Vajad kellegagi rääkida?
Küsi julgelt abi LasteAbi
Logi sisse

Tõenäosusteooria I (0)

5 VÄGA HEA
Punktid

Esitatud küsimused

  • Kui suur on tõenäosus et summaks on vähemalt 3 silma?
  • Kui suur on tõenäosus et korvi jäävad vaid valged pallid?
  • Kumma poisi võidu tõenäosus on suurem?
  • Kui suur on järve keskel oleva saare tabamise tõenäosus?
  • Kui korduvaid numbreid ei tohi arvus olla?
  • Kui suur on siis tõenäosus et saadakse kaks valget kuuli?

Lõik failist

Tõenäosusteooria ja matemaatiline statistika
Ajaloost
Tekkinud 17. saj. seoses hasartmängudes (kaardid, täringud) tekkinud probleemidega – kuidas jaotada panuseid, kui mäng juhtuks mingil põhjusel pooleli jääma, milliste kaartide korral on mõtet edasi mängida jms
Tuntumad teadlased, kellel on suuri teeneid tõenäosusteooria arendamisel: De Fermat, Pascal , Huygens, Bernoulli , Gauss, Laplace , Kolmogorov jt
Tänapäeval on tõenäosusteooria ja matemaatiline statistika paljude ülikoolide mitmete erialade õppekavas.
Põhimõisted
katse – põhimõtteliselt lõpmatult palju kordi teostatav toiming, mille korraldamise protseduur on fikseeritud; katse käigus jälgitakse, kas teatud sündmused toimuvad või mitte
sündmus – katse tulemus või erinevate tulemuste ühendamisel saadav tulemus
Näit.
Katseks on täringu viskamine , sündmusteks võivad olla järgmised:
  • saadakse 4 silma
  • saadakse 5 silma
  • saadakse 3 või 6 silma
  • saadakse paarisarv silmi jne

Kui katseks on
Vasakule Paremale
Tõenäosusteooria I #1 Tõenäosusteooria I #2 Tõenäosusteooria I #3 Tõenäosusteooria I #4 Tõenäosusteooria I #5 Tõenäosusteooria I #6 Tõenäosusteooria I #7 Tõenäosusteooria I #8 Tõenäosusteooria I #9 Tõenäosusteooria I #10 Tõenäosusteooria I #11 Tõenäosusteooria I #12
Punktid 100 punkti Autor soovib selle materjali allalaadimise eest saada 100 punkti.
Leheküljed ~ 12 lehte Lehekülgede arv dokumendis
Aeg2013-03-04 Kuupäev, millal dokument üles laeti
Allalaadimisi 61 laadimist Kokku alla laetud
Kommentaarid 0 arvamust Teiste kasutajate poolt lisatud kommentaarid
Autor A A Õppematerjali autor

Sarnased õppematerjalid

thumbnail
20
docx

Tõenäosuse konspekt

kunagi ei toimu. Võimatuteks sündmusteks on näiteks täringul üheaegselt 6 ja 4 silma heitmine; vesi ei saa tahkes olekus olla, kui temperatuur on +10 kraadi. Kindla sündmuse vastandsündmus on võimatu sündmus. Juhuslik sündmus sündmus, mis antud vaatluse või katse korral võib toimuda, aga võib ka mitte toimuda. Juhuslikeks sündmusteks on 6 silma tulek täringu viskel, loteriiga võidu saamine, tuttava kohtamine tänaval. Juhuslik katse on tõenäosusteooria jaoks kirjeldatud, kui on loetletud tema võimalike tulemuste hulk. Seda hulka nimetatakse lühidalt elementaarsündmuste hulgaks ja tähistatakse sümboliga S. Näide 1. Katse võimalikuks tulemuseks täringu viskel loetakse teatava tahu peale langemist. Sellel katsel on 6 võimalikku tulemust ja vastav elementaarsündmuste hulk on: S = {1, 2, 3, 4, 5, 6 }. Katsetulemuste hulk moodustab elementaarsündmuste ruumi, tähistatakse . Eelnevas näites S =.

