Vajad kellegagi rääkida?
Küsi julgelt abi LasteAbi
Logi sisse

Kõrgema astme võrrandid (0)

1 Hindamata
Punktid

Lõik failist


Murdvõrrandid
Võrrandid, mis sisaldavad tundmatut murru nimetajas, on murdvõrrandid.
 
Murdvõrrandite lahendamiseks peab kõigepealt oskama lihtsustada murde sisaldavaid avaldisi.
 
Näide 1. Lahendame võrrandi
Murru väärtus on null, kui lugeja on null ja nimetaja nullist erinev, seega peavad üheaegselt olema täidetud tingimused
2x – 3 = 0, millest x = 1,5 ning
x + 2 = 0, ehk x = –2.
Murru nimetaja nulliga mittevõrdumist tuleb kontrollida selleks, et lahendite hulgast välja
eraldada need, mille korral nii lugeja kui ka nimetaja on üheaegselt nulliga võrdsed.
Vastus: x = 1,5.
Näide 2. Lahendame võrrandi
Kõigepealt leiame vasakul pool ühise nimetaja ja seejärel lihtsustame avaldist :
Seega tuleb lahendada võrrand
millest võrde põhiomaduse järgi saame, et
(x+2)(x–2)=4x–7 ehk
x2
Kõrgema astme võrrandid #1 Kõrgema astme võrrandid #2
Punktid 10 punkti Autor soovib selle materjali allalaadimise eest saada 10 punkti.
Leheküljed ~ 2 lehte Lehekülgede arv dokumendis
Aeg2014-10-14 Kuupäev, millal dokument üles laeti
Allalaadimisi 16 laadimist Kokku alla laetud
Kommentaarid 0 arvamust Teiste kasutajate poolt lisatud kommentaarid
Autor Andre.H Õppematerjali autor

Sarnased õppematerjalid

thumbnail
17
docx

VÕRRANDID (mõisted)

3 x  3 x  1  6  5 0  x  0. Vastus. Võrrandi lahenditeks on kõik reaalarvud. Näide 10 4x  1  1  2 x  4   5 . Lahendada võrrand 2 Lahendus. Teeme vajalikud teisendused: 4x  1  1  2 x  4   5 2 2 4 x  1  2  4 x  16  10 4 x  4 x  16  10  2  1 0  x  5. Vastus. Võrrandil puudub lahend. RUUTVÕRRAND Ruutvõrrandiks (teise astme algebraliseks võrrandiks) nimetatakse võrrandit, mis avaldub kujul ax 2  bx  c  0 , kus a  0. Siin a, b ja c on reaalarvud ning x tundmatu (otsitav). Täielikud ruutvõrrandid: a) täieliku taandatud ruutvõrrandi puhul on x2 kordaja 1 Üldkuju: x  px  q  0 2 Lahendivalem: 2 p  p x    q 2  2 Näide 11

Matemaatika
thumbnail
100
pdf

MATEMAATIKA TÄIENDUSÕPE

….… 27 3.13 Näited lineaarvõrrandisüsteemide lahendamisest ……………..……. 28 3.14 Võrratus ………………………………………………………...…… 31 3.15 Lineaarvõrratus ………………………………………………..…… 31 3.16 Lineaarne võrratussüsteem ……………………………………...….. 32 3.17 Ruutvõrratus …………………………………………………….….. 33 3.18 Kõrgema astme võrratus ……………………………………………. 34 3.19 Absoluutväärtusi sisaldavad võrratused ………………………...…… 35 3.20 Näited võrratuste ja võrratussüsteemide lahendamisest …………..… 35 3.21 Logaritmid ………………………………………………………..…. 41 3.22 Summa märk ………………………………………………….……. 44 3.23 Ülesanded aritmeetikast ja algebrast …………...……………….

Matemaatika
thumbnail
6
doc

Ruutvõrrandid

- b ± b 2 - 4ac 2 x1;2 = p p 2a x1;2 = - ± - - q 2 2 Kui ruutvõrrandis ax2 + bx + c = 0 kas b = 0 või c = 0, siis on tegemist mittetäieliku ruutvõrrandiga. Selliseid võrrandeid viisakas inimene ei lahenda eespool toodud lahendivalemiga, sest neid saab lihtsamalt lahendada. Näide 1. Lahendame võrrandid 1) 3x2 + 6x = 0, 2) 0,5x2 ­ 23 = 0, 3) ­3x2 = 0. 1) Võrrandi 3x2 + 6x = 0 lahendamisel toome x sulgude ette, siis saame x(3x + 6) = 0. Kahe arvu korrutis on null parajasti siis, kui vähemalt üks arvudest on null, seega kas x = 0 või 3x + 6 = 0, millest x = ­2. Vastus: x1 = 0, x2 = ­2. 2) Kui 0,5x2 ­ 23 = 0, siis 0,5x2 = 23, millest x2 = 46. Järelikult x1 = - 46 ja x 2 = 46 . 3) Seda tüüpi võrrandi lahenditeks on alati 0 ja 0.

