1. Teisendatud kuju ühtede piirkond: 183BCC10>1,8,3,11,12,0 Teisendatud kuju määramatuse piirkond: 16CEDE2> 6,14,13,2 f(X1X2X3X4)=(0,1,3,8,11,12)1(2,6,13,14)_ 2. x3x4 x1x2 00 01 11 10 00 - 01 0 0 0 - 11 - 0 - 10 0 0 MKNK f ( x1 x 2 x3 x 4 ) = ( x3 x 4 ) & ( x1 x 2 ) & ( x 2 x3 ) & ( x1 x 3 x 4 ) McCluskey f(x1 ,x2 ,x3, x4 ) = (0,1,3,8,11,12)1(2,6,13,14)- Ind. Nr. Märge Ind. Nr.-d Vahe Märge Ind. Nr.-d Vahe Märge 0 0 X 0-1 0-1 1 X 0-1-1-2 0-1-2-3 1,2 A8 1 1 X ...
Tallinna Tehnikaülikool Diskreetne matemaatika KODUTÖÖ Kristjan Keskküla 093540 IASB Tallinn 2009 ÜLESANNE 1 Leida oma martiklinumbrile vastav 4-muutuja loogikafunktsioon f(x1, x2, x3, x4) = (2,4,8,9,14,15) (6,11,13) _ (järgnevalt kui funktsioon) 1 ÜLESANNE 2 Leida MDNK ja MKNK, mis sobiksid martiklinumbrist leitud osaliselt määratud 4-muutuja funktsiooni esitamiseks Kuna minu martiklinumber on paarisarvuline leian: MKNK Karnaugh' kaardiga ja MDNK McCluskey' meetodiga. 1) Leian MKNK Karnaugh' kaardiga MKNK leidmiseks joonestan Karnaugh' kaardi, kuhu kannan peale funktsiooni 1d, 0d ja määramatused. x3x400 01 11 10 x1x2 00 0 0 0 1 01 1 0 0 - 11 0 - 1 1 10 1 1 - 0 Tegu ...
Tallinna Tehnikaülikool Diskreetne Matemaatika KODUTÖÖ *** 15****IAPB ****** Detsember 2015 1. Minu matriklinumbrile (155423) vastav loogikafunktsioon oma numbrilises 10nd esituses: f(x1, x2, x3, x4) = ∑ (2, 3, 7, 8, 9, 13)1 (1, 4, 5, 14, 15)_ 2. Esitada oma loogikafunktsiooni tõeväärtustabel: x1 x2 x3 x4 f 0000 0 0001 - 0010 1 0011 1 0100 - 0101 - 0110 0 0111 1 1000 1 1001 1 1010 0 1011 0 1100 0 1101 1 1110 - 1111 - 3. Leida MDNK (McClusky meetodil) ja MKNK (Karnaugh’ kaardiga); tuvastada, kas leitud MDNK ja MKNK on teineteisega loogiliselt võrdsed või mitte. MKNK leidmine: ...
Tallinna Tehnikaülikool Diskreetse Matemaatika KODUTÖÖ 082800 MAHB11 Tallinn 2008 Ülesanne 1. Leida oma matriklinumbrile vastav 4-muutuja loogikafunktsioon. f( x1, x2, x3, x4 ) = (0,1,2,5,6,7,9)1 (11,13,14)- 1 1 0 1 0 1 1 1 0 - 0 - 0 1 - 0 Ülesanne 2. MKNK leidmine Karnaugh' kaardiga. MKNK: f(x1,x2, x3, x4)= (x 1 )( )( )( x3 x1 x 2 x2 x3 x 4 x2 x3 x 4 ) MDNK leidmine McCluskey meetodiga Ind Märge Ind. Nr.-d Vahe Märge Ind. Nr.-d Vahe Märge Nr. . 0 0 x ...
Küsimus 1 Õige - Hinne 1,00 / 1,00 kas väide on õige või vale: Jääkfunktsioone ei saa leida Karnaugh' kaardi abil Vali üks: Tõene Väär Küsimus 2 Osaliselt õige - Hinne 0,75 / 1,00 vali kõik õiged väited: Vali üks või enam: Funktsioonil võib Taandatud DNK puududa, kuigi minimaalne DNK (MDNK) on sellel funktsioonil olemas - VALE Taandatud DNK-d on võimalik leida Karnaugh' kaardi abil Taandatud DNK ja minimaalne DNK (MDNK) võivad olla üks ja sama avaldis Taandatud DNK võib olla suurema keerukusega avaldis kui minimaalne DNK (MDNK) Taandatud DNK on funktsiooni kõikide implikantide disjunktsioon - VALE Taandatud DNK on funktsiooni kõikide lihtimplikantide disjunktsioon Funktsioonil võib olla mitu erinevat Taandatud DNK-d - VALE Taandatud DNK võib olla väiksema keerukusega avaldis kui minimaalne DNK (MDNK) - VALE Küsimus 3 Õige - Hinne 3,00 / 3,00 Osaliselt määratud loogikafunktsioonile MDNK leid...
