Vajad kellegagi rääkida?
Küsi julgelt abi LasteAbi
Logi sisse
✍🏽 Avalikusta oma sahtlis olevad luuletused! Luuletus.ee Sulge

Materjalid Autoehituses - sarnased materjalid

metall, autotööstus, kere, alumiinium, poorsus, sõiduk, malm, kumm, autotootja, terasest, autotootjad, kermised, grafiit, keraamika, metalle, autodes, plastik, plastist, plastid, rattad, paneelid, tehnoloogia, rehv, magnetmaterjalid, komposiidid, materjalidest, torusid, muust, plastmassid, sõiduauto, jäikus, turvapadjad, osasi, lehm, poorsed
thumbnail
4
doc

Pulber Metallurgia

võimalik, näiteks tooted rasksulavatest metallidest (W, Mo jt.), kermised, keraamilised materjalid, suure poorsusega materjalid jt. Pulbermaterjalide olulisema osa (massi järgi) moodustavad konstruktsioonmaterjalid, laagrimaterjalid e. antifriktsioonmaterjalid, hõõrdmaterjalid e. friktsioonmaterjalid, elektrikontaktmaterjalid, magnet- materjalid, poorsed materjalid, kermised, rasksulavad materjalid. Pulbermaterjalide suurim tarbija on autotööstus (ca 2/3, sele 2.54). Pulbermaterjalidest detaile on hulgaliselt olmetehnikas, arvutus- ja paljundusseadmetes. Pulbermaterjalidest on valmistatud suur osa lõike- riistadest ja kaevandustööriistadest. Pulberkonstruktsioonmaterjalidel on tavaliste, valatud materjalidega võrreldes struktuurseks iseärasuseks poorsus. Poorsus (ei tohi ületada 25%) määrab selliste materjalide omadused ja kasutusala. Materjale poorsusega 16...25% kasutatakse väikestel, poorsusega 10...

37 allalaadimist
thumbnail
19
rtf

Exami piletite vastused

omadustega. Vedruterased Keerd-, spiraal- ja lehtvedrusid ning teisi elastseid detaile iseloomustab see, et neis kasutatakse ainult terase elastsust; plastne deformatsioon on lubamatu. Seega on vedrumaterjalile peamine nõue kõrge voolavuspiir ja elastsusmoodul. Kuna vedrud töötavad vahelduvtsüklilistel koormustel, siis on tähtis ka vedruteraste väsimuspiir; sitkus- ja ka plastsusnäitajad olulist rolli ei mängi. Vedrud tehakse 0,5...0,7% süsinikusisaldusega terasest, mis on legeeritud räni ja mangaaniga. Vastutusrikaste vedrude korral kasutatakse teraseid, millele on lisatud kroomi ja vanaadiumi. 6) Tööriistaterased ja nende omadused. Kasutamine. Tööriistaterased moodustavad teraste suure grupi, mida iseloomustavad suur kõvadus, tugevus ja kulu- miskindlus, s.o. omadused, mis on vajalikud metallide lõike- ja survetöötlemisel, ja võime neid omadusi kuumenemisel säilitada ­ soojuskindlus

176 allalaadimist
thumbnail
10
docx

Mustad ja värvilised metallid

W/Km Tõmbetugevus, 40... 200... 120... 200... 80... 370..7 00 N/mm2 180 360 250 350 180 Katkevenivus, 4...50 2...45 4...50 5...60 1...12 2...60 %... Alumiinium ja tema sulamid Nende kasutamine juhtmaterjalina. Alumiinium on hõbevalge värvusega metall. Vasest kergem 3,3 korda g = 2,7 kg/cm3, sulamistemperatuur 660o ¸ 657oC. Elektrijuhtivus 60 % vase omast g = 35 ¸ 38 m/Wmm2. Alumiinium lahustub hapetes ja alustes. Elavhõbedas laguneb täielikult. Õhus kattub õhukese oksüüdi kihiga ja see väldib edasist oksütatsiooni-protsessi jätkumist. Puhtuse järgi liigitatakse primaarne A1 kolme gruppi ja markeeritakse järgmiselt (GOST 11069-74, 11 · eriti puhas A999 (99,999% A1) · kõrgpuhas A 995, A99, A97, A95 (99, 95% A1)

Materjaliõpetus
40 allalaadimist
thumbnail
32
pdf

Autoehituse Materjalid

....................................5 1.1. Teras ...................................................................................................................................5 1.1.1 Roostevaba teras ................................................................................................................5 1.1.2 Terase kasutusalad autoehituses [5] ...................................................................................5 1.2. Malm ..................................................................................................................................6 1.2.1 Hallmalm............................................................................................................................6 1.2.2 Malmi kasutusalad autoehituses [5] ...................................................................................7 2. Mitte mustmetallid ja nende sulamid ..................................

