Vajad kellegagi rääkida?
Küsi julgelt abi LasteAbi
Logi sisse Registreeri konto
Ega pea pole prügikast! Tõsta enda õppeedukust ja õpi targalt. Telli VIP ja lae alla päris inimeste tehtu õppematerjale LOE EDASI Sulge

Kategooria algebra ja analüütiline geomeetria - 32 õppematerjali

Matemaatika >> Algebra ja analüütiline geomeetria
thumbnail
28
pdf

Lineaaralgebra ja analüütiline geomeetria konspekt

Kui ruumis on antud ristkoordinaadisüsteem, siis ruumi iga punkt P on üheselt määrastud ristkoordinaatidega x, y, z, kus x on punkti P ristprojektsioon abstsissteljele, y on punkti P ristprojektsioon ordinaatteljele ja z on punkti P ristprojektsioon aplikaateljele. Kirjutame P(x, y, z). Kahe punkti vaheline kaugus. Kui P1(x1, y1, z1), P2(x2, y2, z2) on ruumi punktid, siis kaugus d punktide P1 ja P2 vahel on määratud valemiga Vektori mõiste Vektor on suunatud lõik alguspunktiga punktis A ja lõpp-punktiga punktis B. Nullvektor Eukleidilises ruumis (näiteks tasandil) on nullvektoriks määramata suunaga vektor, mille pikkus on null. Ühikvektor Kui vektori pikkus on 1, siis teda nimetatakse ühikvektoriks. Vektorite liitmine ja lahutamine Lahutamine toimub sama põhimõtte järgi. Reaalarvu ja vektori korrutis. Vektori pikk...

Algebra ja analüütiline...
103 allalaadimist
thumbnail
3
doc

Analüütiline geomeetria 3. KT

1) : x + 2 y - 3 z -1, (6) 10 = = ;1, (6) = 3 0 -1 6 10 z- x + 2 y -3 6 = = 3 0 -1 10 n1 (3;0;-1). M 1 (-2;3; ) 6 : x -1 t = x = t + 1 1 t = x - 1 1 t = x - 1 1 y +1 y = 2t - 1; 2t = y + 1 ; 2t = y + 1 ; t = z = 4 z = 4 + 0 t 0 t = z - 4 2 t = z-4 0...

Algebra ja analüütiline...
58 allalaadimist
thumbnail
3
doc

Ratsionaalavaldised ja murdvõrrandid

peatükk 1. Tegurdamine - - Tegurdamine ­ Avaldise muutmine korrutiseks. 1.Teguri toomine sulgude ette. 2. Valemite kasutamine. ( (a+b2) = a2 + 2ab +b2 / (a + b)((a ­ b) = a2 - b2 3. Ruutkolmliikme tegurdamine. ( ax2 +bx+c = a(x-x1)(x-x2) ) 4. Rühmitamisvõte. - Avaldise teisendamine tähendab avaldise võimalikult lihtsa või meile sobiva kuju andmine. - Võrdust, mille poolteks on võrdsed avaldised nim. samasuseks. Näide: 2. Arvulise murru taandamine - Taandamine-murru lugeja ja nimetaja jagamine ühe ja sama nullist erineva avaldisega * tegurdatakse murru lugeja ja nimetaja; * taandatakse arvulised tegurid * taandatakse muutujat sisaldavad võrdsed tegurid. Näide: 3. Korrutamine ja jagamine ­ Korrutamine- algebraliste murdude korrutis võrdub murruga, mille lugejaks on antud murdude lugejate korrutis ja nime...

Algebra ja Analüütiline...
502 allalaadimist
thumbnail
0
jpg

Kujutav geomeetria II KT

docstxt/13910813861888.txt...

