Vajad kellegagi rääkida?
Küsi julgelt abi LasteAbi
Ega pea pole prügikast! Tõsta enda õppeedukust ja õpi targalt. Telli VIP ja lae alla päris inimeste tehtu õppematerjale LOE EDASI Sulge
Add link

Aritmeetiline jada (14)

4 HEA
Punktid
Aritmeetiline jada #1
Punktid 5 punkti Autor soovib selle materjali allalaadimise eest saada 5 punkti.
Leheküljed ~ 1 leht Lehekülgede arv dokumendis
Aeg2008-01-16 Kuupäev, millal dokument üles laeti
Allalaadimisi 1050 laadimist Kokku alla laetud
Kommentaarid 14 arvamust Teiste kasutajate poolt lisatud kommentaarid
Autor Aili P Õppematerjali autor

Sarnased õppematerjalid

thumbnail
2
doc

Aritmeetiline jada

Aritmeetiline jada. Def. Aritmeetiliseks jadaks nimetatakse arvujada, milles iga liikme ja temale vahetult eelneva liikme vahe on jääv. a1 a n 2a1 n 1 d a n a1 n 1 d Sn n Sn n 2 2 1. Esimese raudbetoonist rõnga paigaldamine maksab töölisele 10 krooni, iga järgmise rõnga

Matemaatika
thumbnail
5
rtf

Aritmeetiline jada

Aritmeetiline jada ------------------------------------------------------- Aritmeetilise jada üldliikme valem a n = a1 + n - 1 d ( ) Aritmeetilise jada esimese n-liikme summa valem a + an 2a + ( n - 1) d Sn = 1 n Sn = 1 n 2 2 ------------------------------------------------------- 1. Leia aritmeetilise jada 2; 9; 16; ... kaheteistkümnes liige. Lahendus: Antud on a1 = 2; a2 = 9, millest järeldub, et vahe on d = 9 ­ 2 = 7; n = 12. Leiame a12 ( ) Kasutades aritmeetilise jada üldliikme valemit a n = a1 + n - 1 d , saame a12 = 2 + (12 - 1) 7 = 2 + 11 7 = 79 2. Arvuta aritmeetilise jada n-is liige. a) a1 = 2; d = -2; n = 12; a12 = ??? ( )

Matemaatika
thumbnail
16
ppt

Aritmeetiline jada

Aritmeetiline jada Koostas: Margit Nuija Kool: Viljandi Paalalinna Gümnaasium Maakond: Viljandi Õppeaine: matemaatika Töö teema: aritmeetiline jada Klass: IV kooliaste, 11. klass Juhendas: Toomas Rähn Aritmeetilise jada mõiste Def. Aritmeetiliseks jadaks nim. arvujada, mille iga liige (alates teisest) võrdub eelneva liikme ja ühe jääva liidetava summaga. NB! Jääv liidetav (jada vahe) - d Esimene liige - a1 Liikmete arv - n Näide: On antud jada 5, 8, 11, 14, 17, 20. a1 = 5 d=3 n=6 Üldliikme valem Jada definitsioonist järeldub,et a2 = a1 + d a3 = a2 + d = (a1 + d) + d = a1 + 2d

Matemaatika
thumbnail
16
ppt

Aritmeetiline jada

Aritmeetiline jada Koostas: Margit Nuija Kool: Viljandi Paalalinna Gümnaasium Maakond: Viljandi Õppeaine: matemaatika Töö teema: aritmeetiline jada Klass: IV kooliaste, 11. klass Juhendas: Toomas Rähn Aritmeetilise jada mõiste Def. Aritmeetiliseks jadaks nim. arvujada, mille iga liige (alates teisest) võrdub eelneva liikme ja ühe jääva liidetava summaga. NB! Jääv liidetav (jada vahe) - d Esimene liige - a1 Liikmete arv - n Näide: On antud jada 5, 8, 11, 14, 17, 20. a1 = 5 d=3 n=6 Üldliikme valem Jada definitsioonist järeldub,et a2 = a1 + d a3 = a2 + d = (a1 + d) + d = a1 + 2d

Matemaatika
thumbnail
6
doc

Aritmeetiline ja geomeetriline jada

ARITMEETILINE JA GEOMEETRILINE JADA 1. Aritmeetilise jada kolmas liige on 2 ja kaheksas liige on 17. Mitu jada liiget tuleb võtta, et nende summa oleks 95? n =10 2. Aritmeetilise jada esimese ja kuuenda liikme vahe on 10, nelja esimese liikme summa on 48. Leia see jada. a1 = 15, d = -2 3. Alustanud liikumist, läbib rong esimese sekundiga 0,3 m ja igas järgnevas sekundis 0,4 m rohkem kui eelmises. Leida 0,6 minutiga läbitud tee. 262,8 m 4. Aritmeetilise jada neljas liige on 9 ja üheksas liige on -6. Mitme liikme summa on 54? n1 = 4; n2 = 9 5

Matemaatika
thumbnail
1
doc

Aritmeetiline ja geomeetriline jada

www.andmill2.planet.ee/gmat.html Aritmeetiline ja geomeetriline jada · Aritmeetiline jada an = an ­ 1 + d an = a1 + (n ­ 1)d a + a k +1 a k = k -1 2 a + an 2a + ( n - 1) d Sn = 1 n = 1 n n 2 · Geomeetriline jada an = q . an ­ 1 an = a1 . qn ­ 1

Matemaatika
thumbnail
1
doc

Geomeetriline jada

Ande Andekas Matemaatika ­ Geomeetriline jada Jada, milles iga liikme ja sellele eelneva liikme jagatis on konstantne nimetatakse geomeetriliseks jadaks. Kui leiduvad arvud a ja b nii, et jada liikmed an asuvad iga n korral lõigus [a;b] siis nimetatakse jada (a n) tõkestatud jadaks. Jada nimetatakse hääbuvaks ehk nullile lähenevaks, kui jadast järjest kaugemale minnes selle jada liikmed erinevad nullist kuitahes vähe. Selliselt juhul on |q| < 1 või |q| > -1. an = aa * qn-1 Sn = a1 (qn ­ 1)/q ­ 1 S = a1/1 ­ q a ­ jada liige n ­ liime arv q ­ jada tegur Sn ­ jada esimese n liikme summa S ­ hääbuva jada esimese n liikme summa

Matemaatika
thumbnail
3
doc

Geomeetriline jada

Jadad Geomeetriline jada Geomeetrilise jada üldliige avaldub kujul an = a1qn ­ 1 , kus a1 on geomeetrilise jada esimene liige ja q jada tegur. Geomeetrilise jada esimese n liikme summa valem on kujul a ( q n - 1) Sn = 1 . q -1 Hääbuva geomeetrilise jada summa valem on a1 S= . 1 -q 1

Matemaatika



Märksõnad


Kommentaarid (14)

sviiidi profiilipilt
sviiidi: atiäh :) oli abiks
19:26 28-02-2010
noorkuuu profiilipilt
Noor Kuu: Päis hea oli :)
12:17 11-12-2011
Deffy profiilipilt
Aili P: Suured tänud:)
10:30 01-11-2010





Uutele kasutajatele e-mailiga aktiveerimisel
10 punkti TASUTA

Konto olemas? Logi sisse

Sellel veebilehel kasutatakse küpsiseid. Kasutamist jätkates nõustute küpsiste ja veebilehe üldtingimustega Nõustun