Sirged ja tasandid Joonte ja pindade võrrandite mõiste Võrdust F(x,y,z)=0 nim pinna S võrrandiks antud koordinaatide süsteemis, kui selle pinna kõikide punktide koordinadid rahuldavad seda võrdust ja nende punktide koordinadid, mis ei asu sellel pinnal, ei rahulda seda võrdust. Sfäär on niisuguste punktide hulk, milliste kaugus keskpunktist on võrdne raadiusega r. Tähistades sfääri meelevaldse punkti M koordinadid (x,y,z) ning avaldades võrduse |OM| =r koordinatide kaudu. Võrdust (x-a)² + (y-b) ² + (z-c)² = r² nim sfääri võrrandiks vaadeldavas koordinaatide süsteemis. Kui pinna võrrand on esitatav kujul F(x,y,z)=0, kus F(x,y,z) on n-astme polünoom, siis nim pinda n-järku algebraliseks pinnaks. Algebralistest pindadest lihtsaim on esimest järku pind ehk tasand. Sfäär on teist järku pind, sest selle võrrandis esinevad tundmatud on teisel astmel.Võrdust F(x,y)=0 nim joone L võrrandiks antud koordinaatide süsteemis tasandil, kui teda rahuldavad joone L k?
VEKTORARVUTUS 1. Vektori komponendid Erinevalt skalaarist on vektoril peale suuruse määratud ka suund. Vektori suurust nimetatakse tema absoluutväärtuseks. On olemas vaid üks vektor, millel pole suunda nullvektor. Vektorid on võrdsed, kui on võrdsed nende absoluutväärtused ja suunad. Olenemata suunast on ühikvektori absoluutväärtus 1. Siin ja edaspidi kasutame vektori tähistamiseks noolekest tähise peal. Nii kujutab a vektorit, aga a sellesama vektori absoluutväärtust. z k j y i x Cartesiuse koordinaadistik ja teljesuunalised ühikvektorid. Geomeetriliselt saab vektorit kujutada noolena, mis näitab vektori suunda ja mille pikkus vastab vektori absoluutväärtusele. Vektori komponentideks nimetatakse tema projektsioone koordinaattelgedel, mis on läbi korrutatud vastava telje suunali
ANALÜÜTILINE GEOMEETRIA RUUMIS, VEKTORID VEKTORI MÕISTE, MOODUL JA SUUND Neid suurusi, mida on võimalik iseloomustada ühe arvuga, nimetatakse skalaarseteks (temperatuur, mass, töö). Suurusi, mille iseloomustamiseks on vaja arvu ja suunda, nimetatakse vektoriaalseteks (jõud, kiirus, kiirendus). Definitsioon. (Geomeetriliseks) vektoriks nimetatakse suunatud sirglõiku, lõiku, millel tehakse vahet alguse ja lõpu vahel. Kui vektori algus on punktis A ja lõpp punktis B, siis tähistatakse AB , a . Vektor on kindla sihi, suuna ja pikkusega lõik. Siht on teda kandva sirge siht. Suund on alguspunktist lõpp-punkti poole. Definitsioon. Vektori mooduliks nimetatakse tema pikkust, see on lõigu AB pikkust ja tähistatakse AB AB , a a . Vektori moodul on skalaarne mittenegatiivne suurus. Definitsioon. Nullvektoriks nimetatakse vektorit, mille algus- ja lõpp-punkt langevad kok
| A|=ai 1 A i 1+ ai 2 Ai 2 +⋯ k=1 Analoogiline valem kehtib, kui maatrikis A fikeerime j-nda veeru ja arvutame selle veeru elementide algebralied täiendid siis n | A|=a1 j A1 j+ a2 j A 2 j +⋯+a jn A jn =∑ a kj A kj k=1 52.Determinandi omadused: Maatriksi ja transponeeritud maatriksi determinandid on võrdsed , st. | A|=| AT | Maatriksi kahe rea(veeru) äravahetamisel muudab maatriksi determinant märgi Kui maatriksis mingit rida või veergu korrutada mitahes arvuga, siis maatriksi determinant korrutub sama arvuga Kui maatriksi mingile reale või veerule liita mitahes arvuga korrutatatud mistahes teine rida või veerg, siis uue maatriksi
