Vajad kellegagi rääkida?
Küsi julgelt abi LasteAbi
Logi sisse Registreeri konto
Ega pea pole prügikast! Tõsta enda õppeedukust ja õpi targalt. Telli VIP ja lae alla päris inimeste tehtu õppematerjale LOE EDASI Sulge

Füüsika eksami konspekt - sarnased materjalid

gaas, entroopia, jäävus, trajektoor, amplituud, newton, const, võnkumine, vektorpulss, erisoojus, mehaanikapulsimoment, seisulaine, soojusmasin, elastsusjõud, siseenergia, kristall, puutuja, nurkkiirus, carnot, mehaaniline, liikumisest, kehadel, mehaanikas, süsteemil, isotermilise, termodünaamika, doppler, soojushulk, paisub, maxwelli, rong
thumbnail
30
docx

Füüsika eksam vastustega: liikumine

Füüsika eksam 1. Liikumise kiirendamine. Taustsüsteem on mingi kehaga seotud ruumiliste ja ajaliste koordinaatide süsteem. Kohavektor on vektor, mille alguspunkt ühtib koordinaatide alguspunktiga. Trajektoor on keha või ainepunkti teekond liikumisel ruumis või tasandil. Trajektoori saab korrektselt kasutada ainult punktmassi korral. Kiirus on vektoriaalne suurus, mis võrdub nihke ja selle sooritamiseks kulunud ajagavahemiku suhtega(kiirusvektor on igas trajektoori punktis suunatud mööda trajektoori puutujat selles punktis)  Kiirendus on kiiruse muutus ajaühikus. (Kiirendusvektor lahutub kiirenevalt

Füüsika
45 allalaadimist
thumbnail
66
docx

Füüsika I konspekt

Kui keha liigub kiiresti, siis tekitab ta enda läheduses turbulentsi, millega kaasnevad keerisvoolud ei allu nii lihtsale matemaatilisele analüüsile. 25. VÕNKUMINE. VÕNKUMISTE LIIGID. PERIOOD, SAGEDUS, RINGSAGEDUS. HARMOONILISE VÕNKUMISE DIFERENTSIAALVÕRRAND JA SELLE LAHEND. VEDRUPENDLI JA MATEMAATILISE PENDLI HARMOONILINE VÕNKUMINE JA VÕNKEPERIOOD. SUMBUV VÕNKUMINE. SUNDVÕNKUMINE. RESONANTS. Võnkumine on liikumine, mis kordub kindlate ajavahemike järel, kusjuures keha läbib sama tee edasi-tagasi. Võnkumised liigitakse vabavõnkumisteks 10 ja sundvõnkumisteks. Vabavõnkumised toimuvad süsteemisiseste jõudude toimel. Sundvõnkumised toimuvad välise perioodilise jõu toimel. kui sundiva jõu sagedus langeb kokku vabavõngete sagedusega, kasvab võnkeamplituud järsult

Füüsika
72 allalaadimist
thumbnail
105
doc

Füüsika konspekt

Sageduse ühik on 1 s-1(loe: 1 pööre sekundis) = 1 Hz (herts). Sageduse ühik herts on oma nime saanud Saksa füüsiku H. R. Hertzi järgi. Avaldadame nurkkiiruse sageduse f kaudu: Sellest valemist on näha, et nurkkiirus on võrdeline sagedusega f, selle tõttu kutsutakse perioodilise liikumise nurkkiirust ka nurksageduseks ehk ringsageduseks. 7 RINGLIIKUMISE JA VÕNKUMISE VAHELINE SEOS Võnkumine on keha perioodiline edasi-tagasi liikumine tasakaaluasendist kord ühele, kord teisele poole. Füüsikalised suurused, millega iseloomustatakse võnkumist, on sarnased ringliikumist iseloomustavate suurustega: Võnkumise perioodiks T nimetatakse aega, mille jooksul võnkuv keha teeb ühe täisvõnke. Võnkumise sagedus f on perioodi T pöördväärtus: Kuidas saaks väljendada võnkumist matemaatiliselt?

Füüsika
282 allalaadimist
thumbnail
414
pdf

TTÜ üldfüüsika konspekt

6.2 Impulsimoment 6.3 Impulsimomendi jäävuse seadus. 6.4 Inertsimoment 6.5 Pöördliikumise dünaamika põhivõrrand 6.6 Steineri lause 6.7 Mõningate lihtsamate kehade inertsimomentide arvutamine 6.7a Homogeense varda inertsimoment varda keskpunkti suhtes. 6.7b Ketta inertsimoment tema sümmeetriatelje suhtes 6.8 Pöörleva keha kineetiline energia. 7. VÕNKUMISED 7.1 Tasakaalu liigid 7.2 Sumbuvvõnkumine 7.2 Harmooniline võnkumine. 7.2a Matemaatiline pendel 7.2b Füüsikaline pendel 7.3 Harmoonilise võnkumise energia. 7.4 Sundvõnkumine. Resonants 8. LAINED 8.1 Rist- ja pikilained 8.2 Sfääriline ja tasapinnaline laine 8.3 Lainete interferents 8.4 Lainete difraktsioon 8.5 Laine levimiskiirus elastses keskkonnas 8.6. Doppleri efekt 9. MOLEKULAARFÜÜSIKA 9.2 Ideaalse gaasi mõiste 9.3 Molekulaarkineetilise teooria põhivõrrand 9.4 Aine siseenergia. Ideaalse gaasi siseenergia

Füüsika
177 allalaadimist
thumbnail
69
docx

FÜÜSIKA 1 eksami vastused

Jõu toimel tekkiv kiirendus on pöördvõrdeline keha massiga. Mida suurem mass, seda väiksema kiirenduse see jõud tekitab. v F = m a m= V (tihedus*ruumala) a= t Gravitatsioonijõud e. raskusjõud sõltub keha massist. Massist sõltub Newtoni II seaduse järgi ka kiirendus, mille keha vastastikmõju tagajärjel saab. Newton defineeris massi kui keha inertsuse mõõdu ja sellele tuginedes saab massi määrata jõu poolt kehale antava kiirenduse kaudu. Tavaliselt leitakse mass aga hoopis kaalumise ehk kehale mõjuva gravitatsioonijõu mõõtmise teel. Kas niiviisi kahel erineval viisil leitud massid on ikka samad? Kehadel on raskus ja seega mass ka siis, kui nende liikumine ei muutu. Gravitatsioon ja inerts pole omavahel ühelgi viisil seotud

Füüsika
108 allalaadimist
thumbnail
15
doc

Füüsika I eksami piletid

sooritab perioodiliselt muutuva välisjõu mõjul (sundiv jõud). Muutugu sundiv jõud harmooniliselt: f=F 0cost. