Vajad kellegagi rääkida?
Küsi julgelt abi LasteAbi
Logi sisse
✍🏽 Avalikusta oma sahtlis olevad luuletused! Luuletus.ee Sulge

Aritmeetiline ja geomeetriline jada - sarnased materjalid

andmill2, planet
thumbnail
1
doc

Funktsioonid ja nende uurimine

www.andmill2.planet.ee/gmat.html Funktsioonid · Võrdeline sõltuvus ­ y = ax a · Pöördvõrdeline sõltuvus ­ y= x Funktsiooni uurimine · Nullkohtade hulk ­ X0 : f ( x) = 0 funktsiooni f(x) nullkohtade x1; x2; x3 leidmine · Positiivsuspiirkond ­ X : f ( x) > 0 + · Negatiivsuspiirkond ­ X - : f ( x) < 0 · Kasvamisvahemikud ­ X : f ( x ) > 0 · Kahanemisvahemikud ­ X : f ( x ) < 0 · Maksimumkoht ­

Matemaatika
424 allalaadimist
thumbnail
1
doc

Nimetu

a1 - esimene liige an - n-es liige ehk üldliige d ­ aritmeetilise jada vahe n ­ liikmete arv Sn - liikmete summa q - geomeetrilise jada tegur Aritmeetiline jada Aritmeetiline jada on jada, mille teisest liikmest alates iga liikme ja talle eelneva liikme vahe on jääv. Aritmeetiline jada on jada, mille iga liige alates teisest on võrdne talle eelneva liikme ja jääva arvu summaga. Arvu mida me juurde liidame nimetame me vaheks. d=0 konstantne jada Aritmeetiline jada on vaadeldav lineaarfunktsiooni väärtuste jadana, kui argumendile anda täisarvulisi väärtusi alates 1'st. y=x+2 xe{1;2;3;...} Aritmeetilise jada omadus: Iga liige alates teisest on võrdne oma naaberliigete aritmeetilise keskmisega. a2=(a1+a3)/2 Aritmeetilise jada üldliikme valem an=a1+(n-1)d Aritmeetilise jada esimese n-liikme summa: esimesed n-liiget ehk jada lõige: a1;a2;a3;...;an Sn- esimese n-liikme summa ehk jada lõike summa Sn=a1+an n 2 Sn=2a1+(n-1)d n 2 Geomeetriline jada Geom

61 allalaadimist
thumbnail
25
ppt

Jadad

JADAD 11. klass Aili Hollak Arvuti koolis lõputöö Koolitaja E. Tarro, 5. kursus JADAD Jada ­ teatud reegli järgi saadud arvude hulk, kus igale naturaalarvule n (alates 1-st) seatakse vastavusse üks kindel arv n. Jada liikmed - 1, 2, ..., n, ... Jada üldliige - n Jada üldliikme valem - n= f(n) Näiteid jadadest Ruudu 1 2 3 4 5 6 nr. Pindala 1 4 9 16 25 36 Nii võib jätkata ruutude joonistamist ja leida ka igal sammul vastava ruudu pindala. Näiteks 11. ruudu pindala on 121, 30. ruudu pindala 900, n-nda ruudu pindala on n² JADADE LIIGITUS Jadad Tõkestatud Tõkestamata Hääbuvad Muud Lõpmata suured Muud Tõkestamatult kasvavad Muud Tõkestamatult kahanevad JADAD

Matemaatika
80 allalaadimist
thumbnail
6
odt

Jadad

Jadad Aritmeetiline jada Aritmeetilise jada üldliikme valem on an = a1 + d(n – 1), kus d on jada vahe ja n jada liikmete arv. Aritmeetilise jada esimese n liikme summa valem on . a1  a n Sn  n 2 Teades, et an = a1 + d(n – 1), võime eelnevale valemile anda ka teise kuju: . 2a 1   n  1 d Sn  n 2 Viimane valem võimaldab arvutada esimese n liikme summat vaid jada esimese liikme ja jada vahe järgi.

Matemaatika
26 allalaadimist
thumbnail
1
docx

Matemaatika valemid

Aritmeetiline jada: an = a1+(n-1)d d = an-an-1 Sn = Geomeetriline jada: an = a1qn-1 Sn = Hääbuv jada: S = Trigonomeetria: sin 2 2 2 = sin +cos = 1 1+tan = sin2 = 2cossin cos2 = 2cos2-1 tan2 = siinusteoreem: (ümberringjoone raadius) koosinusteoreem: a2=b2+c2-bccos erikülgne kolmnurk: S= n Põhivõrrandid: sinx= a x=(-1) +180n, n Z cox= a x=+360n, n Z tanx= a x= +180n, n Z Kaare pikkus: l= Sektori pindala: S= n Liitintress: c= a(1) a-algväärtus Vektorid: pikkus paralleelsus || ristseis X1X2+Y1Y2= 0 nurk vektorite vahel cos = Sirge võrrand: kahe punktiga tõusu ja algkoordinaadiga y= kx+b (lp y-teljega) tõusu ja punktiga y-y1=k(x-x1) Kahe sirge vastastikused asendid: paralleelsed A||B k1=k2 risti AB k1k2 = -1 s1+s2 =

Matemaatika
333 allalaadimist
thumbnail
3
doc

Matemaatika valemid

sin2 + cos2 = 1 tan = sin /cos 1+tan2 = 1/cos2 sin2 = 1 ­ cos2 sin = tan *cos cos2 = 1/tan2 +1 cos2 = 1 ­ sin2 cos = sin /tan cos2 ­ 1 = - sin2 cot = cos /sin cot =1/tan sin2 ­ 1 = - cos2 cos = cot *sin tan *cot =1 sin = cos /cot 1+cot2 = 1/sin2 sin = cos (90o ­ ) sin = vastas kaatet/hüpotenuus cos = sin (90o ­ ) cos = lähis kaatet/hüpotenuus tan = 1/tan (90o ­ ) tan = vastas kaatet/lähis kaatet cot =tan (90o ­ ) cot = lähis kaatet/vastas kaatet tan = cot (90o ­ ) Kolmnurga pindala Koosinusteoreem Siinusteoreem S=a*h/2 a2=b2+c2-2bc*cos a/sin=b/sin=c/sin=2R S=1/2a*b*

Matemaatika
1753 allalaadimist
thumbnail
1
doc

Aritmeetiline jada

JADAD: a1 = jada esimene liige an = jada n-is liige n = näitab mitmes liige arv jadas on < n Z > d = aritmeetilise jada vahe ; d = an ­ an ­ 1 ehk d = a2 ­ a1 q = geomeetlise jada jagatis ; q = an / an ­ 1 ehk a2 / a1 Sn = jada n liikme summa Aritmeetilise jada üldliikme valem: an = a1 + ( n ­ 1)d 2a1 + ( n ­ 1)d a 1 + an Aritmeetilise jada summa : Sn = n või Sn = n 2 2 Aritmeetlilise jada üks liige on oma naabrite arit. keskmine an =(an ­ 1 + an + 1) 2 Geomeetrilise jada üldliikme valem: an = a1×qn ­ 1 a1( qn ­ 1 ) a1( 1 ­ qn ) Geomeetrilise jada summa: Sn = n või Sn = n q­1 1­q ___________ Geom

Matemaatika
1052 allalaadimist
thumbnail
8
doc

Matemaatika praktikumi töö

Matemaatika 11. klassi praktikumi töö 1. Kirjalik arvutamine m Tehted astmetega (a:b)n = an : bn Tehted juurtega a n n am (ab)n = an * bn a b a b an am = an+m n m a n m a a a an : am = an-m b b n m n*m (a ) = a

Matemaatika
23 allalaadimist
thumbnail
12
docx

Matemaatika 11.klass valemid

Valemid, teoreemid, seosed, tunnused, tingimused MATEMAATIKA EKSAMIL XI KLASSIS 1) a2-b2 = (a+b)(a-b) 2) a3 + b3=(a+b)(a2-ab+b2) 3) a3 - b3=(a-b)(a2+ab+b2) 4) (a+b)3 =a3+3a2b+3ab2+b3 5) (a-b)3 =a3-3a2b+3ab2-b3 −b ± √ b2−4 ac 2 6) a) lahenda ax + bx+c =0 2a b) tegurda : ax2 + bx+c= a( x− x1 )( x−x 2) c) tegurda ax3 + bx2+ax+b= x2(ax+b)+ax+b = (ax+b)(x2+1) 7) lim  an  bn   lim an  lim bn n  n  n  8) lim  an  bn   lim an  lim bn n  n  n  9) lim  anbn   lim an  lim bn n  n  n  an 10) lim  lim an  lim bn n  bn n  n  11) Korrutise tuletise sõnastus ja valem (u * v ) ´ = Korrutise tuletis võrdub esimese teguri tu

Matemaatika
18 allalaadimist
thumbnail
3
doc

Gümnaasiumi valemid

Matemaatika 11. klassi valemid Astendamise abivalemid am n a an a a =a m n m +n (a m ) n = a mn ( ab) n = a n b n n = a m -n = n a b b n p Liitprotsendiline kasvamine (kahanemine): L = A 1 + , kus L on 100 lõppväärtus, A - algväärtus, p - kasvamise protsent, n - kasvutsüklite arv. Logaritmide omadused: log a c = b a b = c a loga c = x lo

Matemaatika
833 allalaadimist
thumbnail
19
doc

Matemaatika valemid.

1. Reaalarvud ja avaldised a, kui a 0 · Arvu absoluutväärtus ­ a = - a, kui a < 0 · Astme mõiste ja omadused a 0 = 1, kui a 0 a1 = a a n = a a a a, kui n N 2 1 a-k = , kui a 0 ja k Z või ak kui a > 0 ja k Q m n a m , kui a > 0, m Z ja n N a = n 2 0, kui a = 0, m N 1 ja n N1

Matemaatika
807 allalaadimist
thumbnail
6
doc

11. klassi materjal matemaatikas

Aritmeetiline jada-Jada, mille iga liige alates teisest on võrdne eelneva liikme ja selle jada jaoks mingi kindla arvu summaga nimetatakse aritmeetiliseks jadaks. Seda kindlat arvu nimetatakse aritmeetilise arvu jadaks ja tähistatakse tähega d. an=a1+(n-1)d an+1=an+d » an+1-an=d sn= a1+an/2 x n või sn=2a1+(n-1)d/2 Geomeetriline jada- Jada, mille iga liige alates teisest on võrdne eelneva liikme ja antud jada jaoks mingi kindla arvu korrutisega nimetatakse geomeetriliseks jadaks. Seda kindlat arvu nimetatakse teguriks ja tähistatakse tähega q n-1 n an=a1 x q q=an+1/n sn=a1(q -1)/q-1 Lõpmatult kahaneva geomeetrilise jada summa- S=a1/1-q Arvu ,,A" nimetatakse jada ,,an" tõkestamatul kasvamisel ja tähistatakse sümboliga liman=A n lim1/n=0 Piirväärtus n (tõkestamatul kasvamisel) läheneb nullile. n Piirväärtust

Matemaatika
501 allalaadimist
thumbnail
2
rtf

Mõisted suuliseks arvestuseks matemaatikas

Mõisted suuliseks arvestuseks 1. Arvjada ­ kui igale naturaalarvule n (alates 1-st) seatakse vastavusse üks kindel arv an, siis saadakse arvjada (arvude järjend, mis võib koosneda kas lõplikust või lõpmatust hulgast arvudest; selle saab kui seada ritta ükskõik mis arve). 2. Aritmeetiline jada ­ jada, milles teisest liikmest alates on iga liikme ja sellele eelneva liikme vahe konstante (jada, kus iga kahe järjestikuse liikme vahe on võrdne). *Jada nimetatakse hääbuvaks ehk nullile lähenevaks, kui jadas järjest kaugemale minnes selle jada liikmed erinevad arvust 0 kui tahes vähe. 3. Aritmeetilise jada üldliige ­ avaldub kujul an = a1 + d (n ­ 1), kus a 1 on aritmeetilise jada esimene liige, d on jada vahe ning n on liikmete arv jadas. 4. Aritmeetilise jada n esimese liikme summa ­ avaldub kujul Sn = (a1 + an) / 2 · n, kus a1 on aritmeetilise jada esimene liige, an on jada üldliige ning n on liikmete arv jadas. 5. Geomeetriline jada ­ ja

Matemaatika
4 allalaadimist
thumbnail
1
doc

Geomeetriline jada

Ande Andekas Matemaatika ­ Geomeetriline jada Jada, milles iga liikme ja sellele eelneva liikme jagatis on konstantne nimetatakse geomeetriliseks jadaks. Kui leiduvad arvud a ja b nii, et jada liikmed an asuvad iga n korral lõigus [a;b] siis nimetatakse jada (a n) tõkestatud jadaks. Jada nimetatakse hääbuvaks ehk nullile lähenevaks, kui jadast järjest kaugemale minnes selle jada liikmed erinevad nullist kuitahes vähe. Selliselt juhul on |q| < 1 või |q| > -1. an = aa * qn-1 Sn = a1 (qn ­ 1)/q ­ 1 S = a1/1 ­ q a ­ jada liige n ­ liime arv q ­ jada tegur Sn ­ jada esimese n liikme summa S ­ hääbuva jada esimese n liikme summa

Matemaatika
771 allalaadimist
thumbnail
1
doc

Geomeetriline jada

Geomeetriline jada Geomeetriliseks jadaks nimetatakse arvujada, milles iga järgnev ja temale eelneva liikme jagatis on jääv, alates 2. liikmest. Jäävat jagatist nimetatakse jadateguriks ja tähistatakse q-ga |q|<1 Hääbuv jada Geomeetrilise jada üldliikme tuletamine a2=a1q a3=a2q a4=a3q a2*a3*a4*...*an=a1q*a2q*a3q*...*an-1q an=a1*qn-1 Geomeetrilise jada n esimese liikme summa valem Sn=a1+a2+a3+...+an q*Sn=a1q+a1q2+a1q3+...+a1qn - Sn=a1+a1q+a1q2+...+a1qn-1 qSn-Sn=a1qn-a1 (q-1)Sn=a1(qn-1) Hääbuva geomeetrilise jada summa valemi tuletamine Pedak

Matemaatika
189 allalaadimist
thumbnail
17
doc

Valemid ja Mõisted

1. Ristkülik Mõiste: Ristkülik on nelinurk, mille kõik nurgad on täisnurgad. Pindala: S=ab Ümbermõõt: Ü=2(a+b) Omadused: 1. Ristkülikul on kõik rööpküliku omadused. 2. Kõik nurgad on täisnurgad 3. Diagonaalid on võrdsed 4. Ristkülikul on ümberringjoon, mille keskpunktiks on diagonaalide lõikepunkt (O) ning raadiuseks pool diagonaali. 5. Ristkülikul on kaks sümmeetriatelge ja sümmeetriakeskpunkt. Ruut: Mõiste: Ruutu võib defineerida, kui a) ristkülikut, mille lähisküljed on võrdsed b) rombi, mille üks nurk on täisnurk c) rööpkülikut, mille lähisküljedon võrdsed ja üks nurk on täisnurk. Pindala: S=a² Ümbermõõt: Ü=4a Omadused: 1. Ruudul on nii ristküliku kui ka rombi omadused 2. Ruudu küljed on võrdsed 3. Ruudu nurgad on täisnurgad 4. Ruut on korrapärane nelinurk 5. Ruudul on siseringjoon, mille keskpunktiks on diagonaalide lõikepunkt (O) ning raadiusekspool külje pik

Matemaatika
196 allalaadimist
thumbnail
3
doc

Matemaatika valemid

Püstprisma sin 0 1 2 3 1 2 tan tan 2 = Ruumala: V = S p h 2 2 1 - tan 2 2 Külgpindala: S k = PH sin cos 1 3 2 1 0 tan = Täispindala: S t = S k + 2 S p 2 1 + cos 2 2 2 1 - cos Korrapärane püramiid sin = ± 1 t

