, tsentraalaatomite järgi. ümbruse vahel toim ainevahetus. Süst on suletd, kui ainevah puud. igaüks eraldi orbitaalidele, paaristumata elektronidena. Aatomite 4) Aine agregaatolekud. 5.2 Keemiliste reaktsioonide soojusefektid. elektronkatete ehituse sümboolseks tähist kasut (2.5) Mok-de vah jõudusid nim.van der Waasi jõududeks ja nad on ting Reakts-i soojusefekti all mõist-se soojushulka, mis püsival temp-l

Keemia
92 allalaadimist
thumbnail
21
docx

Soojustehnika konspekt

· Kõrge temperatuuriga protsessiga, kus maksimaalne temperatuur on üle 1000co. · Madalat temperatuuriga protsessid, kus kasutatakse madalal temperatuuril keevaid vedelikke, seal on maksimaalne temperatuur on 30o-70o . Madalatemperatuurilised on soojustransformaatorid protsessid. Tähtsamateks termodünaamika mõisteteks loetakse: 1) Töö ­ L; [J]; l[J/kg] Energiaühik ­ ,,J" 2) Soojus ­ Q[J] 3) Siseenergia ­ U[J] Gaasi või auru siseenergi · Mass · Raskusjõud · Kaal · Ainehulk · Moolmass · Moolmaht Tehnilises termodunaamikas vaadeldakse: Massi, kui keha inertsus omaduste karakteristikut (see tähendab kui inertsi iseloomustajat ja tema mõõtu) seda massinimetatakse inertseks massiks. Vaadeldakse massi konstantse suurusena, määratakse kaalumise teel, kussjuures see mass tasakaalustatakse kalibreeritud vihtide raskustega

Soojustehnika
134 allalaadimist
thumbnail
23
docx

Üldkeemia eksami kordamisküsimused.

Kui näiteks kristalli temperatuur tõuseb, muutub molekulide võnkumine ümber tasakaalupunktide nii ulatuslikuks, et kristall sulab. Toimub faasisiire, milles tahkisv muutub vedelikuks. Kui vedelik kuumutada piisavalt kõrge temperatuurini, tekivad kogu vedelikus aurumullid (keemine) ja vedelik muutub gaasiks (aurustumine). 15.=16.Termodünaamika I seadus ehk energia jäävuse seadus ütleb: energia ei teki ega kao, vaid muundatakse mingiks teiseks vormiks. U= q + Suletud süsteemi siseenergia muutus U üleminekul algolekust lõppolekusse on võrdne süsteemile antava soojushulga q ja tema heaks tehtava töö summaga. Süsteem võib ka energiat kaotada, s.t. teha tööd või anda ära mingi osa soojusest. Seega muutub suletud süsteemi energia energiavahetuse tõttu (kas töö või soojusena) keskkonnaga. *Soojus, mis läheb välja (ekso), on negatiivne. *Töö, mida süsteem teeb, on negatiivne (töö läheb välja). *Selle tõttu suletud süsteemi siseenergia väheneb.

Keemia
60 allalaadimist
thumbnail
8
docx

Kordamisküsimused aines Rakenduskeemia

Elektrokeemilised meetodid voimaldavad elektriliste mootmiste pohjal jalgida keemilise reaktsiooni kulgu voi ioonide kontsentratsioone lahustes. 22. Mis on elektrokeemiline rakk? Millest see koosneb? Elektrokeemiline rakk on seade mis suudab kas tuleneva elektri energiat keemiliste reaktsioonide või hõlbustada keemiliste reaktsioonide kehtestamise kaudu elektrienergiaks. 23. Termodünaamika I seadus. Suletud süsteemi siseenergia muutus algolekust lõppolekusse on võrdne väliskeskkonnast soojuse kujul saadava energiahulgaga, millest on lahutatud energiahulk, mille süsteem annab ära töö: Soojuse hulga mõõtmine - kalorimeetria Protsess, mille käigus eraldub soojust, on eksotermiline (sellised on enamik keemilisi reaktsioone) Soojusmahtuvus ­ soojushulk, mis kulub keha temperatuuri tõstmiseks 1 ºC võrra kui temperatuuri tõstmine ei muuda aine agregaatolekut (keemilist koostist). Hessi seadus

Rakenduskeemia
40 allalaadimist
thumbnail
13
doc

Mehaanika ja soojus

ruumala V korrutis konstantne: pV=m/M*R*T , pV=const p1V1=p2V2 Isohooriline: nimetatakse jääval ruumalal V ja tingimustel m=const ja M=const toimuvat protsessi. P/T=const Isobaariline: nimetatakse jääval rõhul p ja tingimustel m=const ja M=const toimuvat protsessi. V/T=const Adiabaatiline: protsess, milles termodünaamilises süsteemis ei ole soojusvahetust ümbritseva keskkonnaga 4.Termodünaamika I printsiip, ideaalse gaasi siseenergia ja töö TD I: Isoleerimata termodünaamilises süsteemis võrdub keha siseenergia muut U süsteemile üleantud soojushulga Q ja selle süsteemi poolt tehtud töö A' vahega. U=Q-A' Id. gaasi siseenergia: Kuna id. gaasi molekulide vastasmõju on null, siis võrdub tema siseenergia kõigi molekulide soojusliikumise kineetiliste energiat summaga: U=NE=N A3/2*k*T=3/2*m/M*R*T. Id. gaasi siseenergia on võrdeline absoluutse temperatuuriga. Järjelikult muutub id. gaasi temp. muutumisel kindlasti

Füüsika
95 allalaadimist
thumbnail
11
pdf

Termodünaamika eksamiküsimused 2013

Termodünaamika I kordamisküsimused 2013 1. Nimetada termodünaamika kolm printsiipi. Esimene printsiip on energia jäävuse seadus, millest järeldub siseenergia U kui olekufunktsiooni olemasolu. Kui ainehulk on jääv, siis siseenergia muutus U=Q-W, kus Q on süsteemi sisestatud soojushulk ja W süsteemi tehtud töö. Teine printsiip määrab iseeneslike protsesside suuna. Klassikalised sõnastused, mille kohaselt soojus ei saa iseenesest minna külmemalt kehalt soojemale ja ei ole võimalik ehitada perioodiliselt töötavat soojusjõumasinat, mille tegevuse ainus tulemus on soojuse muundumine tööks Kolmas printsiip määrab termodünaamilises tasakaalus olevate süsteemide käitumise

Masinamehaanika
30 allalaadimist
thumbnail
19
doc

Soojustehnika eksamiküsimused (vastused)

mõõtühikud. Termodünaamilised kehad ­ gaasid ja aurud(veeaur) sest nad muudavad oma mahtu väga suurtes piirides nende soojuslikul ja mehaanilisel mõjutamisel. Termilised olekuparameetrid: erimaht, absoluutne rõhk ja abs. Temperatuur. 1) Erimaht ­ aine massiühiku maht (v) [ m³/kg] 2) Rõhk ­ Pinnaühiku normaali suunasmõjuv jõud (p) [Pa, N/m², mmHg, atm, bar, psi] 3) Temperatuur ­ Absoluutne temperatuur (T) [K] Energeetilised olekuparameetrid: Siseenergia, entalpia, entroopia 1) Siseenergia (U) [J] 2) Entalpia (H) [J] 3) Entroopia (S) [J/K] 7. Absoluutse rõhu , ülerõhu ja alarõhu mõiste. Absoluutne rõhk ­ gaasi tegelik rõhk ja saadakse siis kui rõhu mõõtmisel võtta 0-nivooks absoluutne vaakum. Ülerõhk ­ rõhk mis on kõrgem atmosfääri rõhust. Nim. ka manomeetriline rõhk Alarõhk ­ rõhk mis on madalam atmosfääri rõhust. Nim. ka vaakummeetriline rõhk. 8. Temperatuuri skaalad.

Soojustehnika
764 allalaadimist
thumbnail
19
doc

Soojustehnika eksami küsimuste vastused

mõõtühikud. Termodünaamilised kehad ­ gaasid ja aurud(veeaur) sest nad muudavad oma mahtu väga suurtes piirides nende soojuslikul ja mehaanilisel mõjutamisel. Termilised olekuparameetrid: erimaht, absoluutne rõhk ja abs. Temperatuur. 1) Erimaht ­ aine massiühiku maht (v) [ m³/kg] 2) Rõhk ­ Pinnaühiku normaali suunasmõjuv jõud (p) [Pa, N/m², mmHg, atm, bar, psi] 3) Temperatuur ­ Absoluutne temperatuur (T) [K] Energeetilised olekuparameetrid: Siseenergia, entalpia, entroopia 1) Siseenergia (U) [J] 2) Entalpia (H) [J] 3) Entroopia (S) [J/K] 7. Absoluutse rõhu , ülerõhu ja alarõhu mõiste. Absoluutne rõhk ­ gaasi tegelik rõhk ja saadakse siis kui rõhu mõõtmisel võtta 0-nivooks absoluutne vaakum. Ülerõhk ­ rõhk mis on kõrgem atmosfääri rõhust. Nim. ka manomeetriline rõhk Alarõhk ­ rõhk mis on madalam atmosfääri rõhust. Nim. ka vaakummeetriline rõhk. 8. Temperatuuri skaalad.

Soojustehnika
59 allalaadimist
thumbnail
26
docx

KEEMIA 1. kursus Eksam

Termodünaamika 29. Iseloomustage olekufunktsioone ja -parameetreid. · Olekuparameetrid on mõõdetavad suurused: temperatuur (T), rõhk (P), ruumala (V), ainehulk (n) · Parameetrite omavaheline sõltuvus kujutab endast ideaalgaasi olekuvõrrand: pV=m/M*RT pV=nRT 30. Termodünaamika I seadus. Termodünaamika I seadus ehk energia jäävuseseadus ütleb: energia ei teki ega kao, vaid muundatakse mingiks teiseks vormiks. 31. Termodünaamika I seaduse matemaatiline avaldis. U=q+ U ­ siseenergia muutus q ­ susteemile antav soojushulk w ­ töö 32. Protsessid püsival ruumalal ja rohul, entalpia, soojusmahtuvus. Siseenergia muut on vordne soojusefektiga konstantsel ruumalal. Entalpia- Konstantsel rõhul toimuvate protsesside kirjeldamiseks on parem entalpia H. H =U + PV H =U +n(gaas)RT Entalpiamuut on soojusefekt konstantsel rõhul. Soojusmahtuvus ­ soojushulk, mis kulub keha temperatuuri tostmiseks 1 oC vorra kui temperatuuri tostmine ei muuda aine agregaatolekut (keemilist

Keemia
3 allalaadimist
thumbnail
5
doc

Keemia alused eksami kordamisküsimuste vastuseid.

Faasidiagrammid kujutavad endast olekute sõltuvust olekuparameetritest. Sealt on võimalik välja lugeda kindla aine keemistemperatuurid, sulamistemperatuurid ning kriitilised punktid. Keemistäpp- keemistemperatuur, sellest punktist peale hakkab segu keema Kriitilised punktid- kõrgeim rõhu ja temperatuuri kombinatsioon, mille juures gaasifaas ja vedel faas saavad tasakaaluliselt koos eksisteerida. Ülekriitiline olek- kriitilisest temperatuurist kõrgemal olev olek. Aurustumissoojus on soojushulk, mida on vaja 1 mooli aine üleminekuks vedelast olekust gaasilisse konstantsel temperatuuril. Aurustumissoojused on alati positiivsed, sest siis soojus neeldub (endotermiline protsess) Ainete ruumala sulamisel tavaliselt väheneb ja tihedus suureneb. Subimatsioon- üleminek tahkest ainest gaasilisse ilma vedelat olekut läbimata. Kriitiline temperatuur- temperatuur, millest kõrgemal gaas enam ei kondenseeru vaatamata sellele, et rõhku suurendatakse.