Algebra ja Analüütiline...
26 allalaadimist
thumbnail
5
doc

algebra konspekt

Sirged ja tasandid Joonte ja pindade võrrandite mõiste Võrdust F(x,y,z)=0 nim pinna S võrrandiks antud koordinaatide süsteemis, kui selle pinna kõikide punktide koordinadid rahuldavad seda võrdust ja nende punktide koordinadid, mis ei asu sellel pinnal, ei rahulda seda võrdust. Sfäär on niisuguste punktide hulk, milliste kaugus keskpunktist on võrdne raadiusega r. Tähistades sfääri meelevaldse punkti M koordinadid (x,y,z) ning avaldades võrduse |OM| =r koordinatide kaudu. Võrdust (x-a)² + (y-b) ² + (z-c)² = r² nim sfääri võrrandiks vaadeldavas koordinaatide süsteemis. Kui pinna võrrand on esitatav kujul F(x,y,z)=0, kus F(x,y,z) on n-astme polünoom, siis nim pinda n-järku algebraliseks pinnaks. Algebralistest pindadest lihtsaim on esimest järku pind ehk tasand. Sfäär on teist järku pind, sest selle võrrandis esinevad tundmatud on teisel astmel.Võrdust F(x,y)=0 nim joone L võrrandiks antud koordinaatide süsteemis tasandil, kui teda rahuld...

Algebra ja Analüütiline...
128 allalaadimist
thumbnail
0
jpg

Funktsiooni tuletis ja algebraliste funktsioonide diferentseerim

docstxt/1364641070471.txt...

Algebra ja Analüütiline...
21 allalaadimist
thumbnail
0
jpg

Funktsiooni kasvamine ja kahanemine. Ekstreemumid

docstxt/13646410661801.txt...

Algebra ja Analüütiline...
18 allalaadimist
thumbnail
2
docx

Massi-ja mahuühikud, ajaühikud, kiirus, aeg ja teepikkus, rahaühikud, temperatuur.

Ajaühikud Sekund s Minut min 1 min = 60 s Tund h 1 h = 60 min = 3600 s nimetus seos teiste ajaühikute ja ajavahemikega ööpäev 1 ööpäev = 24 tundi nädal 1 nädal = 7 ööpäeva kuu ühes kuus on 28, 29, 30 või 31 ööpäeva aasta 1 aasta = 12 kuud sajand 1 sajand = 100 aastat Teepikkus, aeg ja Kiirus Teepikkus s s=vt Teepikkust mõõdame tavaliselt sentimeetrites, meetrites, kilomeetrites jne Aeg t t=s:v Aega mõõdame tavaliselt sekundites, minutites, tundides jne kiirus v v=s:t Kiirust mõõdame tavaliselt km/h (loe kilomeetrit tunnis), m/s (loe meetrit sekundis) jne. massiühikuid Nimetus Tähis Seos teiste massiühikutega gramm g 1 g = 1 g kilogramm kg 1 kg = 1000 g tsentner ts 1 ts = 100 kg = 100 000 g 1 t = 10 ts = 100...

Algebra ja Analüütiline...
23 allalaadimist
thumbnail
0
rar

2010 aasta esimese KT variandid

docstxt/13275152977802.txt...

Algebra ja Analüütiline...
83 allalaadimist
thumbnail
2
pdf

Protsentülesanded majandusarvutustes

Üldlevinud käsitlus tõlgendab protsenti kui üht reaalarvu kirjutusviisi. Matemaatiliselt on üks protsent üks sajandik osa tervikust ehk Üldiselt kus p on mingi (positiivne) reaalarv. Protsendiga p määratud osa leidmiseks tervikust a tehakse tehe Tulemus saadakse samades mõõtühikutes, milles on mõõdetud tervik. Seda ülesannet võib lahendada ka 7. klassis õpitud võrde abil. Tervik a ­ 100% Osa x ­ p% Näide 1. Mardil on SEB pangas 3000 eurot, millest arvutatakse aasta lõpus 2% tulu (intressi). Mitu eurot saab Mart intressina aasta lõpus? Tulu E Terviku leidmiseks prot...