McCluskey' minimeerimismeetod Sellise laiendatud 1-de piirkonna ( 0, 2, 6, 7, 8, 10, 3*, 14* ) 1 jaotame Ü Karnaugh' kaart on visuaalheuristiline minimeerimismeetod. lahtritesse vastavalt arvude indeksile (ehk alustame kleepimistabelit) : T ( vajalike kontuuride otsene vahetu väljavalimine pole algoritmina kirjeldatav ) index laiend. 1de pk. 2-sed interv. vahe 4-sed interv. vahe T Karnaugh' kaart on kuni 6-muutujaga loogikafunktsioonide jaoks; 0 0 McCluskey' meetodis ei ole muutujate arv piiratud. 1 2 McCluskey' meetod on algoritm. Seega saab teda teostada arvutiprogrammina. 8 McCluskey' meetodist on olemas intervallmodifikatsio...
KONTROLLKÜSIMUSTEGA TEST - loogikaavaldiste erikujud file:///C:/Users/CPU/Desktop/Diskmati_TESTID_moodle__'s_-_100%... Diskreetne Matemaatika You are logged in as Alger Abna (Logout) Home My courses IAY0010 Topic 11 KONTROLLKÜSIMUSTEGA TEST - loogikaavaldiste erikujud Review of attempt 1 Started on Thursday, 1 December 2011, 06:26 PM Quiz navigation Completed on Thursday, 1 December 2011, 06:31 PM 1 2 3 4 5 6 Time taken 5 mins 8 secs 7 8 9 10 11 12 Marks 20.00/20.00 Grade 100.00 out of a...
Eesti Infotehnoloogia Kolledz Digitaalloogika ja digitaalsüsteemid KODUTÖÖ Märt Erik EIK10040050 Rühm A22 Tallinn 2005 1. Leida oma matriklinumbrile vastav 4-muutuja loogikafunktsioon. Tehes calculator'iga nõutud ja vajalikud tehted on minu matriklinumbrile 10040050 vastav 4- muutuja loogikafunktsioon oma numbrilises 10ndesituses: f ( x1 x2 x3 x4 ) = ( 0,1,2,5,12,13)1 ( 4,6,9,11) - 2. Kirjutada välja oma matriklinumbrist leitud osaliselt määratud 4- muutuja loogikafunktsiooni tõeväärtustabel. X1 X2 X3 X4 Y 0 0 0 0 1 0 0 0 1 1 0 0 1 0 1 0...
Diskreetne matemaatika KODUTÖÖ SISUKORD SISUKORD..........................................................................................1 ÜLESANNE 1 LOOGIKAFUNKTSIOON......................................................3 ÜLESANNE 2 TÕEVÄÄRTUSTABEL..........................................................3 ÜLESANNE 3 MINIMAALSED NORMAALKUJUD........................................3 3.1 MDNK KARNAUGH’ KAARDIGA.......................................................................3 3.2 MKNK MCCLUSKEY MEETODIGA.....................................................................4 3.3 VÕRDLUS....................................................................................................... 5 ÜLESANNE 4 MKNK TEISENDAMINE DNK-KUJULE....................................5 ÜLESANNE 5 DISJUNKTIIVSED NORMAALKUJUD.....................................5 5.1 TAANDATUD DNK.........................
Kahe muutuja loogikafunktsioonid,Karnaugh,McCluskey Mitu erinevat 1muutuja loogikafunktsiooni on olemas? 4 erinevat. Tabel lk 174 Milline on ainus oluline 1muutuja loogikafunktsioon? Inversioon Kuidas võib nimetada 0 muutuja loogikafunktsiooni? Konstant 1 või konstant 0 Mitu erinevat 2muutuja loogikafunktsiooni on olemas? 16, tabel lk 175-176 Millised 2muutuja funktsioonid sõltuvad mõlemast oma muutujast? F1,f2,f4,f6,f7,f8,f9,f11,f13,f14 Milline erinevus on implikatsioonil ja pöördimplikatsioonil? Implikatsioonil on x1-x2 seos, pöördimplikatsioonil vastupidi, x2-x1 Mis on Pierce´i nool? F8, on disjunktsiooni inversioon ja esitatakse märgiga pierci nool. Vt lk 177 Mis on Shefferi kriips? F14, on konjuktsiooni inversioon ja esitatakse ka märgiga shefferi kriips, vt lk 177 Mitu erinevat 3muutuja loogikafunktsiooni 0 on olemas? 256 Miks nimetatakse loogikatehet + summa mooduliga 2 ja välistav või? Summa mooduliga 2, kuna funktsioo...