Masinatehnika
35 allalaadimist
thumbnail
86
pdf

Materjalid

............................ 5 1.1.2. Materjalide omadused .................................................................................................................. 6 1.2. Metalsed materjalid ........................................................................................................................... 14 1.2.1. Rauasüsinikusulamid ................................................................................................................. 14 1.2.2. Alumiinium ja alumiiniumisulamid .............................................................................................. 30 1.2.3. Vask ja vasesulamid................................................................................................................... 33 1.2.4. Nikkel ja niklisulamid .................................................................................................................. 35 1.2.5. Titaan ja titaanisulamid......................................

335 allalaadimist
thumbnail
14
docx

Tehnokeraamika referaat

ja kasutusalade järgi. · Kasutusotstarbe järgi Kontstruktioonikeraamika jaguneb : ( kasutatakse autotööstuses,kosmosetööstuses,tekstiilitööstuses, printerites,metallilõikamise tehnikas jne.) Kuumuskindel keraamika Termokindel keraamika Kulumiskindel keraamika Antifriktsioonkeraamika Poorne keraamika Sitke keraamika Biokeraamika Konstruktsioonikeraamika suurimaks tarbijaks on autotööstus, eelkõige süüteküünalde näol. Perspektiivis on auto diiselmootori detailide (kolvid, klapid, silindrihülsid, kepsud jt) osaline valmistamine keraamikast. Selline mootor ei vaja jahutussüsteemi, on 15% kergem ja 30... 40% ökonoomsem. Samuti võib bensiini asemel kasutada madalasordilisi kütuseid nagu põlevkiviõli, masuut jne. Tänu keraamika väiksemale tihedusele väheneb pöörlevate osade mass ja inerts. Tööriistakeraamika jaguneb:

Tehnomaterjalid
65 allalaadimist
thumbnail
75
pdf

Paagutatud Tribomaterjalid

pinna mikrokonaruste või kontaktpindade vahele sattunud liikuvate (libisevate, rulluvate) abrasiivosakeste poolt. Selle tulemusena eraldub osakeste lõikava, kraapiva või paljukordse deformeeriva toime tulemusena kontaktpinnalt materjali. Plastse 4 materjali kriimustamisel ei pruugi esimene läbim materjali veel eraldada, vaid see toimub peale mitmeid kriimustusi mikroväsimuse toimel, mille käigus metall kalestub ja muutub hapramaks. Algselt habraste materjalide, näiteks keraamika abrasiivkulumisel toimub pinnakihi killunemisena ehk mikromurretena. Abrasiiviks võib olla mistahes looduslik või kunstlik mineraal, mille osakestel on piisavalt kõvadust, et kahjustada materjali pinda. Enamlevinud on kvartsiosakesed, kuna liivatolmu leidub looduses kõikjal. Liivatolmus on osakeste suurus 1...30 µm, mis võib küllaltki kaua hõljuda õhus.

Materjaliõpetus
18 allalaadimist
thumbnail
24
docx

Materjaliteaduse üldalused eksamiküsimused

osakesed puutuvad üksteisega vahetult kokku. Sellisel juhul osakese liikumine jõu toimel lükkab naaberosakese võresõlmest välja. TTK võre korral on libisemispindadeks {111} pinnad (joon 5-13) ja neil omakorda libisemissuundadeks suunad <110> 5.5 Metallide tugevdamise meetodid Metalli plastiline deformatsioon on seotud väga suure hulga dislokatsioonide samaaegse liikumisega. Seega mida kergemini dislokatsioonid metallis liiguvad, seda kergemini metall plastiliselt deformeerub. Metalli tugevusomadused (elastsuspiir, voolamispiir, tõmbetugevus, kõvadus) sõltuvad aga sellest, kui kergesti metall plastiliselt deformeerub. Seetõttu kõik metallide tugevdamise meetodid põhinevad tegelikult dislokatsioonide liikumise takistamises. Kasutatakse järgmisi metallide tugevdamise meetodeid. 1) Terade mõõtmete vähendamine. Kristalliitide vahelisel pinnal lõpeb dislokatsiooni liikumine (libisemine), kuna: - katkeb osakeste vahetu kontakt;

Materjaliteaduse üldalused
17 allalaadimist
thumbnail
22
rtf

Materjaliteaduse üldalused 2012 kevad

osakesed puutuvad üksteisega vahetult kokku. Sellisel juhul osakese liikumine jõu toimel lükkab naaberosakese võresõlmest välja. TTK võre korral on libisemispindadeks {111} pinnad (joon 5-13) ja neil omakorda libisemissuundadeks suunad <110> 5.5 Metallide tugevdamise meetodid Metalli plastiline deformatsioon on seotud väga suure hulga dislokatsioonide samaaegse liikumisega. Seega mida kergemini dislokatsioonid metallis liiguvad, seda kergemini metall plastiliselt deformeerub. Metalli tugevusomadused (elastsuspiir, voolamispiir, tõmbetugevus, kõvadus) sõltuvad aga sellest, kui kergesti metall plastiliselt deformeerub. Seetõttu kõik metallide tugevdamise meetodid põhinevad tegelikult dislokatsioonide liikumise takistamises. Kasutatakse järgmisi metallide tugevdamise meetodeid. 1) Terade mõõtmete vähendamine. Kristalliitide vahelisel pinnal lõpeb dislokatsiooni liikumine (libisemine), kuna: - katkeb osakeste vahetu kontakt;

Materjaliteaduse üldalused
47 allalaadimist
thumbnail
69
pdf

Kermised ehk kõvasulamid

12 suunas) ja on kirjeldatav reaktsioonide reana. TiO2 - Ti3O5 - Ti2O3 - TiO - TiC Protsessi viimane staadium - karbiidi moodustumise - on kirjeldatav reaktsioonina: TiO + C = TiC + CO või summaarselt TiO2 + 3C = TiC +2CO Kermiste valmistamiseks on sobiv TiC, mis on lähedane stehhiomeetrilisele koostisele (20,03% C) ja vaba grafiidi sisaldus minimaalne (<0,3%). TiC omadused määrab ära selle saamisviis, poorsus, seotud süsiniku kogus, TiC osakeste suurus ning lisandite sisaldus. Neist olulisemaid on seotud süsiniku sisaldus, mis vôib varieeruda väga laias vahemikus (tab.1.1). TiC môningad omadused sôltuvalt seotud süsiniku sisaldusest Tabel 2 TiCn n=0,97 n=0,87 n=0,78 n= 0,68 n=0,58 2 1

Materjaliõpetus
84 allalaadimist
thumbnail
32
docx

Materjaliteaduse üldaluste eksamiküsimused vastustega 2013

Monokristallides toimub plastiline deformatsioon libisemispindadel (slip planes) toimuva libisemise tulemusel. Polükristalse materjali korral toimub selle tulemusel terade pikenemine. Võib toimuda ka kaksikute tekkimine. 5.5 Metallide tugevdamise meetodid Metalli plastiline deformatsioon on seotud väga suure hulga dislokatsioonide samaaegse liikumisega. Seega mida kergemini dislokatsioonid metallis liiguvad, seda kergemini metall plastiliselt deformeerub. Metalli tugevusomadused (elastsuspiir, voolamispiir, tõmbetugevus, kõvadus) sõltuvad aga sellest, kui kergesti metall plastiliselt deformeerub. Seetõttu kõik metallide tugevdamise meetodid põhinevad tegelikult dislokatsioonide liikumise takistamises. Kasutatakse järgmisi metallide tugevdamise meetodeid. 1) Terade mõõtmete vähendamine. Kristalliitide vahelisel pinnal lõpeb dislokatsiooni liikumine (libisemine), kuna: - katkeb osakeste vahetu kontakt;

Materjaliõpetus
40 allalaadimist
thumbnail
37
docx

Materjaliteadus

vahetult kokku. Sellisel juhul osakese liikumine jõu toimel lükkab naaberosakese võresõlmest välja. TTK võre korral on libisemispindadeks {111} pinnad ja neil omakorda libisemissuundadeks suunad <110> (joon 5-13). Millised on libisemispinnad ja libisemissuunad RTK ja SPH võre korral? 5.5 Metallide tugevdamise meetodid Metalli plastiline deformatsioon on seotud väga suure hulga dislokatsioonide samaaegse liikumisega. Seega mida kergemini dislokatsioonid metallis liiguvad, seda kergemini metall plastiliselt deformeerub. Metalli tugevusomadused (elastsuspiir, voolamispiir, tõmbetugevus, kõvadus) sõltuvad aga sellest, kui kergesti metall plastiliselt deformeerub. Seetõttu kõik metallide tugevdamise meetodid põhinevad tegelikult dislokatsioonide liikumise takistamises. Kasutatakse järgmisi metallide tugevdamise meetodeid. 1) Terade mõõtmete vähendamine. Kristalliitide vahelisel pinnal lõpeb dislokatsiooni liikumine (libisemine), kuna: - katkeb osakeste vahetu kontakt;

