Vajad kellegagi rääkida?
Küsi julgelt abi LasteAbi
Logi sisse
✍🏽 Avalikusta oma sahtlis olevad luuletused! Luuletus.ee Sulge

Diiselmootori ehitus, teooria ja ekspluatatsioon - sarnased materjalid

kütus, pais, indikaator, paisumis, soojus, mootoritel, silindris, õhutemperatuur, turbiini, paisumise, võll, prototüübi, jahutusvee, õhurõhk, lõppus, jahuti, teoreetilise, põlemiseks, õhuhulk, täite, diagrammi, termostaat, väntvõll, erikulu, mehaaniline, paisumisel, soojusmahtuvus, isobaarne, soojuskadu, liigõhutegur, surveaste, õhuniiskus
thumbnail
21
pdf

Toorotsessi analuusi naidisulesanded

D 2 3,14 × 0,9 2 Vs = S= 1,8 = 1,14 [m3] 4 4 2. Arvutame gts ­ tsükli kütusekoguse, Gõ gts = G , kus 0 ­ liigõhutegur Gõ on tsükli koguse kütuse põlemiseks vajalik õhu mass, Go on tsüklilise kütuse põlemiseks teoreetiliselt vajalik õhu mass; Mootori nimireziimil võetakse arvestuslik liigõhutegur: - madalate pööretega mootoritel 1,8...2,2 - keskmiste pööretega mootoritel 1,6...2,0 - kiirete pööretega mootoritel 1,4...1,8 tsüklilise koguse kütuse põlemiseks vajaliku õhu massi leiame Gõ valemi järgi: 1 Gõ = Vs v s 1 +1,61d , selleks arvutame silindri täiteteguri v ja õhu tiheduse s v on silindri täitetegur, mille leiame arvutuslikult:

Abimehanismid
9 allalaadimist
thumbnail
15
doc

Diisel

C+O2 =CO2 ( tekib süsihappegaas ) , 2H 2 + O2 = 2H2 O (veeaur ) , N2 väljalaskeklappide (akende ) sulgumist puntist "a " õhu Surveastme tõstmist piirab komprimeerimisrõhk P c ja - muutub NO, NO2 jne. kokkusurumine silindris (a...c komprimeerimine ). Järgneb kütuse maksimaalrõhk Pz. Nende parameetrite suurenemine tingib silindri- sissepritsmine , kütuse põlemiseks ettevalmistamine ja põlemine kolvgrupi detailide mehaanilise koormuse järsu kasvu. Teoreetilises tsüklis antakse soojus töötavale kehale väljapoolt , läbi (c...z). Rõhk silindris tõuseb järsult maksimaalväärtuseni pz

Abimehanismid
81 allalaadimist
thumbnail
32
doc

SISEPÕLEMISMOOTORI PÕHIPARAMEETRID

Vc- põlemiskambri maht Keskmine kolvi kiirus Sp : Ln S p  2 LN  , kus (1.2) 30 N- väntvõlli pöörete arv p/s; n- väntvõlli pöörete arv p/min. L- kolvikäik. Keskmine kolvi kiirus osutub sageli sobilikumaks parameetriks kui väntvõlli pöörle- miskiirus, kuna gaasi voolamiskiirus sisselasketraktis ja silindris on mastaabis keskmise kolvi kiirusega. Mootori efektiivvõimsus P: P= 2NT, kus (1.3) T- mootori poolt arendatav pöördemoment. Pöördemoment on määratav pidurdusseadmega mootori katsetamisel stendil. Tsükli indikaatortöö Wc,i: Wc,i   pdV Indikaatortöö defineeritakse kahel viisil. Töötsükli tegelik indikaatortöö Wc,in vastavalt joonisel 1

Auto õpetus
15 allalaadimist
thumbnail
54
pdf

SOOJUSTEHNIKA EKSAMI VASTUSED

võrdne protsessis esineva entalpia muutusega. Joonis: p T v s 3) Isotermiline protsess on selline td pr, mis toimub püsival temperatuuril. (T=const, T=0). p1v1=p2v2 => p1/p2=v2/v1— Boyle-Mariotte´i seadus. Siin mehaaniline ja tehniline töö on omavahel võrdsed. Seega muundub isotermilisse protsessi antav soojus täielikult tööks. Kunaideaalse gaasi siseenergia ja entalpia sõltuvad ainut temp-ist, siis on isoterm. protsessis Δu=Δi=T(s2-s1). Ts-diagrammil väljendub isotermiline protsess horisontaalse joonena. Joonis: p T 5. Adiabaatne protsess on selline td prot. mis toimub soojuslikult isoleeritud tingimustes. (dq=0, q=0). Adiabaatilises td- lies protsessis tehtav mehaaniline töö võrdub siseenergia vähenemisega, tehniline töö entalpia