Algebra ja Analüütiline...
31 allalaadimist
thumbnail
2
doc

TEHTED MURDUDEGA

Liitmine/lahutamine: 1) Paigutame koma alla koma. Näide: 174,6 ­ 48,328 = 174,600 2) Lisame nullid. ­ 48,328 126,272 2. Korrutamine: 1) Jätame tegurites komad esialgu tähele panemata Näide: 64,5 - 1 koht ja korrutame neid nagu naturaalarve; · 5,6 - 1 koht 2) Loeme, mitu kohta on pärast koma mõlemas teguris kokku. 3870 3) Nõnda saame teada, mitu kohta 3225 peame vastuses komaga eraldama. 361,20 - 2 kohta Vastuses hakkame kohti lugema arvu lõpust! 3. Korrutamine/jagamine järguühikutega: 1) 0,427 · 100 = 42,7 2) 0,1 · 34,67 =...

Algebra ja Analüütiline...
24 allalaadimist
thumbnail
1
docx

TULETISED

TULETISED Astmeline:=n* nt. =5* Trigonomeetrilised: (=cosx = - sinx = Logaritmfunk. tuletised: (; ' Eksponentfunk tuletised: ' = *1 (e lne=1)= Tuletised : ' = ' (x)' = 1 (c)'=0 (-x)' = -1 Funktsioonide summa, vahe, korrutise ja jagatise tuletis 1.Summa tuletis (u+v)' = u' + v' Nt. + (= + 2. Vahe tuletis (u-v)' = u'-v' 3. Korrutise tuletis (u*v)' = u'*v + u*v' 4. Jagatise tuletis ( ...

Algebra ja Analüütiline...
17 allalaadimist
thumbnail
43
pdf

Keskkooli lõpueksam (2008)

aasta matemaatika riigieksami ülesanded koos lahenduste ja kommentaaridega 2 1. ÜLESANNE (5 punkti) Ülesannete tekstid 1 5x 1 I Antud on avaldis 2 , kus x 0 ja x . x 25 x 2 x 0 5 1) Lihtsustage see avaldis. 3 2) Arvutage avaldise väärtus, kui x 2 . Vastus andke täpsusega 10 2. 2 x 2 (9 x 2 x 0 ) 1 II Antud on avaldis , kus x 0 ja x ....

Algebra ja Analüütiline...
774 allalaadimist
thumbnail
5
pdf

14-18 AASTASTE TÜDRUKUTE JALANUMBER AASTAL 2011

Tallinna Lilleküla Gümnaasium 14-18 AASTASTE TÜDRUKUTE JALANUMBER AASTAL 2011 Uurimustöö Juhendaja: Tallinn 2011 Sissejuhatus Uurisin 14-18 aastaste tüdrukute jalanumbreid 2011. aastal. Tüdrukuid oli kokku 16 ja nad olid valitud juhuslikult. 1. Statistiline kogum 39; 39; 40; 38; 39; 40; 37; 38; 38; 36; 41; 36; 38; 38; 40; 37 2. Variatsioonirida 36; 36; 37; 37; 38; 38; 38; 38; 38; 39; 39; 39; 40; 40; 40; 41 3. Sagedustabel 2 realine tabel, mille ühes reas on tunnuse (x) erinevad väärtused ja teises reas nende esinemise sagedused (f) Jalanumber (x) 36 37 38 39 40 41 Sagedus (f) 2 2 5 3 3 1 Sageduste summa n=16 Tulpdiagramm 4. Suhteline sagedus (w) Tunnuse väärtuse esinemise arvu f suhe...