Matemaatika
222 allalaadimist
thumbnail
16
ppt

Aritmeetiline jada

Aritmeetiline jada Koostas: Margit Nuija Kool: Viljandi Paalalinna Gümnaasium Maakond: Viljandi Õppeaine: matemaatika Töö teema: aritmeetiline jada Klass: IV kooliaste, 11. klass Juhendas: Toomas Rähn Aritmeetilise jada mõiste Def. Aritmeetiliseks jadaks nim. arvujada, mille iga liige (alates teisest) võrdub eelneva liikme ja ühe jääva liidetava summaga. NB! Jääv liidetav (jada vahe) - d Esimene liige - a1 Liikmete arv - n Näide: On antud jada 5, 8, 11, 14, 17, 20. a1 = 5 d=3 n=6 Üldliikme valem Jada definitsioonist järeldub,et a2 = a1 + d a3 = a2 + d = (a1 + d) + d = a1 + 2d a4 = a3 + d =(a1 + 2d) + d = a1 + 3d ............................................ an = an-1 + d = .............a1 + (n-1) d an = a1 + (n-1)d Jada vahe · Kui d > 0, siis aritmeetiline jada on kasvav · Kui d < 0, siis aritmeetiline jada on kahan

Matemaatika
48 allalaadimist
thumbnail
16
ppt

Aritmeetiline jada

Aritmeetiline jada Koostas: Margit Nuija Kool: Viljandi Paalalinna Gümnaasium Maakond: Viljandi Õppeaine: matemaatika Töö teema: aritmeetiline jada Klass: IV kooliaste, 11. klass Juhendas: Toomas Rähn Aritmeetilise jada mõiste Def. Aritmeetiliseks jadaks nim. arvujada, mille iga liige (alates teisest) võrdub eelneva liikme ja ühe jääva liidetava summaga. NB! Jääv liidetav (jada vahe) - d Esimene liige - a1 Liikmete arv - n Näide: On antud jada 5, 8, 11, 14, 17, 20. a1 = 5 d=3 n=6 Üldliikme valem Jada definitsioonist järeldub,et a2 = a1 + d a3 = a2 + d = (a1 + d) + d = a1 + 2d a4 = a3 + d =(a1 + 2d) + d = a1 + 3d ............................................ an = an-1 + d = .............a1 + (n-1) d an = a1 + (n-1)d Jada vahe · Kui d > 0, siis aritmeetiline jada on kasvav · Kui d < 0, siis aritmeetiline jada on kahan

Matemaatika
59 allalaadimist
thumbnail
10
docx

JADAD

JADAD Aritmeetiline jada Olgu antud lineaarfunktsioon y=f(x)=ax+b Aritmeetilised jadad on näiteks: 1,3,5,7...2n-1 Selle aritmeetilise jada üldvalem 7,11,13,15,19...4n+3 Selle aritmeetilise jada üldvalem d=3-1=5-3=7-5=...=2 d-aritmeetilise jada vahe 1+5 3+ 7 Omadus: =3 ; =5 2 2 d=11-7=15-11=19-15=...-4 7 +15 11 +19 Omadus: =11 ; =15 2 2 Üldiselt avaldub aritmeetiline jada: a1 , a2, a3 … an −1, a n , a n+1 , … Üldliige avaldub valemiga: an =a1 + ( n−1 ) × d Avaldan sellest valmist: a1 , d ,n 1=¿ a n−( n−1 ) × d a¿ a n−a d= 1 n−1 a n−a n= 1 +1 d Aritmeetilise jada esimese n liikme summa 1. 1,3,5,7 Arvutan selle jada esimese nelj

Matemaatika
24 allalaadimist
thumbnail
5
rtf

Aritmeetiline jada

Aritmeetiline jada ------------------------------------------------------- Aritmeetilise jada üldliikme valem a n = a1 + n - 1 d ( ) Aritmeetilise jada esimese n-liikme summa valem a + an 2a + ( n - 1) d Sn = 1 n Sn = 1 n 2 2 ------------------------------------------------------- 1. Leia aritmeetilise jada 2; 9; 16; ... kaheteistkümnes liige. Lahendus: Antud on a1 = 2; a2 = 9, millest järeldub, et vahe on d = 9 ­ 2 = 7; n = 12. Leiame a12 ( ) Kasutades aritmeetilise jada üldliikme valemit a n = a1 + n - 1 d , saame a12 = 2 + (12 - 1) 7 = 2 + 11 7 = 79 2. Arvuta aritmeetilise jada n-is liige. a) a1 = 2; d = -2; n = 12; a12 = ??? ( ) L