Soojustehnika
46 allalaadimist
thumbnail
28
docx

Hoone- ja soojusautomaatika

Kütuse põlemisel silindril paisub gaas paneb enamjuhtudel kolvi liikuma kusjuures ja kolb sooritab kulgliiklemist aga nn rootormootorites on kolb asendatud pöörleva rootoriga. Tavalistes kolbmootorites kus on tegemist kulgliikumisega muudab väntvõllmehhanism selle energia hoorattakaudu pöörlevaks liikumiseks. Mootori pidevaks tööks on vajalik 1. Gaasi jaotusmehhanism(klapid), mis on oluline, sest ta juhib kütuse ja õhu sisselase silindrisse ja heitegaasi eemaldamist silindris. 2. Toitesüsteem 3. Õlitus 4. Jahutussüsteem Ehituse järgli liigitatakse mootorid 1,2 ja enam silindrilised mootorid. Kasutusala järgi liigitatakse: on mobiilsed mootorid ja statsionaalsed mootorid kusjuures mobiilsed mootorid on laevamootorid, nii bensiini kui diiselmootorid. Statsionaalsed otto ja diisel mootorid üle 1000kW mida kasutatakse elektri ja soojuse tootmiseks koostootmise jaamades. Tarvitatava kütuse järgi liigitatakse gaasi mootorid,

Soojustehnika
56 allalaadimist
thumbnail
25
doc

PROJEKT: ELEKTRIAJAMIGA TRUMMELVINTS

TALLINNA TEHNIKAÜLIKOOL MEHHATROONIKAINSTITUUT ELEKTRIAJAMIGA TRUMMELVINTS PROJEKT ÜLIÕPILANE: KOOD: JUHENDAJA: TALLINN 2010 TALLINNA TEHNIKAÜLIKOOL MEHHATROONIKAINSTITUUT MASINATEHNIKA PROJEKT MHE0062 l D v Projekteerida elektriajamiga vints. Tõstetav mass m = 680 kg Maksimaalne liikumiskiirus v = 0,1 m/s Trumli pikkus l = 300 mm Mootori ja trumli ühendus kettülekanne Esitada: seletuskiri, mastaabis eskiisid, koostejoonis, detaili joonised Joonis esitada formaadil A2 ­ A4 Töö välja antud: 05.02.2010.a.

Masinatehnika
102 allalaadimist
thumbnail
31
doc

ELEKTRIAJAMITE ÜLESANDED

6. ELEKTRIAJAMITE ÜLESANDED Tootmises kasutatakse töömasinate käitamiseks rõhuvas enamuses elektriajameid. Ka pneumo- ja hüdroajamid saavad oma energia ikka elektrimootoritega käitatavatelt kompressoritelt ja hüdropumpadelt. Elektriajam koosneb elektrimootorist ja juhtimissüsteemist, mõnikord on vajalik veel muundur ja ülekanne. Elektriajamite kursuse põhieesmärk on valida võimsuse poolest otstarbekas elektrimootor, arvestades ka kiiruse reguleerimise vajadust ja võimalikult head kasutegurit. Järgnevad ülesanded käsitlevad selle valikuprotsessi erinevaid külgi. 6.1. Rööpergutusmootori mehaaniliste tunnusjoonte arvutus Ülesanne 6.1 Arvutada ja joonestada rööpergutusmootorile loomulik ja reostaattunnusjoon. Mootori nimivõimsus Pn = 20 kW, nimipinge Un = 220 V, ankruvool Ia = 105 A, nimi- pöörlemissagedus nn = 1000 min-1, ankruahela takistus (ankru- ja lisapooluste mähised) Ra = 0,2 ja ankruahelasse on lülitatud lisatakisti takistu

Elektriajamid
53 allalaadimist
thumbnail
53
doc

LAEVA ABIMEHHANISMID

Nimetatud rõhu all pumbatakse vedelik akumulaatorist mööda toru E hüdraulilise masinasse ( näiteks pressi silindrisse ). Selle tulemusel töötab masin ühtlase koormusega . Vedelikus tekitatud hüdrostaatiline rõhk on seda suurem ,mida väiksem on kolvi ristlõikepind. Väga väikese läbimõõduga kolb ei ole aga küllalt tugev. Seetõttu kasutatakse nendes seadmetes , kus vajatakse kõrget hüdrostaatilist rõhku ( joon ) , nn. differentsiaalakumulaatoreid . Nende kolb on astmeline . Silindris A surutakse vedelik kokku rõngakujulise pinnaga , mis moodustub kolvi astmete läbimõõtude erinevuse tõttu. Kolvi astmete läbimõõdud võib valida nii ,et nad üksteisest vähe erinevad . Nii saab muuta kolvi tööpindala väikseks , ilma et kolb seejuures nõrgeneks. Ühendatud anumate seadus: vedelikusammaste kõrgused on pöördvõrdelised vedelike tihedustega . See seadus on rakendatav omavahel segunematute vedelike tiheduse määramise ning vedelike pumpamisel õhktõstuki abil.