Algebra ja Analüütiline...
23 allalaadimist
thumbnail
1
docx

Matemaatika Eksam

(8p) Lihtsusta avaldis ja arvuta seejärel kirjalikult saadud avaldise väärtus kui x=3 2.(8p) Lahenda murdvõrrand ja kontrolli selle lahendeid kirjalikult : 3.(8p) Joonisel on kujutatud silindrikujuline veemahuti, mille mõõtmed on meetrites. 1) Kui suur on selle mahuti kogupindala? 2) Arvuta ja otsusta, kas 1,5 kg värvist piisab mahuti välispinna värvimiseks, kui igale ruutmeetrile kulub 200 g värvi. 3) Arvuta mahuti ruumala kuupmeetrites. Mitu liitrit see on? 4) Mitu ämbritäit vett on mahutis, kui mahuti on täidetud 100% ulatuses ja ämbrisse mahub 8 liitrit? 4.(8p) Laos oli 1230 kg aedvilju. Nendest 10% olid tomatid, 21% kurgid, 29% peedid ning ülejäänud olid kapsad. Mitu kg oli laos igat aedvilja? 5. (8p) Talumees Toomasel on talumaad 2100m2. Ta soovis istutada oma maale metsa (48%), harida põllumaaks (22%), istutada maasikaid (10%) ning jätta heinam...

Algebra ja analüütiline...
68 allalaadimist
thumbnail
10
docx

Matemaatilise modelleerimise alused kordamisküsimused

Mudel- on meie arusaam sellest, kuidas miski toimub (kuidas mingid protsessid toimuvad). Mudelid võimaldavad mõista reaalelu probleeme imiteerides tegelikke protsesse lihtsustatult. Matemaatiline mudel on mudel, mis on koostatud kasutades matemaatilisi kontseptsioone (nagu funktsioonid, võrrandid, võrratused jm) Modelleerimine- on teadus mudelite koostamisest ja analüüsist. Milliseid eeliseid annab modelleerimine?Millega võrdleksin modelleerimist. 2. Subjektiivsuse kõrvaldamine (formaliseerimine) modelleerimisprotsessis, näide- Staatiline mudel: Olgu meil vaja koostada mudel näiteks muruniiduki ostmiseks. Sõelale on jäänud 3 erinevate heade külgedega niidukit (odav niiduk, garantiiga niiduk, võimas rohukoguriga niiduk. Esiteks valime kriteeriumid, mida pidada antud otsuse korral oluliseks (hind, funktionaalsus, garantiitingimused, võimsus jne.) Koostame nende tähtsuse suhtes üksteisesse risttabeli Saaty skaala järgi (1-võrdselt täht...

Algebra ja Analüütiline...
36 allalaadimist
thumbnail
2
doc

Determinandid

Vektorid Skalaarsed ja vektoriaalsed suurused Suurusi mis on kirjeldatavad üksnes arvulise väärtusega nagu aeg, lõigu pikkus, kujundi pindala jne, nim skalaarseteks suurusteks ehk skalaarideks. Suurusi mille iseloomustamiseks on vaja teada peale arvulise väärtuse ka suunda nagu jõud, kiirus jne, nim vektoriaalseteks suurusteks ehk vektoriteks. Vektori pikkus Iga vektorit võime geomeetriliselt kujutada kindla pikkuse ja suunaga sirglõiguna. Vektori pikkuseks ehk moodduliks nim vektori kui lõigu pikkust. *Vektorit, mille moodul võrdub ühega nim ühikvektoriks. Nullvektoriks nim vektorit mille alguspunkt ja lõpp-punkt ühtivad. Vektorite võrdsus Kaht vektorit nim võrdseteks kui nad on võrdse pikkusega ja samasuunalised ja vektorite võrdsus erineb lõikude võrdsusest. Vabavektor- see on veektorid mille alguspunkti valik ei ole millegagi kitsendatud. Vektorite kollineaarsus ja komplanaarsus Vektoreid nim kollineaarseteks, kui peale ühisesse alg...

Algebra ja Analüütiline...
34 allalaadimist
thumbnail
2
doc

Keha liikumisvõrrand

Teist järku diferentsiaalvõrrand (Newtoni II) r=a= d²r/dt² = 1/m *F Ruutpolünoomi r(t) = r0+v0+ a/2 *t² -ühtlaselt muutuva liikumise valemit, kus r0 algasend, v0 algkiirus, a kiirendus Keha pöörlemisvõrrand (t)=0 + 0 *t + /2 *t² - ühikud on radiaan Newtoni II seadus (kiirendus- ja impulssesitus) r=a= 1/m *F Impilss ehk liikumishulk p= mv Kulgliikumise diferentsiaalvõrrand a=1/m *F r= d²r/dt²=1/m *F Kulg diferentsvõrr lahendamine jõu puudumisel ning konstantse jõu korral (tuletusega) a) kui jõud on null, x=0 d/dt (dx/dt)=0 dx/dt=v0x=const, dx=voxdt voxdt=voxt+x0 , kus vox ja x0 on koordinadi väärtusega ajahetkel t=0. b) kui j]ud on konstantne (raskujõud: F=mg, hõõrdejõud: F=P), on võrrandi lahendiks polünoom x= x0 + vox*t + ax/2 *t²; ax=1/m *Fx Töö: skalaarkorrutis ja joonintegraal A=Fs=Fscos((Fs)), kus s=r=r2-r1 ning ((Fs)) tähistab vekt...

Algebra ja Analüütiline...
33 allalaadimist
thumbnail
3
docx

Kuidas käsitleda liikumisvõrrandit

Vektorkujul antud liikumisvõrrandiga on ikka ja jälle probleeme. Et asi ükskord selgeks saaks, annan lühikonspekti. Alguseks lepime kokku tähistes: 1. Mis on liikumisvõrrand? - on funktsioon, mis määrab liikuva keha (punkti!) asukoha mingil ajahetkel. Võib olla igasugune funktsioon. - keha (punkti!) asukoha määrab kohavektor, mis antakse kolme koordinaadiga (x,y,z). Need koordinaadid määravad keha asukoha kolmruumi ortonormaalse reeperi suhtes. - ortonormaalne reeper koosneb kolmest omavahel risti olevast ühikvektorist. Tähistame neid: i, j, k, peale paneme vektorimärgid. Kokku saame valemi vektorkujul mis on samaväärne kolme skalaarse võrrandiga: 2. Newtoni mehaanikas on kombeks esitada neid võrrandeid ruutpolünoomina 3. Liikumisvõrrandi esimest tuletist nimetatakse kiiruseks: ja teist tuletist kiirenduseks: Kui kiirendus on konstantne, on kõik kolm koordinaatvõr...

Algebra ja Analüütiline...
29 allalaadimist
thumbnail
10
docx

Tõenäosusteooria II

Näiteks, olgu ühes urnis 4 valget ja 3 punast kuuli ning teises urnis 6 valget ja 3 punast palli. Kummastki urnist võetakse üks pall. Vaatleme järgmisi sündmusi: C ­ võetud pallide hulgas on vähemalt üks punane pall, D ­ mõlemad võetud pallid on punased. Me võime need sündmused esitada järgmiste osasündmuste (nn elementaarsündmuste) kaudu: A ­ esimesena urnist võetud pall on punane B ­ teisest võetud pall on punane Sündmuse C võime esitada niimoodi: toimub sündmus A või toimub sündmus B või toimuvad mõlemad sündmused A ja B. Sündmuse D võime esitada aga nõnda: toimub sündmus A ja toimub sündmus B. Tõenäosusteoorias antakse selliselt moodustatud sündmustele omaette nimetused. Sündmuste A ja B summaks nimetatakse sündmust C, mille korral toimub vähemalt üks sündmustest A või B (s.t toimub sündmus A või toimub sündmus B või toimuvad mõ...

Algebra ja Analüütiline...
72 allalaadimist


Sellel veebilehel kasutatakse küpsiseid. Kasutamist jätkates nõustute küpsiste ja veebilehe üldtingimustega Nõustun