Materjaliteaduse üldalused
107 allalaadimist
thumbnail
11
docx

Materjaliteaduse üldaluste eksam

dislokatsioonidel eelistatud pinnad, mis ongi libisemispindadeks. Neil pindadel on omakorda eelistatud suunad, mida nimetatakse libisemissuundadeks. TTK võre korral on libisemispindadeks {111} pinnad ja neil omakorda libisemissuundadeks suunad <110> (joon 5-13) Metallide tugevdamise meetodid Mida kergemini dislokatsioonid metallis liiguvad, seda kergemini metall plastiliselt deformeerub. Seetõttu kõik metallide tugevdamise meetodid põhinevad tegelikult dislokatsioonide liikumise takistamises. Kasutatakse järgmisi metallide tugevdamise meetodeid. 1) Terade mõõtmete vähendamine. Kristalliitide vahelisel pinnal lõpeb dislokatsiooni liikumine, - muutub kristalli orientatsioon ja seega libisemispind.Seetõttu on väikeste kristallii-tidega metallid tunduvalt tugevamad. Üheks lihtsaks võimaluseks terade mõõtmete vähendamiseks on karastamine

Materjaliteaduse üldalused
102 allalaadimist
thumbnail
14
docx

Materjaliõpetus

teistele kehadele. · Värvus ­ Värvuse järgi jaotatakse metalle mustadeks ( raud ja tema sulamid) ning värvilisteks (kõik ülejäänud metallid). Enamik metalle on hõbevalged, raud on mustjas hall, kuld - kollane, vask -roosakaspunane ja veel mõned on valkjad , ainult helgivad kas sinkjalt või kollakalt. · Tihedus - Tiheduse alusel jaotatakse metallid kerg- ja raskmetallideks. Kergmetallid, näiteks alumiinium on vajalik lennukite tegemisel. Enamus metalle on raskmetallid. · Sulavus - · Magneetuvus · Elektrijuhtivus 1.2 Metallide keemilised omadused: · Korrosioonikindlus - metalli võime vastu panna niiskusele ja õhuhapnikuga · Happekindlus ­ metalli võime mitte laguneda hapetega kokkupuutumisel · Kuumapüsivus ­ metalli võime kõrgel temperatuuril võimalikult vähe oksüdeeruda 1.3 Metallide tehnoloogilised omadused

76 allalaadimist
thumbnail
47
docx

Tehnomaterjalide eksami materjal

elektronkontsentratsioon. Karbiidi, nitriidid ja boriidid ­ ülemineku grupi metallid (Fe, Mn, Cr, Mo, W jt) moodustavad väikese aatomi raadiusega mittemetallidega (C, N, B, H) sisendusfaasidena tuntud keemilisi ühendeid, kusjuures metalli ja mittemetalli aatomi raadiuste erinevus on suur (RM/RX 1,7 või RX/RM 0,59). Sisendusfaaside komponentide aatomite arvu suhe on lihtne täisarvkordne ja selliste keemiliste ühendite valemiteks on M4X, M2X, MX, MX2 jne (kus M on metall ja X on mittemetall) ja nende kristallvõred on sarnased sisendustardlahuste kristallvõredega (tavaliselt esinevad võretüübid K8, K12 või H12). Sisendusfaase süsinikuga nim. karbiidideks, lämmastikuga nitriidideks, booriga boriidideks jne. Tuntuimaks sisendusfaasiks rauasüsiniku- sulameis on Fe3C (raudkarbiid), kus raua ja süsiniku aatomite suhe (baasaatomite suhe) on 0,60. Kui rauale on omane kuupvõre (K8 või K12), süsinikule

Tehnomaterjalid
450 allalaadimist
thumbnail
13
docx

Materjateaduse üldalused.

Neil on omakorda suunad, mida nim libisemissuundadeks. Libisemispinnad ja-suunad on need, kus osakeste paiknemise tihedus on suurim, kus osakesed puutuvad üksteisega vahetult kokku. Sellisel juhul osakeste liikumine jõu toimel lükkab naaberosakeste võresõlmest välja. Metallide tugevadamise meetodid- metalli plastiline deformatsioon on seotud väga suure hulga dislokatsioonide samaaegse liikumisega. Seega mida kergemini dislokatsioonid metallis liiguvad, seda kergemini metall plastiliselt deformeerub. Kõik metallide tugevdamise meetodid põhinevad tegelikult dislokatsioonide liikumise takistamises. Kasutatakse järgmisi metallide tugevdamise meetodeid: 1)Terade mõõtmete vähendamini: kristalliitide vahelisel pinnal lõpeb dislokatsiooni liikumini, kuna katkeb osakeste vahetu kontakst ja/või muutub kritsalli orientastsioon ja seega libisemispind. Seetõttu on väikeste kritalliitidega metallid tunduvalt tugevamad. Üheks