Abimehanismid
65 allalaadimist
thumbnail
2
doc

Soojustehnika teooria eksamiks

..+Nn)kT=NkT. Järelikult gaasi tehnilist tööd ei tehta ning termodün. keha üleminekuks määrab termodünaamiliste protsesside suuna--väiksema kogurõhk p=N1/V*kT+N2/V*kT+...+Nn/V*kT. Selle olekust 1 olekusse2 vajalik soojushulk q=cp(t2-t1). tõenäosusega olekust suurema tõenäosusega olekusse. võrrandi liikmed [(N1kT)/V, (N2kT)/V,...]väljendavad Seega on isobaarilises td protsessis keha poolt Def: Soojus võib iseenesest suunduda ainult kõrgema rõhku ,nn. komponendi osa- ehk partsiaalrõhku, mida juurdesaadav või äraantav soojushulk võrdne protsessis temp. kehalt madalama temp. kehale. Ringprotsess- TD omaks antud gaasikomponentsegu temperatuuril, kui ta esineva entalpia muutusega. pr. Kus töötav keha perioodiliselt paisub ja hõivaks kogu gaasisegu mahu

Soojustehnika
727 allalaadimist
thumbnail
90
pdf

Soojustehnika eksami küsimused

Materiaalselt suletud on balloon, kolviga silinder. Termodünaamiline keha. Termodünaamilises süsteemis asuvat keha, mille vahendusel toimuvad termodünaamilised protsessid ning energialiikide vastastikune muundumine, nimetatakse termodünaamiliseks kehaks. Soojusjõuseadmetes on termodünaamiliseks kehaks aine, mis vahendab neis sisalduva või ülekantava energia muundamist tööks. Soojustransformaatorites on termodünaamiliseks kehaks aine, mille kaudu soojus siirdub jahedamalt kehalt kuumemale. Soojusjõuseadmetes ja –transformaatorites termodünaamilise kehana kasutatavat ainet nimetatakse ka töökehaks. Termodünaamiliseks kehaks võib olla nii tahke, vedel kui ka gaasiline aine. Kolbmootorites on termodünaamiliseks kehaks kütuse põlemisgaas. Aurujõuseadmes on termodünaamiliseks kehaks enamikul juhtudel veeaur. Sõltuvalt parameetritest aurujõuseadmes võib veeaur kui termodünaamiline keha töötsükli jooksul muuta oma agregaatolekut.

tehnomaterjalid
121 allalaadimist
thumbnail
65
doc

AM kordamiskusimused lopueksamiks ( vastused)

pumba tootlikkusele erilist mõju avaldamata. Juhul kui vedeliku voog kohtub kolviga alles survekäigu ajal, võib tekkida väga tugev hüdraliline löök kolvile, imiklapile ja tootlikkus väheneb järsult. Küsimus 8. Kolbpumpade indikaatordiagramm, indikaatorlik võimsus ja kasutegur. Pumpamishäirete diagnoosimine indikaatordiagrammi järgi. Kolbpumba indikaatordiagramm annab sõltuvuse kolvi (joon 9) edasi-tagasi käigu (2S) jooksul kolbpumba silindris valitseva rõhu ja ruumala vahel p=f(Vs) = f() ehk surve muutust ühe töötsükli jooksul. Joonis 9 Silindris oleva rõhu määramiseks on hakatud kasutama mõõteriista, mida nimetatakse indikaatoriks. Siit ka nimetus indikaatordiagramm. Indigaatordiagramm võib olla arvutuslik (arvjoonis) või reaalselt pumbalt võetud tegelik p=f(V) = f() diagramm. Tegelik pumba indikaatordiagramm võetakse reeglina tehases mudelpumba

Abimehanismid
121 allalaadimist
thumbnail
19
doc

Soojustehnika eksamiküsimused (vastused)

(S) [J/K] Soojenemisel entroopia ehk korrapäratuse aste suureneb ja jahutamisel väheneb. S =s M dq ds = T 2 dq s = s 2 - s1 = = J / kg * K 1 T Joone alune pinala näitab q-d ehk protsessist osavõtvat soojushulka. Joonis õpik lk 48. 21. Termodünaamika II seaduse tuntumad sõnastused. 1) Kogu soojust ei ole võimalik muundada tööks.(soojuskaod) 2) Soojus ei saa ise minna madalama temperatuuriga kehalt kõrgema temperatuuriga kehale selleks on vaja tööd teha. 3) Soojus läheb alati soojemalt kehalt külmemale. 22.(23) Termodünaamilised põhiprotsessid ja nende graafiline kujutamine pv- ja Ts-diagrammil. 1)Isohoorne(isohooriline) ­ protsess, mis kulgeb konsantsel mahul (V=const) , näiteks gaasi kuumutamine kinnises anumas. 2) Isobaarne protsess ­ Protsess, mis kulgeb konstantsel rõhul. (p=const)