Matemaatika
672 allalaadimist
thumbnail
54
doc

Valemid ja mõisted

MATEMAATIKA TÄIENDÕPE VALEMID JA MÕISTED KOOSTANUD LEA PALLAS 1 2 SAATEKS Käesolev trükis sisaldab koolimatemaatika valemeid, lauseid, reegleid ja muid seoseid, mille tundmine on vajalik kõrgema matemaatika ülesannete lahendamisel. Kogumikus on ka mõned kõrgema matemaatika õppimisel vajalikud mõisted, mida koolimatemaatika kursuses ei käsitletud.. 3 KREEKA TÄHESTIK - alfa - nüü - beeta - ksii - gamma - omikron - delta - pii - epsilon - roo - dzeeta - sigma - eeta - tau - teeta - üpsilon - ioota - fii - kapa - hii - lambda - psii - müü - oomega

Matemaatika
1099 allalaadimist
thumbnail
108
doc

MATEMAATIKA TÄIENDÕPE: Valemid

MATEMAATIKA TÄIENDÕPE VALEMID JA MÕISTED KOOSTANUD LEA PALLAS 1 2 SAATEKS Käesolev trükis sisaldab koolimatemaatika valemeid, lauseid, reegleid ja muid seoseid, mille tundmine on vajalik kõrgema matemaatika ülesannete lahendamisel. Kogumikus on ka mõned kõrgema matemaatika õppimisel vajalikud mõisted, mida koolimatemaatika kursuses ei käsitletud.. 3 KREEKA TÄHESTIK Α α  alfa Ν ν  nüü Β β  beeta Ξ ξ  ksii Γ γ  gamma Ο ο  omikron Δ δ  delta Π π  pii Ε ε  epsilon Ρ ρ  roo Ζ ζ  dzeeta Σ σ  sigma Η η  eeta Τ τ  tau Θ θ  teeta Υ υ  üpsilon Ι ι  ioota Φ φ  fii Κ κ  kap

Algebra I
61 allalaadimist
thumbnail
4
xlsx

Valemileht

MATEMAATIKA GÜMNAASIUMILE valemid TRIGONOMEETRIA Sin x Cos Tan x x 0o 0 1 0 30o 0,5 45o 1 60o 0,5 90o 1 0 puudub VIETE'I TEOREEM ARITMEETILINE JADA kui a = 1, siis an = a1 + (n-1)d x1 + x2 = - b x1 * x2 = c TULETISED (u±v)'=u' ± v' GEOMEETRILINE n­1 JADA (uv)' u'v + uv' an = a1q Hääbuv geomeetriline jada [u(v[x])]'=u'(v[x])v'[x] NEWTONI BINOOMVALEM VEKTORID KOMBINATOORIKA Kui A(x1;y1) ja B(x2;y2), siis Permutatsioonide arv Vektor =(x2-x1;y2-y1) Vektori pikkus: Kombinatsioonide arv . Skalaarkorrutis: . Kui kaks vektorid on risti, siis on Variatsioo

Matemaatika
240 allalaadimist
thumbnail
3
doc

Geomeetriline jada

Jadad Geomeetriline jada Geomeetrilise jada üldliige avaldub kujul an = a1qn ­ 1 , kus a1 on geomeetrilise jada esimene liige ja q jada tegur. Geomeetrilise jada esimese n liikme summa valem on kujul a ( q n - 1) Sn = 1 . q -1 Hääbuva geomeetrilise jada summa valem on a1 S= . 1 -q 1. Leia geomeetrilise jada 1, 3, 9, ... kuues liige. Lahendus: Jada tegur q = 3 : 1 = 3, esimene liige on 1. Üldliikme valemi järgi a6 = 1 . 35 = 243. Vastus:

Matemaatika
414 allalaadimist
thumbnail
177
pdf

ÜHE MUUTUJA MATEMAATILINE ANALÜÜS

LTMS.00.022 ÜHE MUUTUJA MATEMAATILINE ANALÜÜS Loengukursus Tartu Ülikooli loodus- ja täppisteaduste valdkonna üliõpilastele 2019./2020. õppeaasta Toivo Leiger Joonised: Ksenia Niglas Pisitäiendused 2016–20: Märt Põldvere, Natalia Saealle, Indrek Zolk, Urve Kangro 2 Sisukord 1 Reaalarvud 6 1.1 Järjestatud korpused . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1.1.1 Korpuse aksioomid . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1.1.2 Järjestatud korpus . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 1.1.3 Täielik järjestatud korpus . . . . . . . . . . . . .

Algebra I
8 allalaadimist
thumbnail
7
doc

Matemaatika valemid kl 10-11 12 tõenäosus

10.klass a1 b1 c1 1. Reaalarvude piirkonnad kui D = 0; D x = 0; D y = 0, siis = = a 2 b2 c 2 2. Astme mõiste üldistamine a m a n = a m +n c)pole lahendeid a1 b1 c a m : a n = a m -n , kui m > n kui D = 0; D x 0; D y 0, siis = 1 a 2 b2 c 2 ( a b) n = a n b n n 12. Ruutvõrrandi süsteemid a an 13. Kolmerealine determinant = n , kui b 0 b b 14. Kolme tundmatug

Matemaatika
1299 allalaadimist
thumbnail
24
rtf

Lineaaralgebra eksam

1. Kompleksarv kui reaalarvude paar. Tehted kompleksarvudega. Tehete omadused. Kompleksarvu algebraline kuju. Tuletatavad tehted ja nende omadused. Kompleksarvuks nimetatakse reaalarvude paari (x,y). C = {(x;y) | x, y R} Tehted kompleksarvudega: z1 = (x1; y1) C; z2 = (x2; y2) C 1. liitmine: z1 + z2 = (x1 + x2; y1 + y2) 2. korrutamine: z1 * z2 = (x1x2 - y1y2; x1y2 + x2y1) Kompleksarvudega tehete omadused 1. liitmine on kommutatiivne, st z1 + z2 = z2 + z1 z1, z2 C korral 2. liitmine on assotsiatiivne, st (z1 + z2) + z3 = z1 + (z2 + z3) z1, z2, z3 C korral 3. liitmise suhtes leidub nullelement (reaalarv 0, 0 + z = z + 0 = z z C korral), st leidub C, nii et z + = + z = z z korral; = (0; 0) = 0 4. igal kompleksarvul z = (x; y) = x + yi leidub (liitmise suhtes) vastandarv, st selline arv w C, et z + w = w + z = 0; w = -z 5. korrutamine on kommutatiivne, st z1z2 = z2z1 z1, z2 C korral 6. korrutamine on assotsiatiivne, st (z1z2)z3 = z1(z2z3) z1, z2, z3 C korral

Lineaaralgebra
199 allalaadimist
thumbnail
6
docx

Matemaatika riigieksamiks kordamine

FUNKTSIOONID Paarisfunktsioon: Paaritu funktsioon: Funktsioonide üldkujud: y = ax 1) X= Y= 2) X = Y = 1) 0 < a < 1 2) a > 1 y = logax 1) X= Y= 2) X = Y = 1) 0 < a < 1 2) a > 1 y = xa 1) X= Y= 2) X = Y = 1) a on paarisarv 2) a on paaritu arv y = 1 / xa 1) X= Y= 2) X = Y = 1) a on paarisarv 2) a on paaritu arv y = sin x y = cos x y = tan x Perioodide pikkused: y = sin x periood: y = cos x periood: y = tan x periood: TRIGONOMEETRIA 1 + tan2 = 1 + cot2 = sin (+) = sin (-) = cos (+) = cos(-) = tan (+) = tan (-) = sin 2 = cos 2 = tan 2 = sin /2 = cos /2 = tan /2 = Võrrandid: sin x = m x= cos x = m x= tan x = m x= Eukleidese teoreem: Teoreem kõrgusest: Siinusteoreem: 2R = Koosinusteoreem: NB! p ­ pool ümbermõõtu, r ­ siseringjoone raadius, R ­ ümberringjoone raadius