Tõenäosusteooria ja matemaatiline statistika
thumbnail
4
doc

Tõenäosusteooria

12. klass Tõenäosusteooria 1. Sündmuse klassikaline tõenäosus Sündmuse A tõenäosuseks p(A) nimetatakse sündmusele A soodsate elementaarsündmuste (võimaluste) arvu k ja kõigi elementaarsündmuste (võimaluste) arvu n suhet. k p(A) = n Siin eeldakse: 1) arvu n lõplikkust;

Matemaatika
thumbnail
10
docx

Tõenäosusteooria II

Kui suur on tõenäosus, et kontsert toimub? Lahendus. Vastavalt ülesande tingimustele on vaja leida sündmuse tõenäosus. Kuna sündmused A ja B ei välista teineteist, siis kasutame valemit (2) /või läheme üle vastandsündmusele/: p ( A B ) = p( A) + p( B ) - p( A B) = 0,8 + 0,9 - 0,8 0,9 = 1,7 - 0,72 = 0,98 Kui lahendada vastandsündmuse kaudu (kontsert ei toimu), saaksime tulemuseks p ( A B) = 1 - p ( A B ) = 1 - 0,2 0,1 = 0,98 7. Peeter lahendab tõenäosusteooria ülesande tõenäosusega 0,3. Ants on veidi parem lahendaja, tema puhul on vastav tõenäosus 0,6. Lausa "kuldlahendaja" on aga Piret, kelle puhul on sama ülesande lahendamise tõenäosus 0,95. Kui eeldada, et õpilased istuvad kontrolltöö ajal hajutatult ning neil puudub võimalus üksteisega lahenduskäiku kooskõlastada, kui suur on siis tõenäosus, et a) kõik kolm õpilast lahendavad antud ülesande b) mitte ükski neist ülesannet ei lahenda c) ülesande lahendab vähemalt üks neist

Algebra ja analüütiline geomeetria
thumbnail
45
pptx

Tõenäosusteooria 11 klass

Tõenäosusteooria 11 klass kitsas iseseisvaks õppimiseks Miina Sarv 1 Klassikaline tõenäosus 👀 Töenäosus - soodsate võimaluste arv / kõikide võimaluste arvuga P või p - tõenäosus k- soodsate võimaluste arv n- kõikide võimaluste arvuga 2 Lihtne ülesanne nr.1 Täringu veeretamisel on võimalik saada 6 tulemust 1, 2, 3, 4, 5, 6 P2 = 1/6 P2,3 = 2/6 = 1/3 P1,2,3 =3/6 = 1/2 4/6 = P 5/6 =P 6/6 =P P7 =0/6 =0 3 Tõenäosus ja sündmus 👀 SÜNDMUS KINDEL SÜNDMUS JUHUSLIK SÜNDMUS VÕIMATU SÜNDMUS P (A) = 1 P(C) = 0….1 P(B) =0 A=1 0 > C < 1 B=0 4 Sündmuste toimumise kaks erinevat võimalust 👀 Võrdvõimalikud ja juhuslikud sündmused - 6 või 4 (

Kategoriseerimata
thumbnail
4
docx

Tõenäosusteooria

Sündmused. Kindel A = {1, 3, 5} ja sündmus B = {1, 2, 3}, perekonnas on sündmus (tähistatakse K) - sündmus, siis A B = AB = {1, 3}.Sündmusi, mis teatud tingimuste korral alati mille korrutiseks on võimatu toimub.Kindlateks sündmusteks on sündmus, nimetatakse üksteist kooliaasta algus 1. septembril, välistavateks.Kui A = igahommikune päikesetõus, vesi on {1, 3, 5} ja B = {2, 4, 6}, siis AB ämbris vedelas olekus kui temperatuur = , siis öeldakse on 10 kraadi. Võimatu sündmused A ja B on sündmus (tähistatakse V) - sündmus, teineteist välistavad. mis antud vaatluse või katse korral Näide7. Olgu täringu kunagi ei toimu. viskel sündmus A = {1, 3, 5} Võimatuteks sündmusteks on näiteks ja sündmus B = {1, 2, 3}, siis AB = tär