Tallinna Tehnikaülikool Diskreetne Matemaatika KODUTÖÖ Olga Dalton 104493 IAPB11 Tallinn 2010 1. Leida oma matriklinumbrile vastav 4-muutuja loogikafunktsioon. Matrikli number on 104493 Ühtede piirkonna määramiseks saadud 16-nd arv on 28DD194D Seega on ühtede piirkond f(x1,x2,x3,x4) = (1,2,4,8,9,13)1 Määramatuspiirkonna määramiseks saadud 16-nd arv on 2675BD7 Määramatuspiirkond on seega f(x1,x2,x3,x4) = (5,6,7,11) Seega on matriklinumbrile 104493 vastav 4-muutuja loogikafunktsioon oma numbrilises 10ndesituses: f(x1..x4) = (1,2,4,8,9,13)1 (5,6,7,11)_ 2. Leida MDN...
Tallinna Tehnikaülikool Diskreetne Matemaatika KODUTÖÖ 1. Leida oma matriklinumbrile vastav 4- muutuja loogikafunktsioon. Loogikafunktsioon: f (x1, x2, x3, x4) = 1 (8, 9, 10)_ 2. Leida MDNK ja MKNK, mis sobiksid matriklinumbrist leitud osaliselt määratud 4- muutuja funktsiooni esitamiseks. MDNK Karnaugh' kaardiga f (x1, x2, x3, x4) = 1 (8, 9, 10)_ x3x4 00 01 11 10 x1x2 00 1 0 0 1 01 0 1 1 0 11 1 0 1 0 10 - - 0 - f (x1, x2, x3, x4) = MKNK McCluskey meetodiga Lihtimplikantide hulga leidmine Ind- Ind- Nr Märge Nr Vahe Märge Indeks Nr Vahe Märge ek...
Tallinna Tehnikaülikool Diskreetne Matemaatika Kodutöö Jago Niin 123835 IASB12 1. Leida oma matriklinumbrile vastav 4-muutuja loogikafunktsioon. Matrikli number on 123835. Saadud 8-kohaline 16-süsteemi arv on 10247E89. Määramispiirkonna leidmisel tuleb arv F31680. f(, , , ) = 2. Leida MDNK ja MKNK, mis sobiksid matriklinumbrist leitud osaliselt määratud 4-muutuja funktsiooni esitamiseks. Leian MDNK Karnaugh' kaardiga. f(, , , ) = x3x4 00 01 11 10 x1x2 00 1 1 - 1 01 1 0 1 - 11 0 0 - 1 10 1 1 0 0 MDNK: f(, , , ) = v v v MKNK McCluskey meetodiga f(, , , ) = Indek Nr Indeks Intervall Märge Intervall Märge s ...
Tallinna Tehnikaülikool Diskreetne Matemaatika KODUTÖÖ TALLINN 2008 1. f( x1, x2, x3, x4 ) = (0, 2, 3, 4, 9, 12, 14)1(8, 11, 13)- 2. MKNK (Karnaugh) x1x2x3x 00 01 11 10 4 00 1 0 1 1 01 1 0 0 0 11 1 - 0 1 10 - 1 -0 0 MKNK: ()()() MDNK (McCluskey) Ind Nr. M Ind Nr-d. Vahe M Ind. Nr-d. V M . . 0 0 (0000) X 0-1 0-2 (00-0) 2 A 0-1-1- 0-4-8-12 (-- 4,8 A 1 2 00) 2 1 2 (0010) X 0-4 (0-00) 4 X 4 (0100) X 0-8 (-000) 8 X 8 (1000) X 1-2 2-3 (001-) 1 A 3 2 3 (0011) X ...
Tallinna Tehnikaülikool Diskreetse Matemaatika KODUTÖ Ö Kristjan Lank 082784 MAHB-11 Tallinn 2009 1. Leida oma matriklinumbrile vastav 4-muutuja loogikafunktsioon. Matrikli number on 082784 Ühtede piirkonna määramiseks saadud 16-nd arv on 205FBF60 Ühtede piirkond on seega f(x1,x2,x3,x4) = (0,2,5,6,11,15) 1 Määramatuspiirkonna määramiseks saadud 16-nd arv on 1E783BA Määramatuspiirkond on seega f(x1,x2,x3,x4) =(1,3,7,8,10,14) 2. Leida selle funktsiooni MKNK Karnaugh' kaardiga ja MDNK McCluskey' meetodiga. MKNK: x3x4 x1x2 00 01 11 10 00 1 - - 1 01 0 1 - 1 11 ...
Tallinna Tehnikaülikool Diskreetne matemaatika KODUTÖÖ Mina Ise 132456 IADB?? Tallinn 2019 ÜLESANNE 1 LOOGIKAFUNKTSIOON Leian oma matriklinumbrile vastav 4-muutuja loogikafunktsioon Matriklinumbri 5 viimast numbrit: 93656 Matriklinumber kuueteistkümnendsüsteemis: 2F478 Seitsmekohaline arv: 3F58CC8 Üheksakohaline arv: 54DFF9FF8 Ühtede piirkond: 3, 5, 8, 12 ( C16 ), 15 ( F16 )/ 0011, 0101, 1000, 1100, 1111 Määramatuspiirkond : 4, 9, 13 ( D16 ) / 0100, 1001, 1101 0-de piirkond : 0, 1, 2, 6, 7, 10 ( A16 ), 11 ( B16 ), 14 ( E16 ) / 0000, 0001, 0010, 0110, 0111, 1010, 1011, 1110 𝒇(x(x1,x2,x3,x4) = ∑ ( 3, 5, 8, 12, 15 )1 ( 4, 9, 13 )_ 𝒇(x(x1,x2,x3,x4) = ∏ ( 0, 1, 2, 6, 7, 10, 11, 14 )0 2 ÜLESANNE 2 TÕEVÄÄRTUSTABEL Esitada oma loogikafunktsiooni tõeväärtustabel. ...