Matemaatika
168 allalaadimist
thumbnail
2
pdf

Matemaatika valemid

Hulkliikmete korrutamine Tehted Arvu ruutjuur Funktsioonide graafikud Ring (a+b)2 =a2+2ab+b2 astmetega a, kui a > 0 Võrdeline seos : y=ax d (a-b)2=a2-2ab+b2 (a : b)n=an : bn a>0 d = 2r r= a = a = - a, kui a p 0 2 2 (a-b)(a+b)=a2-b2 (ab)n=an bn 0, kui a = 0 (a+b)(c+d)=ac+ad+bc+bd anam=an

Algebra I
142 allalaadimist
thumbnail
4
pdf

MATEMAATIKA GÜMNAASIUMI (GEOMEETRIA, PLANIMEETRIA, STEREOMEETRAIA) JA PÕHIKOOLI EKSAMIKS KÕIK VAJALIKUD VALEMID

Hulkliikmete korrutamine Tehted Arvu ruutjuur Funktsioonide graafikud Ring (a+b)2 =a2+2ab+b2 astmetega ⎧a, kui a > 0 Võrdeline seos : y=ax d (a-b)2=a2-2ab+b2 (a : b)n=an : bn ⎪ a>0 d = 2r r= a = a = ⎨ - a, kui a p 0 2 2 (a-b)(a+b)=a2-b2 (ab)n=an bn ⎪0, kui a = 0 (a+b)(c+d)=ac+ad

Matemaatika
871 allalaadimist
thumbnail
10
docx

11. klass kordamine EKSAMIKS vastustega

Kordamisülesanded 11 klass 1. Kombinatoorika ja tõenäosus a) Ühes klassis õpitakse 14 õppeainet. Mitmel erineval viisil saan nendest koostada ühe päeva tunniplaani, kui selles peab olema 7 erinevat õppeainet? Vastus: 17297280 b) Martinil on taskus viis viiekroonist ja neli kümnekroonist rahatähte. Kui suur on tõenäosus, et kahe kupüüri juhuslikul võtmisel on mõlemad viiekroonised? Vastus: 20/72 c) Tõenäosus leida pliiats kirjutuslaua esimesest sahtlist on 0,5, teisest sahtlist 0,7 ja kolmandast 0,4. Kui suur on tõenäosus , et pliiats on olemas a) täpselt ühes sahtlis b) vähemalt ühes sahtlis c) mitte üheski sahtlis

Matemaatika
105 allalaadimist
thumbnail
20
docx

Matemaatiline analüüs II. Eksami kordamisküsimuste vastused

1. Kahje muutuja funktsioonid(definitsioon, määramis- ja muutumispiirkonna definitsioon ja tähistused, näited, esitusviisid, ilmutamata kujul esituse definitsioon, graafik ja graafiku näiteid)  DEF: Kahe muutuja funktsioon f on kujutus, mis seab igale arvupaarile (x,y) ∈ D vastavusse ühe reaalarvu z= f ( x , y )  Nende punktide (x,y) hulka D, mille puhul funktsiooni väärtus on lõplik, nimetatakse selle funktsiooni määramispiirkonnaks.  Funktsiooni väärtuste z hulka Z nimetatakse funktsiooni muutumispiirkonnaks.  Esitusviis : z=f (x , y ) z- sõltuv muutja, (x,y)- sõltumatud muutujad  Näide:  Funktsioon võib olla antud ilmutatud kujul z= f (x1 , x2 , x3 , … x n) (z=x2+y2-5) või ilmutamata kujul F ( x 1 , x 2 , x 3 , … x n ;

Matemaatiline analüüs 2
165 allalaadimist


Sellel veebilehel kasutatakse küpsiseid. Kasutamist jätkates nõustute küpsiste ja veebilehe üldtingimustega Nõustun