Matemaatika
thumbnail
246
pdf

Funktsiooni graafik I õpik

am : an  am n 3) Korrutise aste võrdub tegurite astmete korrutisega: a  bn  an  bn 4) Jagatise aste võrdub jagatava ja jagaja astmete jagatisega: n  a an    b bn 5) Astme astendamisel astendajad korrutatakse: am n  amn Kehtivad ka valemid: m 1 n a1 = a a0 = 1 a n  a n  am an © Allar Veelmaa 2014

Matemaatika
thumbnail
3
doc

Ruutvõrrand

1.5 RUUTVÕRRAND Ruutvõrrandiks nimetatakse võrrandit kujul ax2 + bx + c = 0, kus a 0. Kordajad a, b ja c on reaalarvud ning x tundmatu (otsitav). Ruutvõrrand on teise astme algebraline võrrand. Ruutvõrrandi liikmeid nimetatakse järgmiselt: ax2 ­ ruutliige, kus a on ruutliikme kordaja; bx ­ lineaarliige, kus b on lineaarliikme kordaja; c ­ vabaliige. Ruutvõrrandi lahendivalem on - b ± b 2 - 4ac x= () 2a Avaldist D = b2 ­ 4ac nimetatakse ruutvõrrandi diskriminandiks. · Kui D > 0, siis ruutvõrrandil on 2 erinevat lahendit. · Kui D = 0, siis on ruutvõrrandil 2 võrdset lahendit.

Matemaatika
thumbnail
8
pdf

Kompleksarvud gümnaasiumiõpikus

a + bi esmakordselt saksa matemaatik Gauss (1777-1855). Missugused on aga ruutvõrrandi lahendid siis, kui võrrandi diskriminant on Kompleksarvude korrutamine ja jagamine negatiivne ? Vaatleme mõnda näidet. Korrutame arvud a + bi ja c + di. Kaksliikmete korrutamise reegli järgi 2 2 4 2 Näide 4. Lahendame võrrandid x + 16 = 0, x - 2x + 10 = 0 ja x - 3x - 4 = 0. (a + bi)(c + di) = ac + adi + bci + bdi2 = ac - bd + (ad + bc)i. Seega 1) Kui x2 + 16 = 0, siis x = ± -16 = ± 16·i2 = ± 4i. Seega x1 = -4i ja x2 = 4i. ( a + bi) (c + di ) = ( ac - bd ) + ( ad + bc)i. Kontrollime lahendeid, pidades silmas et i·i = i2 = -1. (-4i)2 + 16 = (-4)2 · i2 + 16= 16·(-1) +16 = 0 ja

Matemaatika
thumbnail
3
doc

Ruutvõrrandi lahendamine

Ruutvõrrandi lahendamine - b ± b 2 - 4ac Ruutvõrrandi ax2 + bx + c = 0 lahendivalem on x = . 2a Võrrandi lahendamiseks asendame lahendivalemisse a, b ja c väärtused. Näide 1. Lahendame ruutvõrrandi 5x2 + 6x + 1 = 0. Selles võrrandis a = 5, b = 6 ja c = 1. Asendame need arvud lahendivalemisse, saame - 6 ± 6 2 - 4 5 1 - 6 ± 36 - 20 - 6 ± 16 - 6 ± 4 x= = = = . 2 5 10 10 10 -6+4 -2 - 6 - 4 - 10 Siit x1 = = = -0,2 ja x2 = = = -1. 10 10 10 10 Näide 2. Lahendame ruutvõrrandi 2x2 + x - 15 = 0.

Matemaatika
thumbnail
14
pdf

Võrratused

Tartu Ülikool Teaduskool VÕRRATUSED Metoodiline juhend TÜ Teaduskooli õpilastele Koostanud Hilja Afanasjeva Jüri Afanasjev Tartu 2003 Juhendmaterjal on jätkuks TÜ Teaduskooli I kursusel läbitöötatud brosüürile E. Tamme "Algebraliste võrrandite lahendamisest". Vaadeldakse kõrgema astme võrratuste lahendamist intervallmeetodiga, absoluutväärtusi sisaldavaid võrratusi ja juurvõrratusi. Õppematerjali koostamisel kasutatud kirjandus: Abel, E. jt Aritmeetika ja algebra. Tartu, 1984 Gabovits, J. Võrratused. Tartu, 1970 Jürimäe, E., Velsker, K. Matemaatika käsiraamat IX - XI klassile. 2. tr. Tallinn, 1984 Litvinenko, V. N. jt Praktikum po reseniju matematitseskih zadats.

Matemaatika




Kommentaarid (0)

Kommentaarid sellele materjalile puuduvad. Ole esimene ja kommenteeri



Sellel veebilehel kasutatakse küpsiseid. Kasutamist jätkates nõustute küpsiste ja veebilehe üldtingimustega Nõustun