Keemia alused ii
158 allalaadimist
thumbnail
34
pdf

Üldkeemia

BaCl2 + Na2SO4 = BaSO4 + 2NaCl ­ Tekib rasklahustuv aine (sade) ­ Tekib kerglenduv aine (gaas) ­ Tekib nõrk elektrolüüt, nt. vesi ­ Tekib lahustuv kompleksühend Kui ühtegi märgitud neljast tingimusest ei täideta, siis reaktsioon ei kulge. TERMODÜNAAMIKA 26. Termodünaamika I seadus. Termodünaamika I seadus ehk energia jäävuse seadus ütleb: energia ei teki ega kao, vaid muundatakse mingiks teiseks vormiks. Suletud süsteemi siseenergia muutus U üleminekul algolekust lõppolekusse on võrdne süsteemile antava soojushulga q ja tema heaks tehtava töö w summaga. Süsteem võib ka energiat kaotada, st teha tööd või anda ära mingi osa soojusest. Seega muutub suletud süsteemi energia energiavahetuse tõttu (kas töö või soojusena) keskkonnaga. Soojus, mis läheb välja (ekso), on negatiivne. Töö, mida süsteem teeb, on negatiivne (töö läheb välja). Selle tõttu suletud süsteemi siseenergia väheneb.

Üldkeemia
69 allalaadimist
thumbnail
25
doc

Termodünaamika I eksamiküsimused vastustega

1) Nimetada termodünaamika 3 printsiipi: Termodünaamika esimene printsiip on energia jäävuse seadus, millest järeldub siseenergia U kui olekufunktsiooni olemasolu. Kui ainehulk on jääv, siis siseenergia muutus U=Q- W, kus Q on süsteemi sisestatud soojushulk ja W süsteemi tehtud töö. Termodünaamika teine printsiip määrab iseeneslike protsesside suuna. Klassikalised sõnastused, mille kohaselt soojus ei saa iseenesest minna külmemalt kehalt soojemale ja ei ole võimalik ehitada perioodiliselt töötavat soojusjõumasinat, mille tegevuse ainus tulemus on soojuse muundumine tööks Termodünaamika kolmas printsiip määrab termodünaamilises tasakaalus olevate süsteemide

Termodünaamika
226 allalaadimist
thumbnail
18
pdf

Üldine keemia põhimoisted I

Ideaalse gaasi olekuvõrrand (Clapeyroni-Mendelejevi võrrand): pV = nRT , R – gaasi universaalkonstant; R = 8.314 J/mol⋅K (ehk 0.0820 dm ⋅atm/mol⋅K); 3 R = poVo/To; po – normaalrõhk (1 atm. ehk 101 325 Pa), To – normaaltemperatuur (0 °C ehk 273.15 K), Vo – molaarruumala normaaltingimustel (22.4 dm3/mol). Olekufunktsioonid – funktsioonid, mis sõltuvad olekuparameetritest, nt. siseenergia (U), entalpia (H), entroopia (S), vabaenergia (G); on määratud süsteemi olekuga ega sõltu sellest, kuidas see olek on saavutatud. Süsteemi koguenergia (E): E = Ekin. + Epot + U, Ekin ja Epot – süsteemi kui terviku kineetiline ja potentsiaalne energia. Siseenergia (U), J/mol – süsteemi moodustavate osakeste liikumise ja vastastikuste seoste energia; isoleeritud süsteemis ∆U = 0. Termodünaamika I seadus ehk energia jäävuse seadus: ∆U = q + w ,

Üldine keemia
9 allalaadimist


Sellel veebilehel kasutatakse küpsiseid. Kasutamist jätkates nõustute küpsiste ja veebilehe üldtingimustega Nõustun