1. Loogika funktsiooni leidmine f(x1 ,x2 ,x3, x4 ) = (1,7,8,9,10,12,15)1 (5,11,13,14)- (0,2,3,4,6)0 2. MDNK ja MKNK leidmine MDNK Karnaugh' kaardiga x3x4 x1x2 00 01 11 10 00 0 1 0 0 01 0 - 1 0 11 1 - 1 - 10 1 1 - - MDNK: x1 x2 x4 x3 x4 2. MKNK McCluskey' meetodiga f(x1 ,x2 ,x3, x4 ) = (0,2,3,4,6)0 (5,11,13,14)- Ind. Nr. Märge Ind. Nr.-d Vahe Märge Ind. Nr.-d Vahe Märge 0 0 x 0-1 0-2 2 x 0-1-1-2 0-2-4-6 2,4 A1 1 2 x 0-4 4 x 4 x 1-2 2-3 1 A2 2 3 x ...
Eesti Infotehnoloogia Kolledž Digitaalloogika ja Digitaalsüsteemid KODUTÖÖ Tallinn 2013 Sisukord Sisukord.................................................................................................................. 2 1. Leida oma matriklinumbrile vastav 4-muutuja loogikafunktsioon......................4 1.1 — sisestada lahtrisse oma matriklinumber...................................................4 1.2 — lülitada kalkulaator ümber 16ndsüsteemile (Hex).....................................4 1.3 — kalkulaatoris näidatava 16ndarvu 7-ga korrutamiseks vajutada järjest * ja 7 ning järgnevalt võrdusmärki = korduvalt, kuni näidatav 16ndarv kasvab 7- kohaliseks:........................................................................................................... 5 1.4 — eelkirjeldatud viisil toimides saadud ja hetkel kalkulaatoris näidatava 16ndarvu tuleb korr...
Tallinna Tehnikaülikool DISKREETNE MATEMAATIKA KODUTÖÖ Elena Borissov 155175IAPB IAPB11 1. Leida oma matriklinumbrile vastav 4-muuutuja loogikafunktsioon Esimene seitsmekohaline arv kalkulaatoris 32C2641 . Kümnendarvudena 3, 2, 12, 6, 4, 1 Järjekorras 1, 2, 3, 4, 6, 12 1de piirkond Esimene üheksakohaline arv kalkulaatoris 440274117 Järjekorras 0, 7 määramatus piirkond 5, 8, 9, 10, 11, 13, 14, 15 0de piirkond f(x1, x2, x3, x4)=∑(1, 2, 3, 4, 6, 12)1 (0, 7)_ 2. Tõeväärtustabel x1, x2, x3, x4 f 0000 - 0001 1 0010 1 0011 1 0100 ...
1) Matriklinumber: 134303 7-kohaline 16-nd süsteemi arv: 2BEE909 1-de piirkond: 0, 2, 9, 11, 14 9-kohaline 16-nd süsteemi arv: 3ADCA3B0F Määramatuspiirkond: 3, 10, 12, 13, 15 Nullide piirkond: 1, 4, 5, 6, 7, 8 1, 4,5, 6, 7,8 ¿ 0 (3,10, 12,13, 15)¿ 0, 2,9, 11, 14 ¿1 ∏ ¿ f =( x 1 … x 4 ) =∑ ¿ 2) Tõeväärtustabel: x1 x2 x3 x4 f 0 0 0 0 1 0 0 0 1 0 0 0 1 0 1 0 0 1 1 - 0 1 0 0 0 0 1 0 1 0 0 1 1 0 0 0 1 1 1 0 1 0 0 0 0 1 0 0 1 1 1 0 1 0 - 1 0 1 1 1 1 1 0 0 - 1 1 0 1 - 1 1 1 0 1 1 1 1 1 - 3) MDNK Karnaugh’ kaardi abil: x3 x1 x4 00 01 11 10 x2 00...
LAUSEARVUTUS Diskreetne matemaatika ei tegele reaalarvudega ega pidevate funktsioonidega. Verbaalne esitus on mistahes info esitamine lingvistilise keele abil. Formaalne esitus on mistahes info esitamine ilma lingvistilise keele abita ehk esitus kokkulepitud sümbolite abil. Formaalne esitus peab olema üheselt tõlgendatav. Lausearvutus on loogilise mõtlemise matemaatiline mudel. Lausearvutuse lause võib olla iga verbaalne väide, millele saame omistada tõeväärtuse – tõene või vale. Lihtlause on lihtsaim võimalik lausearvutuslause. Lausearvutuslauseid tähistatakse formaalselt suurtähtedega: A, B, P, Q … Lihtlausetest koostatakse kindlate sidesõnade ja loog konstruktsioonide abil liitlauseid. Lausearvutuse lihtlauseid seotakse liitlauseteks 5 loogilise konstruktsiooni ehk loogikatehte abil. Binaarsed loogikatehted seovad kahte lauset (4 tk), unaarne loogikatehe on rakendatav üksikule lausele (1 tk – eitus). Loogiline korrutamine ehk konjun...