Tõenäosusteooria
thumbnail
34
doc

TÕENÄOSUSTEOORIA

TÕENÄOSUSTEOORIA 1 Juhuslik sündmus 1.1 Juhusliku sündmuse mõiste. Mingi katse või vaatluse tulemusena toimub teatud sündmus. Sündmusi tähistatakse tähtedega A, B, C, … . Iga sündmust vaadeldakse teatud tingimuste kompleksi olemasolu korral. Näiteks lumi sulab 0 kraadi juures normaalrõhul. Sündmused võib jaotada kolme liiki: 1. Kindel sündmus , mis toimub alati antud tingimuste juures ( päike tõuseb idast ja loojub läände). 2. Võimatu sündmus  , mis ei saa kunagi antud tingimuste kompleksi korral toimuda (rong sõidab maanteel, päike loojub itta). 3. Juhuslik sündmus, mis võib toimuda või mitte toimuda (paarisnumbrisaamine täringuviskel, mündi viskamisel saada kull või kiri). 1.2 Sündmuste vahelised seosed. Sündmuste vahelised seosed on nagu vastavate hulkade vahelised seosed. 1. AB, sündmus B järeldub sündmusest A ehk sündmus A sisaldub sündmuses B. Näiteks: A = (2) ja B = (2;4;6), siis

Tõenäosus
thumbnail
5
docx

Matemaatika konspekt 11. klassi arvestus

MATEMAATIKA ARVESTUS 1. Kombinatoorika põhiprintsiibid-liitmis ja korrutamisprintsiip. Liitmisprintsiip- ,,kas üks või teine" . kui mingit objekti A on võimalik valida n erineval viisil ja objekti B m erineval viisil ning valida tuleb kas objekt A või objekt B, siis kõigi erinevate võimalike valikute arv on n + m. Korrutamisprintsiip- ,, nii üks kui ka teine" kui mingit objekti A on võimalik valida n erineval viisil ja objekti B m erineval viisil ning valida tuleb nii objekt A kui ka objekt B, siis kõigi võimalike erinevate valikute arv on n · m. 2. Permutatsiooni permutatsioonideks n erinevast elemendist nimetatakse nende elementide kõikvõimalikke erinevaid järjestusi. Pn = n! 3. Variatsioonid Variatsioonideks n elemendist k-kaupa (k n) nimetatakse nelemendilise hulga kõigi k-elemendiliste osahulkade elementide erinevaid järjestusi. Vnk = n!/(n-k)! k 0! = 1 Variatsioonides on oluline liikmete järjestus erinevalt kombinatsioonidest. Variatsioone on 2x ro

Matemaatika
thumbnail
5
doc

Tõenäosusteooria.

Tõenäosusteooria. 1. Õpetaja kutsub kuuest nõrgast õpilasest kolm konsultatsiooni. Õpilane, kes pidi kutse edastama, unustas nimed ja saatis neist huupi kolm konsultatsiooni. Kui tõenäone on, et juhtusid kutsutud? 2. Õpilane oskab 25-st eksamiküsimusest vastata kahekümnele. Kui suur on tõenäosus, et pileti 3 küsimust on kõik nende kahekümne seast? 3. Kui suur on tõenäosus, et täringu viskamisel tuleb a. 5 silma, b. paaritu arv silmi, c. kolmega jaguv silmade arv. 4. Urnis on 3 punast ja 9 sinist ühesugust kuuli. Kui suur on tõenäosus, et kuuli juhuslikul võtmisel urnist saadakse d. sinine kuul, e. punane kuul, f. roheline kuul, g. kas punane või sinine kuul. 5. Lapse käes on neli kaarti, millest igaühele on kirjutatud üks number 1, 2, 3, 4. Laps laob need juhuslikus järjrkorras üksteise kõrvale. Kui suur on tõenäosus, et nii tekib a. arv 213

Tõenäosusteooria




Kommentaarid (0)

Kommentaarid sellele materjalile puuduvad. Ole esimene ja kommenteeri



Sellel veebilehel kasutatakse küpsiseid. Kasutamist jätkates nõustute küpsiste ja veebilehe üldtingimustega Nõustun