Materjaliteaduse üldalused
67 allalaadimist
thumbnail
32
docx

Materjaliteaduse üldalused Eksami kordamisküsimused

mõõtmetest. Nanoosakeste korral on nende mõõtmed vahemikus 10-100nm. Suurte teraliste osakestega komposiidid: Plastid: sisaldavad täiteaineid, mis on suurte teraliste osakestega komposiidid. Teise rühma moodutavad betoonid, kus tsemendile on lisatud liiva või killustikku. Komposiitide tugevus sõltub keskkonna materjali ja dispergeeritud faasi osakeste vaheliste sidemete tugevusest. Komposiite valmistatakse metallidest, polümeeridest ja keraamikast. Kõige sagedamini on keskkonnaks metall või polümeer, keraamikat kasutatakse sagedamini osakestena, mis annavad suurema tugevuse (näiteks metallkeraamika: niklile või kroomile lisatakse WC ja TiC osakesi, mis on äärmiselt kõvad, treiterade jaoks). Betoonidest on tuntuimad tsementbetoon ja asfaltbetoon. Tsementbetoon sisaldab väiksemaid (liiv) ja suuremaid (killustik) osakesi. Lisandi osakased 60-80% betoonist, kuid vee ja tsemendi segu peab täielikult täitma kõik vahed. Suurema tugevuse saavutamiseks

Materjaliteaduse üldalused
12 allalaadimist
thumbnail
36
docx

Materjalide keemia

paagutamisel lagunevad ja lõhuvad eseme, Sulfaadid alandavad paakumistemperatuuri, põhjustavad toote purunemist, Orgaanilised ained põletamisel tekitavad poorsust, Veehulk määrab savi plastust. Hea kui savi ei ole väga pehme ja mitte liiga paks. Tellise omadused sõltuvad savi ja lisaainete kvaliteedist, valmistamismeetodist, põletus temperatuurist ja ajast. Poorsus sõltub põletusprotsessist -mida kõrgem temperatuur, seda väiksem üldine poorsus. Niiskusomadused on seotud poorsusega, ca 15%. Külmakindlus, vähemalt 25 külmatsüklit, see seotud niiskusega. Tänu suure tihedusele on hea helipidavus. Katusekivid on tulekindlad, pika elueaga, veekindlad, külmakindlad, keemiliselt ja bioloogiliselt vastupidavad, vaiksed vihma ajal (hea heliisolaator). Puuduseks on suur kaal - katuse nurk üle 30°. Keraamilised plaadid võivad olla glasuuriga(et anda veekindlust) ja ilma:Monocottura on ühekordne põletus

Materjalide keemia
24 allalaadimist
thumbnail
77
ppt

Masinaehitusmaterjalid, mõisteid MMT-st, kütused, õlid, tehnilised vedelikud,

Masinaehitusmaterjalid, mõisteid MMT-st, kütused, õlid, tehnilised vedelikud, 17.10.12 [email protected] 1 Materjalid Metallid Materjalid, aine ehitus Materjalid,fotoaparaat Metallid Metallide omadused Teraste liigitus otstarbe järgi, markeering Metallide omadusi Metallide üldisi omadusi 8.02.2010 Materjalide katsetamine Röntgenkiirega ja ultraheli katsetus Alumiinium Alumiinium on enamlevinumaid elemente maakoores, kuid olles väga aktiivne hapniku suhtes, esineb ta looduses ühendeina. Põhiliselt saadakse alumiiniumi mineraalist ­ boksiidist. Tootmisprotsess seisneb sellest alumiiniumoksiidi saamises ja järgnevas sulas krüoliidis lahustatud alumiiniumoksiidi elektrolüüsis. Sel menetlusel saadud alumiiniumi puhtus on 99,5...99,8% ja põhilisteks lisanditeks raud, räni ja mangaan. Suurema puhtusega alumiiniumi (kuni 99,9%) saadakse sulaalumiiniumi

Materjaliõpetus
36 allalaadimist
thumbnail
17
docx

Materjaliõpetus

Vasesulamid Puhast vaske tähistatakse keemiliselt Cu . Vase sulamistemperatuur on 1083oC ja tihedus 8900 kg/m3 . Masinaehituses kasutatakse vase sulameid. Tähtsamad vase sulamid on pronks ja messing. Elektrotehnikas on kasutuses puhas vask. Kui vasele lisada Al või Sb väheneb sulami juhtivus kolm korda. 4 Alumiiniumisulamid Alumiiniumi sulamistemperatuur on 660oC ja tihedus 2700 kg/m3 Puhas alumiinium on plastne ja mitte eriti kõva elektrit ning soojust hästi juhtiv. Masinaehituses kasutatakse peamiselt alumiiniumisulameid. Sulamite saamiseks lisatakse alumiiniumile kas vaske, magneesiumi, räni, tsinki, niklit võimangaani. Magneesiumisulamid Magneesiumisulamid on kasutatavatest metallidest kõige kergemad. Magneesiumi tihedus on 1740 kg/m³ ja sulamistemperatuur 650ºC. Magneesiumit keemilise aktiivsuse tõttu masinaehituses puhtal kujul ei kasutata