Tallinna Tehnikaülikool Diskreetne matemaatika KODUTÖÖ Ilja Freiberg 185138 IAIB11 Tallinn 2018 1. Funktsiooni leidmine. Matrikli number on 185138 Seitsmekohaline 16ndarv on 3C8F7FE Ühtede piirkonnaks on 3, 5, 8, 12, 13 Üheksakohaline 16ndarv on 512444552 Määramatuse piirkonnaks on 1, 2, 4, 5 Minu matrikli numbrile 185138 vastav 4-muutuja loogikafunktsioon oma numbrilises 10ndesituses oleks: (x1,x2,x3,x4)= (3, 7, 8, 12, 14, 15) (1, 2, 4, 5)_ Ja nullide piirkonnaks on kõik ülejäänud arvud (0, 6, 9, 10, 11, 13) (x1,x2,x3,x4) = (0, 6, 9, 10, 11, 13)0 (1, 2, 4, 5)_ 2. Funktsiooni tõeväärtustabel. nr x1 x2 x3 x4 0 0 0 0 0 0 1 0 0 0 1 - 2 0 0 1 0 - 3 0 0 1 1 1 4 0 1 0 0 - 5 0 1 0 1 - 6 0 1 1 0 0 ...
Tallinna Tehnikaülikool Diskreetse Matemaatika KODUTÖ Ö Eero Ringmäe 010636 LAP 12 Tallinn 2001 Sisukord Tallinna Tehnikaülikool........................................................................................... 1 Diskreetse Matemaatika K O D U T Ö Ö.......................................................................................................1 Eero Ringmäe.........................................................................................................1 Tallinn 2001............................................................................................................ 2 Sisukord.................................................................................................................. 3 1. Funktsiooni leidmine..............................
LAUSEARVUTUS Küsimus 1 Õige Hinne 1,00 / 1,00 otsusta, kas see väide on tõene või vale: "Tautoloogia" on lause, mille tõeväärtus on alati VALE. Tõene Väär Küsimus 2 Õige Hinne 1,00 / 1,00 Mida tähendab hüüumärgiga eksistentsikvantor? Vali üks: hüüumärk muudab kvantori tähenduse vastupidiseks hüüumärk täpsustab, et "leidub täpselt 1" hüüumärk rõhutab kvantori suurt tähtsust Küsimus 3 Õige Hinne 1,00 / 1,00 Kui loogikaavaldises pole sulgudega määratud tehete järjekorda, siis KONJUNKTSIOONi, DISJUNKTSIOONi ja INVERSIOONi leidumisel avaldises . . . Vastus 1 kõige esimesena tehakse loogikaavaldises INVERSIOON Vastus 2 ...selle järel järgmisena tehakse KONJUNKTSIOON Vastus 3 ...ja viimasena...
Tallinna Tehnikaülikool Infotehnoloogia teaduskond Diskreetne Matemaatika KODUTÖÖ Üliõpilane: Andri Kaaremäe Õpperühm: IABB13 Matrikli nr: 154819 Tallinn 1) Matriklinumbrile vastav 4-muutuja loogikafunktsioon f(x1 ... x4) = (2, 3, 4, 5, 9, 10)1 (7, 8, 11, 13)_ (0, 1, 6, 12, 14, 15)0 2) Tõeväärtustabel X1 X2 X3 X4 f 0 0 0 0 0 0 0 0 1 0 0 0 1 0 1 0 0 1 1 1 0 1 0 0 1 0 1 0 1 1 0 1 1 0 0 0 1 1 1 - 1 0 0 0 - 1 0 0 1 1 1 0 1 0 1 1 ...
Tallinna Tehnikaülikool Diskreetne Matemaatika KODUTÖÖ Teet Järv 123795 IATB 2012 1. Ülesanne Matrikli number on: 123795 16nd süsteemi teisendatuna on see: 1E393 Teisendades see 8-kohaliseks: 102328D1 <- siit saab ühtede piirkonna 1-de piirkond: 0,1,2,3,8,13 Viimaks jagan 11-ga: F30266 <- siit saab määramatuspiirkonna (mis pole juba ühtede piirkonnas) Määramatuspiirkond: 6,15 Seega oleks matriklinumbrile 123795 vastav 4-muutuja loogikafunktsioon oma numbr...