Vektorid Vektorid Matemaatikas, füüsikas jt. loodusteadustes vaadeldavad suurused skalaarsed vektoriaalsed (neid iseloomustab (neid iseloomustab lisaks kindel arv) arvulisele väljendusele ka fikseeritud suund) pikkus kiirus vanus kiirendus mass jõud Vektorid Öeldakse, et lõigu AB puhul on määratud suund, kui on fikseeritud, kumba punkti A või B loetakse alguspunktiks, kumba lõpp-punktiks. Lõiku, millel on määratud suund, nimetatakse vektoriks. Vektorit tähistatakse kas üheainsa tähega või kahe suure tähega, mille kohal on nool: a, b, AB Vektori kui suunatud lõigu pikkuseks nimetatakse selle lõigu pikkust. Vektori a pikkust märgitakse sümboliga a või a. Ve
Skalaarne suurus on selline suurus, mida saab avaldada ühe arvuga (pikkus, laius). Vektoriaalseks suuruseks nimetatakse sellist suurust, mille täielikuks määramiseks on peale arvväärtuse vaja ka sihti ja suunda (kiirus, jõud). Vektoriks nimetatakse suunatud sirglõiku. Vektorit iseloomustavad siht (kuidas vektor asetseb), suund (kummale poole vektor on suunatud) ja vektori arvväärtus. Vektoreid tähistatakse kas AB (nool peal) või a (nool peal). Kollinaarsed vektorid on samasihilised ehk paralleelsed, nende vastavad koordinaadid on võrdelised. Kollineaarseteks nimetatakse kaht vektorit u ja v, mille vahel kehtib seos u = kv, kus k on konstant. Jagunevad sama- ning vastassuunalisteks. Kahte vektorit nimetatakse võrdseteks, kui nad on samasihilised, samasuunalised ja ühepikkused. Nullvektor on vektor, mille algus- ja lõpp-punkt ühtivad. Vastandvektoriteks nimetatakse vektoreid, mis on samasihilised, võrdse pikkusega aga vastandsuunalised. Vektori koordinaatide leidmiseks
Vektorid Vektorid Matemaatikas, füüsikas jt. loodusteadustes vaadeldavad suurused skalaarsed vektoriaalsed (neid iseloomustab (neid iseloomustab lisaks kindel arv) arvulisele väljendusele ka fikseeritud suund) pikkus kiirus vanus kiirendus mass jõud Vektorid Öeldakse, et lõigu AB puhul on määratud suund, kui on fikseeritud, kumba punkti A või B loetakse alguspunktiks, kumba lõpp-punktiks. Lõiku, millel on määratud suund, nimetatakse vektoriks. Vektorit tähistatakse kas üheainsa tähega või kahe suure tähega, mille kohal on nool: a, b, AB Vektori kui suunatud lõigu pikkuseks nimetatakse selle lõigu pikkust. Vektori a pikkust märgitakse sümboliga a või a. Ve
Vektorid Vektorid Matemaatikas, füüsikas jt. loodusteadustes vaadeldavad suurused skalaarsed vektoriaalsed (neid iseloomustab (neid iseloomustab lisaks kindel arv) arvulisele väljendusele ka fikseeritud suund) pikkus kiirus vanus kiirendus mass jõud Vektorid Öeldakse, et lõigu AB puhul on määratud suund, kui on fikseeritud, kumba punkti A või B loetakse alguspunktiks, kumba lõpp-punktiks. Lõiku, millel on määratud suund, nimetatakse vektoriks. Vektorit tähistatakse kas üheainsa tähega või kahe suure tähega, mille kohal on nool: a, b, AB Vektori kui suunatud lõigu pikkuseks nimetatakse selle lõigu pikkust. Vektori a pikkust märgitakse sümboliga a või a. Ve
Kõik kommentaarid