Soojustehnika
764 allalaadimist
thumbnail
19
doc

Soojustehnika eksami küsimuste vastused

(S) [J/K] Soojenemisel entroopia ehk korrapäratuse aste suureneb ja jahutamisel väheneb. S s M dq ds T 2 dq s s 2 s1 J / kg * K 1 T Joone alune pinala näitab q-d ehk protsessist osavõtvat soojushulka. Joonis õpik lk 48. 21. Termodünaamika II seaduse tuntumad sõnastused. 1) Kogu soojust ei ole võimalik muundada tööks.(soojuskaod) 2) Soojus ei saa ise minna madalama temperatuuriga kehalt kõrgema temperatuuriga kehale selleks on vaja tööd teha. 3) Soojus läheb alati soojemalt kehalt külmemale. 22.(23) Termodünaamilised põhiprotsessid ja nende graafiline kujutamine pv- ja Ts- diagrammil. 1)Isohoorne(isohooriline) ­ protsess, mis kulgeb konsantsel mahul (V=const) , näiteks gaasi kuumutamine kinnises anumas. 2) Isobaarne protsess ­ Protsess, mis kulgeb konstantsel rõhul. (p=const)

Soojustehnika
59 allalaadimist
thumbnail
52
doc

Katlatehnika eksami vastused

vedeliku tootmiseks ja tarbijale edastamiseks. Katlas toimub mingi energialiigi muundamine soojuseks ning vee (või ka termoõli) kuumutamine ja vee aurustamine selle soojuse arvel. Soojuse saamiseks võib kasutada kütuse keemilist energiat, elektrienergiat, otsest päikese energiat jne. Tänapäeval kasutatakse siiski kõige rohkem orgaanilise kütuse energiat. Seepärast vaadeldakse käesolevas konspektis katlaid, kus soojus saadakse orgaanilise kütuse põlemisel. Katel koosneb koldest ja erinevat liiki küttepindadest, mis võivad olla paigutatud ühte või mitmesse korpusesse. Kolle on ettenähtud kütuse põletamiseks ja küttepinnad vabanenud soojuse ülekandmiseks põlemisproduktidelt vedelikule, aurule või põlemisõhule. Aurutootva katla ehk aurukatla küttepinnad ja nende otstarve on järgmised: · toitevee eelsoojendis ehk ökonomaiseris tõstetakse katlasse antud vee

Katlatehnika
82 allalaadimist
thumbnail
92
docx

Autod-Traktorid I kordamisküsimused 2013-2014

kõverpinnalistele labadele ja paneb viimase pöörlema. 2. Sisepõlemismootorite liigid Turbiinmootorid jaotuvad: -1 1) auruturbiinmootorid (alates mõni kW... 1200 MW ja rohkem, n = 30 000 min ): e aktiivturbiinid, b) reaktiivturbiinid (töötava aine töö = voolsuuna muutumine + paisumise reaktiivjõud, mille osatähtsus on üle 50%) ; 2) gaasiturbiinmootorid ( võivad tarvitada gaas-, vedel- või tahket kütust) 3) hüdroturbiinmootor(tavaliselt statsionaarne): aktiivturbiinid, b) reaktiivturbiinid Kolbmootorite liigitus on laiaulatuslik. J. Ivandi esitab mootori tööprotsessi mõistmise seisukohalt järgmise liigituse: 1) teoreetilise ringprotsessi põhjal: a) kütuse teoreetiliselt püsivmahulise põlemisega (Ottoringprotsess),

Autod-traktorid i
61 allalaadimist
thumbnail
21
docx

Soojustehnika konspekt

Ringprotsesse saab liigitada temperatuur taseme järgi: · Kõrge temperatuuriga protsessiga, kus maksimaalne temperatuur on üle 1000co. · Madalat temperatuuriga protsessid, kus kasutatakse madalal temperatuuril keevaid vedelikke, seal on maksimaalne temperatuur on 30o-70o . Madalatemperatuurilised on soojustransformaatorid protsessid. Tähtsamateks termodünaamika mõisteteks loetakse: 1) Töö ­ L; [J]; l[J/kg] Energiaühik ­ ,,J" 2) Soojus ­ Q[J] 3) Siseenergia ­ U[J] Gaasi või auru siseenergi · Mass · Raskusjõud · Kaal · Ainehulk · Moolmass · Moolmaht Tehnilises termodunaamikas vaadeldakse: Massi, kui keha inertsus omaduste karakteristikut (see tähendab kui inertsi iseloomustajat ja tema mõõtu) seda massinimetatakse inertseks massiks. Vaadeldakse massi konstantse suurusena, määratakse kaalumise teel, kussjuures see mass tasakaalustatakse kalibreeritud vihtide raskustega

Soojustehnika
134 allalaadimist
thumbnail
57
rtf

TEHNILINE TERMODÜNAAMIKA

TEHNILINE TERMODÜNAAMIKA SISSEJUHATUS Termodünaamika on teadus energiate vastastikustest seostest ja muundumistest, kus üheks komponendiks on soojus. Tehniline termodünaamika on eelmainitu alaliigiks, mis uurib soojuse ja mehaanilise töö vastastikuseid seoseid. Tehniline termodünaamika annab alused soojustehniliste seadmete ja aparaatide (näiteks katelseadmete, gaasiturbiinide, sisepõlemismootorite, kompressorite, reaktiivmootorite, soojusvahetusseadmete, kuivatite jne.) arvutamiseks ja projekteerimiseks. Tehniline termodünaamika nagu termodünaamika üldse tugineb kahele põhiseadusele.