Tallina Tehnikaülikool Diskreetne Matemaatika KODUTÖÖ 1. Leida oma matriklinumbrile vastav loogikafunktsioon 1-de piirkond: 1, 3, 9, 10, 13 Määramatuspiirkond: 4, 5, 6, 7, 8, 12, 14 0-de piirkond: 2, 11, 15 179159 3A9AD11 x1 x2 x3 x4 f 4E856E1C7 −¿ 4, 5, 6,7, 8,12, 14 ¿¿ 0 0 0 0 0 0, 2, 11,15 ¿ 0 ¿ 0 0 0 1 1 1, 3, 9,10, 13 ¿1 Π ¿ 0 0 1 0 0 0 0 1 1 1 f ( x 1 … x 4 )=Σ ¿ 0 1 0 0 - 0 1 0 1 - 2. Esitada 0 1 1 0 - 0 1 1 1 - 1 0 0 0 - 1 0 0 1 1 1 0 1 0 1 ...
LAUSEARVUTUS Diskreetne matemaatika ei tegele reaalarvudega ega pidevate funktsioonidega. Verbaalne esitus on mistahes info esitamine lingvistilise keele abil. Formaalne esitus on mistahes info esitamine ilma lingvistilise keele abita ehk esitus kokkulepitud sümbolite abil. Formaalne esitus peab olema üheselt tõlgendatav. Lausearvutus on loogilise mõtlemise matemaatiline mudel. Lausearvutuse lause võib olla iga verbaalne väide, millele saame omistada tõeväärtuse – tõene või vale. Lihtlause on lihtsaim võimalik lausearvutuslause. Lausearvutuslauseid tähistatakse formaalselt suurtähtedega: A, B, P, Q … Lihtlausetest koostatakse kindlate sidesõnade ja loog konstruktsioonide abil liitlauseid. Lausearvutuse lihtlauseid seotakse liitlauseteks 5 loogilise konstruktsiooni ehk loogikatehte abil. Binaarsed loogikatehted seovad kahte lauset (4 tk), unaarne loogikatehe on rakendatav üksikule lausele (1 tk – eitus). Loogiline korrutamine ehk konjunk...
Tallinna Tehnikaülikool Diskreetne Matemaatika Kodutöö Ilya Zaitsev 179712IACB IACB12 1.Matriklinumbrile vastav 4-muutuja loogikafunktsioon Matriklinumber: 179712 7-kohaline 16-nd süsteemi arv: 3AC9200 Seega ühtede piirkond on f(x1...x4) = (0, 2, 3, 9, 10, 12)1 9-kohaline 16-nd süsteemi arv: 4EC3 79E00 Seega määramatuspiirkond on f(x1...x4) = (4, 7, 14) _ Nullide piirkond: 1, 5, 6, 8, 11, 13, 15 Minu funktsioon: f(x1... x4) = (0, 2, 3, 9, 10, 12)1 (4, 7, 14)_ 2. Loogikafunktsiooni tõeväärtustabel X1 X2 X3 X4 0 0 0 0 1 0 0 0 1 0 0 0 1 0 1 0 0 1 1 1 0 1 0 0 - 0 1 0 1 0 0 1 1 0 0 0 1 1 1 - 1 0 0 0 0 1 0 0 1 1 1 0 1 0 1 1 0 1 1 0 1 1 0 0 1 1 1 0 1 ...
Tallinna Tehnikaülikool Diskreetne Matemaatika KODUTÖÖ 142438 Sisukord 1)Martiklinumbrile vastav 4-muutuja loogikafunktsioon.............................................3 2)Tõeväärtustabel............................................................................................................3 3)MDNK ja MKNK, mis sobiksid martiklinumbrist leitud osaliselt määratud 4- muutuja funktsiooni esitamiseks...................................................................................3 4. Teisenda MKNK DNK kujule.......................................................................................5 5. Leida vabaltvalitud viisil MDNK-ga loogiliselt võrdne Taandatud DNK ja Täielik DNK...................................................................................................................................6 6.MKNK-ga võrdne Täielik KNK..............................................
AIY3310 Diskreetne matemaatika Lühikonspekt Käesolev lühikonspekt katab suure osa aines AIY3310 (endise koodiga LIY3310) loetavast. Samal ajal ei saa seda materjali vaadelda kui antud aine täiskonspekti, mille läbitöötamine garanteeriks hea eksamiresultaadi. Loengutes ja harjutustundides käsitletakse mitmeid probleeme tunduvalt põhjalikumalt. Sellest hoolimata usun, et antud kirjutisest on paljudele tudengitest lugejatele kasu valmistumisel kontrolltööks ja eksamiks. Margus Kruus HULGATEOORIA PÕHIMÕISTEID HULK - algmõiste, intuitiivse definitsiooni järgi objektide kogum. George Cantor (1845-1918) - saksa matemaatik, hulgateooria rajaja. Hulgad jaotuvad lõpmatuteks ja lõplikeks. Meie kursuses käsitletakse lõplikke hulki, mõnikord ka lõpmatuid loenduvaid hulki. Hulgateoreetilised operatsioonid · Hulkade ühend AB={x |(xA)V (xB)} · Hulkade ühisosa (lõige) AB={x |(xA)& (xB) · Hulga täiend A = { x | ( x I ) & ( x A ) }, kus I on n...