Materjaliõpetus
36 allalaadimist
thumbnail
30
docx

Keemia ja materjaliõpetuse eksami küsimuste vastused

vastava reaalse süsteemi mudelid. Kui projektis jäetakse mõni süsteemi kuuluv nähtus kas üldse käsitlemata või käsitletakse ebapiisaval tasemel, võivad tagajärgedeks olla avariid, õnnetused, konstruktsioonmaterjalide hävimised jm. Näide: Kahes Tallinna suurelamus valmistati kuuma vee süsteem tsingitud terastorudest. Tingituna ebaõigest kasutusreziimist tekkisid korrosiooni tulemusena ühes majas torudesse esimesed augud 1,5 aasta, teises 5 aasta pärast. Roostevaba terasest kuumaveekatel. Arvestamata jäeti roostevaba terase korrosiooni spetsiifika ning suitsugaasi torudesse tekkisid korrosioonist põhjustatud augud paari aasta jooksul. Süsteemne materjalide korrosioonitõrje: põhineb sellel, et teostatakse põhjalikud uuringud materjalide ja nende omaduste kohta ning uuritakse, kuidas mõjutavad materjalid teineteist korrosiooni seisukohalt. Püütakse leida parim variant, et korrosiooni oht oleks minimaalne. 2

Keemia ja materjaliõpetus
309 allalaadimist
thumbnail
31
docx

Materjalide keemia eksamiküsimuste vastused 2015

Solventides punduvad, aga ei lahustu. Pinnakatete põhiomadused. Pinnakatted peavad sarnaselt liimidega hästi nakkuma aluspinnaga, tugevad ja vastupidavad, algul vedelad, pärast kõvenevad. Värvid peavad moodustavama pinnal orgaanilise kelme. Välispind peab olema sile, läikiv või matt, värviline või läbipaistev, kulumiskindel. Kaitseomadused mehaaniliste, keemiliste ja bioloogiliste tegurite eest. Tähtis on ilufunktsioon ka. Nakkumise tingimused samad mis on liimidel (karedus, poorsus, hüdrofoobsus). Tugevus. Kui värvkate praguneb, kaob kaitsev mõju ära. Kõvadus ja sitkus. Heal värvil ei tohi tekkida kriimustusi ja kildu. Voolavuse ja kuivamisaja tasakaal - Vedel värv moodustab ühtlase pinna, liiga vedel värv voolab vertikaalselt pinnalt alla. Voolavus sõltub suurel määral kasutatud solvendist ja selle hulgast. Pilet 4 Rauasulamite omaduste sõltuvus süsiniku sisaldusest. Rauasulamid: Malm (>2.14%.) ­ head valuomadused ja kehv keevitatavus. Teras (kuni 2

Materjalide keemia
8 allalaadimist
thumbnail
33
doc

Keemia ja materjaliõpetuse eksam 2011

tõsiste tagajärgedeni. Rajatiste ja ehitiste projektid on vastava reaalse süsteemi mudelid. Kui aga projektis jäetakse mõni süsteemi kuuluv nähtus kas üldse käsitlemata või käsitletakse ebapiisaval tasemel, võivad tagajärgedeks olla avariid, õnnetused, konstruktsioonmaterjalide hävimised jms. Millegi rajamisel tuleb arvestada materjalide sobivust: ükski roostevaba teras pole vastupidav kloriidioonide toimele; tsingitud terasest torudel peab kuuma vee temp olema kas alla 55 o või üle 100o; kui süsinik on kontaktis teiste metallidega, siis teine metall alati hävib, ka kuld ja plaatina; õhk sisaldab alati veeosakesi aerosoolidena (Cl-ioonid). NÄIDE: AS Paide Vesi: Roostevaba teraste keevitamine on äärmiselt probleemne, arvestamata jäeti ka roostevabaterase korrosioonispetsiifika ­ keevisõmbluste piirkond jäeti puhastamata keevitamisel

Keemia ja materjaliõpetus
242 allalaadimist
thumbnail
31
doc

Ehitusmaterjalid

.......................................................................................20 4.1.1.1 Terase omadused ................................................................................................21 4.1.2 Malmid.......................................................................................................................22 4.1.3 Värvilised ja kerged metallid..................................................................................... 23 4.1.4 Alumiinium ja alumiiniumsulamid............................................................................ 23 4.1.5 Vask ja tema sulamid................................................................................................. 23 5 SOOJUSTUS- JA HELIISOLATSIOONIMATERJALID .....................................................26 5.1 Mineraalsed soojustusmaterjalid.......................................................................................27 5.1.1 Klaasvill......................

Ehitus alused
236 allalaadimist
thumbnail
20
docx

Materjaliõpetuse eksami kordamisküsimuste vastused.