Termodünaamika
17 allalaadimist
thumbnail
56
doc

JÕUSEADMETE TÜÜBID 2

põlema lahtise leegi juurde viimisel. Bensiini leekpunkt jääb vahemikku 25 – 30°C. Laevades lubatakse kasutada kütuseid, millede leekpunkt on üle 60°C. Piiratud ujumisrajooniga laevades alla 60°C, aga see peab siiski jääma üle 40°C tingi – musel, et temperatuur kütuse hoidlas oleks 10°C madalam kütuse leekpunktist.Seega leekpunkt on vägatähtis näitaja tuleohtlikuse seisukohalt. HANGUMIS TEMPERATUUR See on mahajahutus temperatuur, mill katseklaasis olev kütus ei võta enam horisontaalset tasapinda katseklaasi kallutamisel 45° nurga alla. HÄGUSEKS MUUTUMISE TEMPERATUUR See on 10°C kõrgem temperatuur, kui seda on hangumistemperatuur. Selle temperatuuri juures hakkavad välja sadestuma parafiini kristallid. Parafiini – kristallid ummistavad filtreid ja torustikke. Diiselkütustel jääb hangumistemperatuur vahemikku 0 - 45°C. ISESÜTTIMIS TEMPERATUUR See on temperatuur, mille juures kütuse küttesegu plahvatab põlema lahtise leegi

Laevandus
21 allalaadimist
thumbnail
25
doc

Katlatehnika kordamisküsimused

2. Põlevkivi põletuste h n ol o o gi ad 3. Katla mõi ste ja põhitüübid 4. Kollete tööd iseloo m u st av a d näitajad 5. Katla sooju s bilan s s 6. Sooju sk a d u katlast väljuvate gaa sid e g a 7. Sooju sk a d u ke e milis elt mittetäielikust põle mi s e st 8. Sooju sk a d u m e h a a nilis elt mittetäielikust põle mi s e st 9. Sooju sk a d u katla välisjahtumi s e st ja slaki füüsikalis e sooju s e g a . 10. Tahk e kütus e kold e d ja nend e liigitus 11. Kihtkolde d 12. Ke evkihtkold e d 13. Kamb e rk old e d Kamberkolded on vedelike ja gaaside põletamiseks. Tahkekütuseid saab nendes põletada peenestatud kujul (tolmpõletus, vt. pt. 3.1.1). Väiksemad kamberkolded on Viessmanni katlad. Keevkihtkoldeid võib lugeda nii kihtkolleteks kui kamberkolleteks. Tegelikult on nad kahe koldetüübi vahepeal, nö nende sümbioos. 14. Ekraanküttepinnad

Katlatehnika
75 allalaadimist
thumbnail
252
doc

Rakendusmehaanika

EESTI MEREAKADEEMIA RAKENDUSMEHAANIKA ÕPPETOOL MTA 5298 RAKENDUSMEHAANIKA LOENGUMATERJAL Koostanud: dotsent I. Penkov TALLINN 2010 EESSÕNA Selleks, et aru saada kuidas see või teine masin töötab, peab teadma millistest osadest see koosneb ning kuidas need osad mõjutavad teineteist. Selleks aga, et taolist masinat konstrueerida tuleb arvutada ka iga seesolevat detaili. Masinaelementide arvutusmeetodid põhinevad tugevusõpetuse printsiipides, kus vaadeldakse konstruktsioonide jäikust, tugevust ja stabiilsust. Tuuakse esile arvutamise põhihüpoteesid ning detailide deformatsioonide sõltuvuse väliskoormustest ja elastsusparameetritest. Detailide pinguse analüüs lubab optimeerida konstruktsiooni massi, mõõdu ja ökonoomsuse parameetrite kaudu. Masinate projekteerimisel omab suurt tähtsust detailide materjali õige valik. Masinaehitusel kasutatavate materjalide nomenklatuur täieneb pidevalt, rakendatakse efekti