HULGATEOORIA PÕHIMÕISTEID HULK - algmõiste, intuitiivse definitsiooni järgi objektide kogum. George Cantor (1845-1918) - saksa matemaatik, hulgateooria rajaja. Hulgad jaotuvad lõpmatuteks ja lõplikeks. Meie kursuses käsitletakse lõplikke hulki, mõnikord ka lõpmatuid loenduvaid hulki. Hulgateoreetilised operatsioonid Hulkade ühend A B = { x ( x A) V ( x B ) } Hulkade ühisosa (lõige) A B = { x ( x A) & ( x B ) Hulga täiend A = { x ( x I ) & ( x A ) }, kus I on nn. universaalhulk. Hulkade vahe A B = { x ( x A) & ( x B ) } Hulkade sümmeetriline vahe A B = { x (( x A ) & ( x B )) V (( x A ) & ( x B )) } Hulga A astmehulgaks 2A nimetatakse hulga A kõigi alamhulkade hulka. Hulgateoreetiliste operatsioonide omadused Kommutatiivsusseadused A B = B A B = B Assotsiatiivsusseadused A ( B C ) = ( A B ) C A ( B C ) = ( A B ) C Distributiivsusseadused A ( B C ) = ...
Tallinna Tehnikaülikool Diskreetne Matemaatika KODUTÖÖ Mark-Felix Mumma 154844 IABB13 x1 x2 x3 x4 f 1. Martiklinumber: 154844 Vahearv 1: 32A6AC4 0 0 0 0 -- Vahearv 2: 43DD50C9C 0 0 0 1 0 ( 2,3,4,6,10,12 )1 ( 0,5,9,13 )-¿ 0 0 1 0 1 2. f ( x1 , x2 , x3 , x 4 ) = ¿ 0 0 1 1 1 0 1 0 0 1 0 1 0 1 -- 0 1 1 0 1 0 1 1 1 0 1 0 0 0 0 1 0 0 1 -- 1 0 1 0 1 1 0 1 1 0 1 1 0 0 1 1 1 0 1 -- 1 1 1 0 0 1 1 1 1 0 3. MDNK : ´x 3 x 2 x´ 1 ´x2 x 3 ´x 2 x 3 x´ 4 ´x 1 x´ 4 Karnaugh-iga MDNK McCluskey' meetodiga: A3 on üleliigne kuna te...
Tallinna Tehnikaülikool Diskreetne Matemaatika KODUTÖÖ Kadri Liis Leht 155539 IABB12 Tallinn 2015 1. 4-muutuja loogikafunktsiooni leidmine Matrikli number: 155539 Esimese teisenduse tulemus: 32E0DF5 Ühtede piirkond: 3, 2, 14, 0, 13, 15, 5 Teise teisenduse tulemus: 442B4B343 Määramatuspiirkond: 4, 11 Nullide piirkonda kuuluvad ülejäänud arvud ehk (1, 6, 7, 8, 9, 10, 12) 0 Seega on minu matriklinumbrile vastav 4-muutuja loogikafunktsioon oma numbrilises 10ndesituses: f(x1,x2,x3,x4)= ∑ (0, 2, 3, 5, 13, 14, 15)1 (4, 11)_ 2. Funktsiooni f(x1,x2,x3,x4)= ∑ (0, 2, 3, 5, 13, 14, 15)1 Π(1, 6, 7, 8, 9, 10, 12) 0 (4, 11)_ tõeväärtustabel x 1 x2 x3 x4 f(x1,x2,x3,x4) 0000 1 0001 ...
1. Teisendatud kuju ühtede piirkond: 24AB1665>2,4,10,11,1,6,5 Teisendatud kuju määramatuse piirkond: 2282E7E> 8, 14, 7 f(X1X2X3X4)=(1,2,4,5,6,10.11)1(7,8,14)_ 2. MDNK Karnaugh' kaardiga! x3x4 x1x2 00 01 11 10 00 1 1 _ 01 1 1 1 _ 11 _ 10 1 1 MDNK f ( x1 x2 x3 x4 ) = x1 x2 x1 x3 x4 x1 x2 x3 x3 x4 McCluskey f(x1 ,x2 ,x3, x4 ) = (0,3,9,12,13,15)0(7,8,14)- In 0-de pk. M Ind 2-sed intervallid M Ind 4-sed d intervallid 0 0000 X 0-1 -000 A1 0-1-1-2 1 1 0 0 0* ...
Diskreetne matemaatika Sisukord Arvusüsteemid ................................................................................................................................................... 2 Kahendkoodid.................................................................................................................................................... 4 Loogikafunktsioonid ja loogikaavaldised ........................................................................................................... 5 Avaldiste teisendused........................................................................................................................................ 8 Karnaugh’ kaart ................................................................................................................................................. 9 McCluskey’ minimeerimismeetod ..........................................................................................
