Vajad kellegagi rääkida?
Küsi julgelt abi LasteAbi
✍🏽 Avalikusta oma sahtlis olevad luuletused! Luuletus.ee Sulge
Add link

Murd- ja juurvõrrand (0)

5 VÄGA HEA
Punktid
Vasakule Paremale
Murd- ja juurvõrrand #1 Murd- ja juurvõrrand #2 Murd- ja juurvõrrand #3 Murd- ja juurvõrrand #4 Murd- ja juurvõrrand #5 Murd- ja juurvõrrand #6 Murd- ja juurvõrrand #7 Murd- ja juurvõrrand #8 Murd- ja juurvõrrand #9 Murd- ja juurvõrrand #10 Murd- ja juurvõrrand #11 Murd- ja juurvõrrand #12
Punktid 10 punkti Autor soovib selle materjali allalaadimise eest saada 10 punkti.
Leheküljed ~ 12 lehte Lehekülgede arv dokumendis
Aeg2012-10-30 Kuupäev, millal dokument üles laeti
Allalaadimisi 38 laadimist Kokku alla laetud
Kommentaarid 0 arvamust Teiste kasutajate poolt lisatud kommentaarid
Autor T . Õppematerjali autor

Sarnased õppematerjalid

29
doc

Ruutvõrrand

Ruutvõrrandi abil lahenduvaid ülesandeid Ülesannete lahendused pärinevad õpikust "Matemaatika IX klassile"(koost. Tõnu Tõnso ,Tln., 1998), lk-74-78 (ül.269-391) ja kogumikust "Matemaatika kirjaliku eksami ülesanded IX klassile"* (koost. Enn Nurk ja Valvo Paat, Tln., 1996). * ülesanded tähistatud E-tähega. Paljude tekstülesannete lahendamisel jõuame ruutvõrrandini, millel on tavaliselt 2 lahendit. Olenevalt ülesande sisust võib aga ülesande vastuseks sobida ainult üks lahend. Tekstülesannete puhul tuleb võrrandi lahendeid kontrollida ülesande teksti, mitte koostatud võrrandi järgi. Tekstülesande lahendamine võrrandi abil koosneb kolmest etapist: 1. võrrandi koostamine teksti järgi; 2. koostatud võrrandi lahendamine; 3. võrrandi lahendite kontroll teksti järgi, lõplik lahendite leidmine ja vastuse kirjutamine. Mõningaid näpunäiteid võrrandi koostamiseks. Põhinõue - loe teksti ülima tähelepanuga, sest tekstis on kog

Matemaatika
3
doc

Ruutvõrrand

1.5 RUUTVÕRRAND Ruutvõrrandiks nimetatakse võrrandit kujul ax2 + bx + c = 0, kus a 0. Kordajad a, b ja c on reaalarvud ning x tundmatu (otsitav). Ruutvõrrand on teise astme algebraline võrrand. Ruutvõrrandi liikmeid nimetatakse järgmiselt: ax2 ­ ruutliige, kus a on ruutliikme kordaja; bx ­ lineaarliige, kus b on lineaarliikme kordaja; c ­ vabaliige. Ruutvõrrandi lahendivalem on - b ± b 2 - 4ac x= () 2a Avaldist D = b2 ­ 4ac nimetatakse ruutvõrrandi diskriminandiks. · Kui D > 0, siis ruutvõrrandil on 2 erinevat lahendit. · Kui D = 0, siis on ruutvõrrandil 2 võrdset lahendit. · Kui D < 0, siis ruutvõrrandil reaalarvulised lahendid puuduvad. Kui ruutliikme kordaja on negatiivne arv, siis enne võrrandi lahendamist korrutame mõlemaid pooli arvuga (­1) ja saame ruutliikme kordajaks positiivse arvu. Ruutvõrrandi lahendite õigsust tuleb kontrollida, asendades lahendid algvõrrandis. Tekstülesande korral peab lahend sobima ka üles

Matemaatika
6
doc

Ruutvõrrandid

x1, 2 = = = x1= = 7, x2 = =1 2 2 2 2 2 ehk x2 ­ 8x + 7 = (x ­ 7)(x ­ 1). 2 Ülesandeid · Lahutada tegureiks: 1) x2 ­ 3x ­ 10 2) z2 + 15z ­ 54 3) 5y2 ­ 6y + 1 4) v2 + v · Taandada murd: x 2 + 10 x + 25 y2 -5y + 6 m3 - 8 1) 2) 3) x 2 - 3 x - 10 7 y 2 - 22 y + 3 m 2 - 5m + 6 3