Materjaliõpetus
142 allalaadimist
thumbnail
125
pdf

Rakendusenergeetika

kohta. Mõõtühik vastvalt J/kg ja J/m3 Erisoojus: mass-, maht ja molaarerisoojus ühikud vastavalt J/(kg*K), J/(m3*K) ja J/(mol*K). Temperatuur 0°C = 273,15K K = 273,15+°C Rõhk: 1Pa = 1N/m2 = m-1*kg*s-2 Järgnev loeng on koostatud põhiliselt ,,A. Paist, A. Poobus. Soojusgeneraatorid. TTÜ Kirjastus, 2008" põhjal. Soojuse genereerimine, põlemisteooria alused, tahkete, vedelate ja gaasiliste kütuste põletamine. Kütused Kütus on energeetilises mõttes aine, mille keemilisel ühinemisel hapendajaga, milleks on tavaliselt hapnik, eraldub suurel hulgal soojust. Kütusteks (kütteaineteks) loetakse aineid, mis täidavad järgmisi põhilisi tingimusi: küllaldane varu või taastuvus looduses, hea kättesaadavus ja suhteliselt lihtne tootmine, reageerimine oksüdeerijaga toimub kiiresti ja suure kasuteguriga, põlemissaadused ei saasta ohtlikult keskkonda.

Füüsika
16 allalaadimist
thumbnail
142
pdf

Aruanne mv TransDistinto

............................................................................. 18 2.1 Üldandmed peamasina kohta ......................................................................................... 18 2.1.1 Peamasina tüüp ........................................................................................................ 18 2.1.2 Tehniline iseloomustus ............................................................................................ 18 2.1.3 Kasutatav kütus ....................................................................................................... 19 2.1.4 Kasutatav õli ............................................................................................................ 19 2.2 Peamasina konstruktsioon .............................................................................................. 19 2.2.1 Plokk- karter ................................................................................................

Masinamehaanika
28 allalaadimist
thumbnail
113
doc

Energia ja keskkond konspekt

TALLINNA TEHNIKAKÕRGKOOL Arhitektuuri ja keskkonnatehnika teaduskond Tehnoökoloogia õppetool Villu Vares ENERGIA ja KESKKOND Konspekt 1 Villu Vares Energia ja keskkond Tallinn ­ 2012 2(113) Villu Vares Energia ja keskkond SISUKORD SISUKORD.............................................................................................................................................................3 SISSEJUHATUS....................................................................................................................................................5 1 ENERGIAKASUTUS JA MAAILMAS JA EESTIS........................................................................................6 1.1 ENERGIAKASUTUS MAAILMAS JA EESTIS.

Energia ja keskkond
56 allalaadimist
thumbnail
12
doc

Soojustehnika - küsimused vastustused

Entroopia on vastastikustest muundumistest. Termodünaamika hõlmab ekstensiivne suurus. Entroopia kui olekufunktsiooni väärtuse mehaanilisi, soojuslike, elektrilisi, keemilisi, elektromagnetilisi ja määravad kaks meelevaldset olekuparameetrit. Gaasi entroopia muid nähtuseid. Tehnilise termodünaamika põhi ülesanne on väärtus normaaltingimustel loetakse nulliks. teoreetiliste aluste loomine, soojusmootorite, soojusjõu seadmete, soojus transformaatoritele. 4. Isohooriline protsessiks nim. sellist protsessi, kus Termodünaamilise süsteemi all mõistetakse kehade kogu, termodünaamilise süsteemi soojuslikul mõjutamisel selle maht mis võivad olla nii omavahel kui ka väliskeskkonnaga ei muutu. (v=const, dv=0). p1v1=RT1; p2v2=RT2—erimaht=> energeetilises vastumõjus. p1/T1*v=R=p2/T2*v => p1/p2=T1/T2

Soojustehnika
89 allalaadimist
thumbnail
16
docx

Laeva jõuseadmete ehitus motoristile

Kuid osadel laevadel on jõusedameks käitur, mis pöörleb 360°. Rooliseadme ülesandeks on laeva juhtivuse tagamine. 3.Alusraam - mootori alus, mis kinnitatakse mootori vundamendile ja millele toetuvad kõik ülejäänud detailid. Peab olema suure jäikusega, sest tallemõjuvad kõik mootori poolt arendatavad jõud: raskusjõud, gaaside survejõud,detailide inerts. Üldreeglina valmistatud (valatuna) malmist, kuid väga suurtel mootoritel keeviskonstruktsiooniga terasest. Konstruktsioonilt kujutab alusraam vanni, mille külgseinteks on 2 pikitala, mis on omavahel seotud ristvaheseintega, kuhu on töödeldud väntvõlli kandelaagrite(raamlaagrite)pesa. Raamlaagrid peavad asetsema rangelt ühes liinis, et vältida väntvõlli läbipainet ja sellest tulenevalt kiiret ning ebaühtlast kulumist, mis põhjustaks väntvõllipurunemise. Peamasina alusraam kinnitatakse vundamendile enamasti jäigalt (liikumatult),