- faasidiagramm ( faasidiagramm komponentide piiramatu või piiratud lahustuvuse korral, sulamite korral,mille komponendid teineteises ei lahustu, keemilisi ühendeid moodustavate komponentide korral, komponentide polümorfismi korral, seos faasidiagrammi ja sulamite omaduste vahel ) RAAMAT LK 34. - metallide ja sulamite füüsikalised ja mehaanilised omadused; Füüsikalised omadused. Tihedus- kergmetalle ja -sulameid, mille tihedus on üle 5000 kg/m3 (liitium, berüllium, magneesium, alumiinium, titaan jt.), raskmetalle ja -sulameid, mille tihedus ületab 10 000 kg/m3 (plaatina, volfram, molübdeen, plii, tina jt.) ning keskmetalle ja -sulameid (tihedus üle 5000 kuid alla 10 000 kg/m3). Sulamistemp- Metallid liigitatakse sulamistemperatuuri järgi kergsulavaiks metallideks ja sulameiks, mille sulamistemperatuur ei ületa plii oma, s.o. 327 °C (tina, plii, antimon, elavhõbe jt.), rasksulavaiks metallideks ja sulameiks, mille sula-mistemperatuur ületab raua oma, s.o

Materjaliõpetus
194 allalaadimist
thumbnail
88
pdf

Materjaliõpetus

Tln Lasnamäe Mehaanikakool Materjaliõpetus Konspekt autotehnikutele Koostaja Mati Urve 2009 Teemad 1. Materjalide omadused, 2. Terased, 3. Malmid, 4. Magnetmaterjalid, 5. Metallide termiline töötlemine 6. Vask ja vasesulamid, 7. Alumiinium ja alumiiniumisulamid, 8. Magneesiumisulamid, 9. Titaan ja selle sulamid, 10. Laagriliuasulamid , 11. Kermised, 12. Metallide korrosioon, 13. Plastid , 14. Klaas, 15. Värvid, 16. Värvide liigitus, 17. Värvimisviisid, 18. Pindade ettevalmistamine, 19. Metallide konversioonkatted, 20. Metallkatted, 21. Kütuste koostis, 22. Kütuste koostis, 23. Nafta koostis ja kasutamine, 24. Nafta töötlemise viisid, 25. Kütuse põlemine , 26

182 allalaadimist
thumbnail
88
pdf

Materjaliõpetus

Tln Lasnamäe Mehaanikakool Materjaliõpetus Konspekt autotehnikutele Koostaja Mati Urve 2009 Teemad 1. Materjalide omadused, 2. Terased, 3. Malmid, 4. Magnetmaterjalid, 5. Metallide termiline töötlemine 6. Vask ja vasesulamid, 7. Alumiinium ja alumiiniumisulamid, 8. Magneesiumisulamid, 9. Titaan ja selle sulamid, 10. Laagriliuasulamid , 11. Kermised, 12. Metallide korrosioon, 13. Plastid , 14. Klaas, 15. Värvid, 16. Värvide liigitus, 17. Värvimisviisid, 18. Pindade ettevalmistamine, 19. Metallide konversioonkatted, 20. Metallkatted, 21. Kütuste koostis, 22. Kütuste koostis, 23. Nafta koostis ja kasutamine, 24. Nafta töötlemise viisid, 25. Kütuse põlemine , 26

Materjaliõpe
60 allalaadimist
thumbnail
25
docx

Konspekt eksamiks

Kui projektis jäetakse mõni süsteemi kuuluv nähtus kas üldse käsitlemata või käsitletakse ebapiisaval tasemel, võivad tagajärgedeks olla avariid, õnnetused, konstruktsioonmaterjalide hävimised jm. Näide: · Kahes Tallinna suurelamus valmistati kuuma vee süsteem tsingitud terastorudest. Tingituna ebaõigest kasutusreziimist tekkisid korrosiooni tulemusena ühes majas torudesse esimesed augud 1,5 aasta, teises 5 aasta pärast. · Roostevaba terasest kuuma vee katel. Arvestamata jäeti roostevaba terase korrosiooni spetsiifika ning suitsugaasi torudesse tekkisid korrosioonist põhjustatud augud paari aasta jooksul. Süsteemne materjalide korrosioonitõrje: põhineb sellel, et teostatakse põhjalikud uuringud materjalide ja nende omaduste kohta ning uuritakse, kuidas mõjutavad materjalid teineteist korrosiooni seisukohalt. Püütakse leida parim variant, et korrosiooni oht oleks minimaalne. 2

Keemia ja materjaliõpetus
276 allalaadimist
thumbnail
472
pdf

EHITUSMATERJALID

............ 38 3.8. Puidu kuivatamine ............. 39 3.9. Puidust ehitusmaterjalid ............. 41 4. Metallmaterjalid ............. 46 4.1. Üldmõisteid metallist ............. 46 4.2. Malmid ............. 46 4.3. Terased ............. 47 4.4. Alumiinium ja tema sulamid ............. 48 4.5. Vask ja tema sulamid ............. 49 4.6. Metallmaterjalide tootmine ............. 49 2 4.7. Metallidest ehitusmaterjalid ............. 50 4.8. Metallide korrosioon ja korrosioonikaitse ............. 54 5. Looduskivimaterjalid ............. 57 5.1