Matemaatika
15
pdf

Võrrandid

Võrrandid Võrrandi mõiste Võrrand on muutujaid sisaldav võrdus, milles üks või mitu muutujat loetakse tundmatuks (otsitavaks). Näited Ruutvõrrand: x2 2x 1 0 Trigonomeetriline võrrand: sin t cos 2t 1 Eksponentvõrrand x suhtes: e 2 x e 2 x 2a 1 lineaarne võrrand a suhtes: Juurvõrrand x ja y suhtes: x y x 2 2 xy Logaritmvõrrand: log u (2u u 2 ) 3 Võrrandi lahend Tundmatu (muutuja, otsitava) väärtust, mille korral võrrand osutub samasuseks, nimetatakse võrrandi lahendiks ehk juureks. Näide Võrrandi 2x 3 0 3 lahendiks on x , 2 kuna, asendades võrrandis sümboli x arvuga ­3/2, saame samasuse : 3 23 2 3 3 3 3 0. 2 2 Võrrandi lahendite arv Võrrandil võib olla üks või mitu lahendit, kuid neid võib olla ka lõpmata palju või mitte ühtegi. Näited Võrrandil

Matemaatika
17
docx

VÕRRANDID (mõisted)

VÕRRANDID Võrrand on muutujaid sisaldav võrdus, milles üks või mitu muutujat loetakse tundmatuks (otsitavaks). Tundmatu väärtust, mille korral võrrand osutub samasuseks (tõeseks arvvõrduseks), nimetatakse võrrandi lahendiks. Võrrandil võib olla üks või mitu lahendit, kuid neid võib olla ka lõpmata palju või mitte ühtegi. Lahendada võrrand tähendab leida tundmatu kõik need väärtused, mis rahuldavad võrrandit (st tundmatu asendamisel lahendiga muutub võrrand samasuseks). Võrrandi lahendamisel püütakse võrrandit teisendada nii, et iga uus võrrand oleks eelmisega samaväärne. Lubatud teisendused (võrrandi põhiomadused) on järgmised: 1) võrrandi pooli võib vahetada; 2) võrrandi mõlemale poolele võib liita või mõlemast poolest lahutada ühe ja sama arvu või muutujat sisaldava avaldise (mis omab mõtet võrrandi kogu määramis- piirkonnas), see annab sisuliselt teisenduse, mida tuntakse kui võrrandi liikmete teisele poole

Matemaatika
40
doc

Keskkooli matemaatika raudvara

Determinandid.................................................................................................................... 16 Kahe tundmatuga ruutvõrrandisüsteem..................................................................................17 Tekstülesande lahendamine võrrandi või võrrandisüsteemi abil............................................17 Juurvõrrand.............................................................................................................................18 Absoluutväärtust sisaldav võrrand..........................................................................................18 Arvvõrratus, selle omadused.................................................................................................. 19 Ühe muutujaga lineaarvõrratus..........................................................................

Matemaatika
6
doc

Reaalarvud. Võrrandid

lahend puudub, kui a = 0 ja b 0 ; lahendeid on lõpmata palju, kui a = 0 ja b = 0 . L L= 0 = 0 N N 0 Ruutvõrrand Juurvõrrand - võrrand, milles tundmatu esineb juuritavas. Taandamata ruutvõrrand ax 2 + bx + c = 0 , a 0 Võrrandi mõlemaid pooli tuleb astendada - b ± b 2 - 4ac (sobivalt valitud) ühe ja sama x1, 2 = naturaalarvulise astendajaga. 2a

Matemaatika
8
doc

Matemaatika praktikumi töö

Näide: Seejärel võrdustatakse lugeja nulliga, samal ajal väites, et nimetaja ei tohi olla 0. Antud juhul: x2-x-6=0 ja x-3 0 -> x 3 Ruutvõrrandi lahendid on x1 = 3 ja x2 = -2, kuid 3 on võõrlahend, seega murdvõrrandi lahendiks on -2. Juurvõrrand Juurvõrrandiks nimetatakse võrrandit, kus muutuja on juure all. Ei ole juurvõrrand, sest muutuja x ei ole juure all. Juurvõrrandit lahendadakse, viies juurega liikmed ühele poole ja juureta liikmed teisele poole ning seejärel tõstetakse mõlemad pooled ruutu. Näide: Ruututõstmist võib kasutada mitu korda, kui seda on juurtest lahtisaamiseks vaja. Edasi lahendatakse võrrandit nagu tavalist ruutvõrrandit. Antud näites ->

Matemaatika



Märksõnad

Mõisted


Meedia

Kommentaarid (0)

Kommentaarid sellele materjalile puuduvad. Ole esimene ja kommenteeri





Uutele kasutajatele e-mailiga aktiveerimisel
10 punkti TASUTA

Konto olemas? Logi sisse

Sellel veebilehel kasutatakse küpsiseid. Kasutamist jätkates nõustute küpsiste ja veebilehe üldtingimustega Nõustun