Tallinna Tehnikaülikool Diskreetne Matemaatika KODUTÖÖ 094231 Tallinn 2009 1. Ülesanne Matrikli number on: 094231 Matrikkel teisendatuna kuueteistkümmendsüsteemi saan tulemuseks 17017 Antud kuueteistkümmendarv kaheksakohalisena oleks 24D9BD77 1-de piirkond on mul seega: 2 4 7 9 11 13 Jagades kaheksakohaline kuueteistkümmendarv 11'ga saan tulemuseks 22AED07 Määramatuspiirkond on mul seega: 0 10 14 Seega oleks matriklinumbrile 094231 vastav 4-muutuja loogikafunktsioon oma numbrilises 10ndesituses: f(x1,x2,x3,x4) = (2, 4, 7, 9, 11, 13)1 (0, 10, 14)_ f(x1,x2,x3,x4) = (1, 3, 5, 6, 8, 12, 15)0 (0, 10, 14)_ 2. Ülesanne 2.1 MDNK Karnaugh' kaardiga: x3x4 x1x2 00 01 11 10 0 00 0 ...
1. Martiklinumbrile vastav 4-muutuja loogikafunktsioon? Minu martiklinumber: 155042 -> 25DA2 7-kohaline: 3 2 B 7 4 O E ----> 0 2 3 4 7 11 14 9-kohaline: 4 3 F 3 8 7 E C 2 ----> 2 3 4 7 8 12 14 15 Määramatus: 8, 12, 15 0-de piirkond: 1, 5, 6, 9, A, D f(x1, x2, x3, x4) = (0,2,3,4,7,11,14)1(8,12,15)_ 2. Loogikafunktsiooni tõeväärtustabel x1 x2 x3 x4 f 0 0 0 0 1 0 0 0 1 0 0 0 1 0 1 0 0 1 1 1 0 1 0 0 1 0 1 0 1 0 0 1 1 0 0 0 1 1 1 1 1 0 0 0 - 1 0 0 1 0 1 0 1 0 0 1 0 1 1 1 1 1 0 0 - 1 1 0 1 0 ...
Tallinna Tehnikaülikool Diskreetne Matemaatika KODUTÖÖ 164780 1. Matriklinumber: 164780 Matriklinumber 16ndsüsteemis: 283AC 7-kohaline arv: 35E6B74 4-muutuja loogikafunktisooni 1de piirkond: 3, 4, 5, 6, 7, 11, 14 9-kohaline arv: 48381F86C 4-muutuja loogikafunktisooni määramatuspiirkond: 1, 8, 12, 15 4-muutuja loogikafunktisooni 0de piirkond: 0, 2, 9, 10, 13 2. f(x1x2x3x4) = ∑(3, 4, 5, 6, 7, 11, 14)1 (1, 8, 12, 15)_ x1x2x3 f x4 0000 0 0001 - 0010 0 0011 1 0100 1 0101 1 0110 1 0111 1 1000 - 1001 0 1010 0 1011 1 1100 - 1101 0 1110 1 1111 - 3. MDNK leidmine Karnaugh´ kaariga: 00 01 11 10 00 0 − 1 0 01 ...
Tallinna Tehnikaülikool Diskreetne Matemaatika KODUTÖÖ Tallinn 2009 f ( x1 x2 x3 x4 ) (1,2,4,8,9,12)1 (3,6,11) 01 1. 11 10 x3x4 x1x2 00 01 11 10 00 0 1 - 1 01 1 0 0 - 11 1 0 0 0 10 1 1 - 0 f x1 , x2 , x3 , x4 x1 x2 x3 x4 x2 x4 x1 x3 MKNK: 2. Ind. Nr. Märge Ind. Nr.-d Vahe Märge Ind. Nr.-d Vahe Märge 1 1 x 1-2 1-3 2 x 1-2-2- 1-3-9- 2,8 A7 3 11 ...
Mis on Diskreetne Matemaatika ? Termineid: — verbaalne esitus on mistahes info esitamine lingvistilise keele abil. " diskreetne " ≡ " mitte pidev " ehk " astmeline " — formaalne esitus on mistahes info esitamine ilma lingvistilise keele abita ehk kokkulepitud sümbolite abil. vs. " Diskreetne Matemaatika " ↔ " Pidev Matemaatika " NB! MÕTLEMINE on alati verbaalne ehk toimub mingi lingvistilise keele Diskreetne Matemaatika ei tegele reaalarvudega ega pidevate funktsioonidega. abil. ...
Tallinna Tehnikaülikool Diskreetne Matemaatika KODUTÖÖ ÜLESANNE 1 Leida martiklinumbrile vastav 4 – muutuja loogikafunktsioon. F ( X 1 ; X 2 ; X 3 ; X 4 )=∑ (0 ; 2; 5 ; 6 ; 9 ; 11 ; 14)1 (1 ; 3 ;7 ; 15)¿ (4 ; 8 ; 10 ; 12 ; 13)0 ÜLESANNE 2 MDN MKN X1 X2 X3 X4 F K K 0 0 0 0 1 1 1 0 0 0 1 - 1 1 0 0 1 0 1 1 1 0 0 1 1 - 1 1 ...