Ehitus
69 allalaadimist
thumbnail
26
docx

Metallide tehnoloogia, materjalid eksam 2015

tõstetakse pendel ülemisse asendisse. Kui pendel vabastatakse, langeb ta alla ja purustab teimiku. 8. Väsimuskõver Tegelikkuses esinevad sagedamini vahelduvkorduvad (tsüklilised) koormused, mille tagajärjel tekivad märki muutvad pinged (surve-tõmbepinged),mis põhjustab pragude teket. Ehitusterased Ehitusterastena kasutatakse suhteliselt väikese 9. Metall ja mittemetallid süsiniku (kuni 0,2%) ja legeerivate elementide sisaldusega (Si ja Mn 1…2%) teraseid. Reeglina kasutatakse Metallidon ained, millel on tahkes olekus iseloomulik läige, ehitusteraseid mitmesuguse ristlõikega hea elektri- ja soojusjuhtivus ning tavaliselt ka hea profiilmetallina (nurkteras, talad, latid, armatuur jt.)

Materjaliõpetus
179 allalaadimist
thumbnail
72
pdf

Keemia ja materjaliõpetus (YKI3030) eksami kordamisküsimused ja vastused 2016/2017

19. Mineraal ja kivim- definitsioonid.  Mineraal- looduslik anorgaaniline aine.  Kivim- on looduslike mineraalide kogum (agregaadid või aglomeraadid, või mõlemad), n. graniit: kvarts, päevakivi, vilgukivi 20. Ainete ja materjalide tähistamine. Nimi 1.1. Nimi ei anna infot ei aine ega materjali päritolu, kasutamise ega omaduste kohta. Näiteks kõikide elementide nimetused, kriit, malm, lubi, vesi, tsement, põrgukivi jne. 1.2. Nimes sisaldub mingisugune info selle aine kohta.Näiteks lubjakivi, sooraud, tsinkvalge, seebikivi, tšiili salpeeter jt. 1.3. Kaubanduslik (kommerts) nimetus. Reeglina ei sisalda mingisugust infot. Näiteks nailon, amberliit, Dowex jt. Valem 1. Empiiriline (lihtsaim valem)- näitab aatomite liike. Näiteks vesi jt. 2. Molekulvalem. Tähtede ja numbrite kombinatsioon.

Keemia ja materjaliõpetus
42 allalaadimist
thumbnail
27
doc

Keemia kordamisküsimused

38. Gaasiballoonide transpordi reeglid. Gaasiballoonide transpordiks kasutatavad sõidukid peaksid olema lahtised. Kui see pole võimalik, peavad sõidukid olema hea õhutusega. Mürgiseid gaase ei tohi transportida suletud sõidukis, va juhul, kui tegemist on erisõidukiga. Transportimise ajal peavad balloonide ventiilid olema suletud ja kõik seadmed eemaldatud. Balloonid tuleb korralikult kinnitada ning need ei tohi ulatuda üle sõiduki külgede või tagaosa. Lekkimise ohu korral tuleb sõiduk parkida ohutusse kohta ning lekke tuvastamise korral helistada hädaabinumbril. 39. Gaasiballoonide käsitlemise ja ladustamise nõuded. MITTE KUNAGI EI TOHI -täielikult avada atsetüleeniballooni ventiili. Poolest pöördest piisab. - balloone mistahes viisil rikkuda. Kui on kahtlus, et balloon on rikutud, tuleb võtta ühendust tarnijaga. - üritada ballooni parandada. - peita ballooni kahjustusi. - balloonis gaase segada. - gaasi ühest balloonist teise juhtida.

Keemia ja materjaliõpetus
10 allalaadimist
thumbnail
11
pdf

Keemia ja materjaliõpetus: eksami kordamisküsimused vastustega

5) optiliselt läbipaistev; Heterogeenne segu- segu, mille koostis igas ruumipunktis pole ühesugune, 6) toodetav erinevates värvitoonides. koosneb mitmest eristatavast faasist: emulsioonid, kivimid, pulbrid; näiteks Metall (Al), keraamika (klaas), polümeer (polüester). graniit Segud on paljud toiduained, ravimid, taimekaitsepreparaadid, ehitusmaterjalid. 16. Komposiitide mõiste, näited. n Koosnevad 2 või enamast materjalist (metall, keraamika, polümeerid). 9. Materjalide struktuur (mikro-, makro)

Keemia ja materjaliõpetus
116 allalaadimist


Sellel veebilehel kasutatakse küpsiseid. Kasutamist jätkates nõustute küpsiste ja veebilehe üldtingimustega Nõustun