Laevamehhanismid
110 allalaadimist
thumbnail
58
doc

TÖÖOHUTUSNÕUDED TÖÖTAMISEKS LAEVAS MASINA - MEESKONNAS

Laeva SPM – i töö kontroll ja reguleerimine. Kontrollitavad parameetrid 1. Pi 2. Pz 3. Pc 4. Pk ülelaadimis rõhk 5. Hetegaaside temperatuur 6. Kütusekulu 7. Õlikulu 8. Pimeetriline rõhk 9. Peale nimetatuid suurusi kontrollitakse veel kõiki teisi parameetreid, mida nõuab masinažurnaal. Pc kontroll Mõõdetakse mehaanilise indikaatoritega maksimeetriga või elektrooniline mõõteriist MALIN. Mõõdetavl silinderil peab olema kütus mõõtmise ajaks välja lülitatud (selleks tõstetakse KKP plunzer üles, et ta ei omaks käiku) Pc mõõdetakse nominaalsetel pööretel. Mõõtmise sagedus sõltub diisli valmistaja tehase nõuetest (vajadusel võib vanmmehaanik nõuda ka tihedamaid mõõtmisi) Pc erinevus üksikute silindrite vahel ei tohi ületada ± 2,5% kõigi silindrite aritmeetilisest keskmisest Pc = 40.5 kg/cm² - 1,3 41,8● 2,5 =1,04 Pc = 42.6 kg/cm² - 0,7 100 Pc = 42.6 kg/cm² - 0,8

Laevandus
26 allalaadimist
thumbnail
24
doc

Kolbpumpade ehitus

on seotud ime -ja surveklappide inertsiga ja nende tiheda istega oma pesas. Surveklapi avamiseks oma pesalt on vaja kõrgemat rõhku ,mis suudaks klapi oma pesalt tõsta. Peale klapi avanemist rõhk klapikarbis järsult langeb. Klapi avanemine tekitab vedeliku voo liikumisele kiire võnkumise, vedeliku voo drosseleerimine sisenemisel kutsub esile lühiajalise rõhu kõikumise klapikarbis ,mis kiiresti stabiliseerub. Normaalse indikaatordiagrammi korral kolvi liikumisel vasakult paremale , on silindris hõrendus ( graafikul alumine rõhtsirge ). Surve ei muutu enne , kui kolb jõuab parempoolsesse surnud punkti. Kolvi tagasiliikumise algusega imiklapp sulgub ja surve silindris suureneb (graafikul parempoolne kaldjoon ). Surveklapi avanemiseks peab surve silindris mõnevõrra (hi ) ületama survet survetorus Hs. Siis klapp avaneb ja surved ühtlustuvad (graafikul ülemine rõhtsirge ). Survetakt kestab seni , kuni kolb jõuab vasakpoolsesse surnud punkti.

Merendus
32 allalaadimist
thumbnail
37
doc

Hoonete soojussüsteemid

(mille puhul d=0). Seega entalpia diagrammidel võib see entalpia väärtus omada pos. väärtusi ja neg. väärtusi. (-30...+30) võib õhu erisoojuse C p = 1KJ KgK lugeda konstantseks. C pa = 1,93 KJ KgK ha - 1kg veeauru entalpia KJ/Kg kohta. ha = r0 + C pa t = 2501+ 1,93t r0 - veeaurustumis soojus (valem 14) H = (1,0 +1,93d 10 )t + 2501d10 KJ Kg -3 -3 1 2 1. (valem 15) CN =1,0 +1,93d10 KJ KgK -3 Oleneb oluliselt temp-st ja seda esimest liiget nimetatakse edaspidi ilmne soojus ehk tajutav soojus ja ta oleneb temp-st. 2.Oleneb õhu niiskusest. Seda nim varjatud soojuseks. See ei ole seotud õhu temp-iga. Muutub kui kuivatakse õhku, loomulikult kuiv õhk. Õhu

Soojustehnika
144 allalaadimist
thumbnail
151
pdf

PM Loengud

V.Jaaniso Pinnasemehaanika 1. SISSEJUHATUS Kõik ehitised on ühel või teisel viisil seotud pinnasega. Need kas toetuvad pinnasele vundamendi kaudu, toetavad pinnast (tugiseinad), on rajatud pinnasesse (süvendid, tunnelid) või ehitatud pinnasest (tammid, paisud) (joonis 1.1). a) b) c) d) J o o n is 1 .1 P in n a s e g a s e o tu d e h i tis e d v õ i n e n d e o s a d .a ) p i n n a s e le t o e t u v a d ( m a d a l - j a v a iv u n d a m e n t) b ) p i n n a s t t o e t a v a d ( t u g is e in a d ) c ) p in n a s e s s e r a j a tu d ( tu n n e li d , s ü v e n d i d d ) p in n a s e s t r a j a tu d ( ta m m i d , p a is u d ) Ehitiste koormuste ja muude mõjurite tõttu pinnase pingeseisund muutub, pinnas deformeerub ja võib puruneda nagu kõik teisedki materjalid. See põhjustab

Pinnasemehaanika, geotehnika
200 allalaadimist
thumbnail
240
pdf

Elektriajamite elektroonsed susteemid

3 ELEKTRIAJAMITE ELEKTROONSED SÜSTEEMID 4 Valery Vodovozov, Dmitri Vinnikov, Raik Jansikene Toimetanud Evi-Õie Pless Kaane kujundanud Ann Gornischeff Käesoleva raamatu koostamist ja kirjastamist on toetanud SA Innove Tallinna Tehnikaülikool Elektriajamite ja jõuelektroonika instituut Ehitajate tee 5, Tallinn 19086 Telefon 620 3700 Faks 620 3701 http://www.ene.ttu.ee/elektriajamid/ Autoriõigus: Valery Vodovozov, Dmitri Vinnikov, Raik Jansikene TTÜ elektriajamite ja jõuelektroonika instituut, 2008 ISBN ............................ Kirjastaja: TTÜ elektriajamite ja jõuelektroonika instituut 3 Sisukord Tähised............................................................................................................................5 Sümbolid .....................

Elektrivarustus
90 allalaadimist
thumbnail
84
docx

Laeva katlad

Looduslikud kütused on maasüsi (antratsiit, kivi- ja pruunsüsi), nafta, maagaas, põlevkivi, turvas, puit ja taimsed jäätmed. Tehiskütuste hulka kuuluvad kõrgahjukoks, mootorikütused, koksi- ja generaatorgaas jt. Kaasaegsetes laevades töötavad peamasinad ja abikatlad reeglina samadel vedelkütustel, milleks põhirežiimil on tavaliselt raskekütus ning erirežiimidel diislikütus. Küttesüsteem on seega lihtsam, sest katla tööks vajalik kütus võetakse peamasinate kulupaakidest ning katelseadmele omaette kütuse põhivaru- ja kulutanke ning ümberpumpamissüsteeme ei vajata. Kui katel on ette nähtud tööks põhiliselt eelsoojendamist vajaval masuudil või raskekütusel, peab laeval olema võimalus kütta katelt ka eelsoojendamist mittevajava diislikütusega, milleks nähakse ette lisasüsteem oma pumpade, torustike ja filtritega diislikütuse kulupaagist

Laevandus
58 allalaadimist
thumbnail
75
doc

Soojusautomaatika eksami vastused

Soojusautomaatika eksamiküsimuste vastused 1. Põhimõisted automatiseeritud tootmise alalt. Automaatikasüsteemide klassifikatsioon nende otstarbe järgi. Näited. Automatiseeritud tootmise põhimõisted: 1. Objekt 2. Regulaator 1. Andur 2. Tajur 3. Automaatikasüsteem Automaatikasüsteemide klassifikatsioon otstarbe järgi: 1. Automaatreguleerimise süsteemid (ARS) 2. Distantsioonjuhtimise süsteemid (DJS) 3. Tehnoloogilise kaitse süsteemid 4. Automaatblokeeringu süsteemid (ABS) 5. Reservseadme automaatse käivitamise süsteem (RAKS) 6. Automaatsed tehnoloogilise kontrolli süsteemid (ATKS) 7. Signalisatsioonisüsteemid (SS) valgus ja helisüsteemid 1. Tehnoloogiline SS andmed seadmete töö ja üksikute parameetrite kohta 2. Avarii SS teatavad võimalikest avariilistest olukordadest ja juba tekkinud avariidest 3. tsentraalsed SS on ette nähtud signalisatsioonisüsteemi korrasoleku ja

Soojusautomaatika
106 allalaadimist
thumbnail
84
doc

Praktika aruanne - Tallinnk Star

Võimsus: Ne= 12000kW Pöörete arv: N= 500 p/min Silindrite arv: i= 12 Kolvi käik: S= 610 mm Silindri läbimõõt: D=430 mm Maksimaalne põlemisrõhk: 210 bar Kütuse erikulu: ge (kütus)=192g/kWh Õli erikulu: ge(õli)=0,8g/kWh Peamasina gabariidid: L= 9,9m, B= 3,9m; H=6,7 Peamasinate töökäigud: A1, B1, A2, B2, A4, B4, A6, B6, A5, B5, A3, B3, Ülelaadimisrõhk: 3,35 bar Mootoriressurss: 30000 h 9 Kasutatav kütus ja õli Kasutatav kütus IFO-380 LS Erikaal 15ºC juures 968,4kg/m3 Viskoossus 50ºC juures 350,7cSt Tuhasisaldus 0,025% Väävlisisaldus 0,38% Meh. osakeste sis. 0,02% Veesisaldus <0,03% Koksistuvus 8,72% Leektäpp 200ºC Hangumistäpp -5ºC Fraktsioonil. koostis , Vanaadium 90ppm,

Merepraktika
87 allalaadimist


Sellel veebilehel kasutatakse küpsiseid. Kasutamist jätkates nõustute küpsiste ja veebilehe üldtingimustega Nõustun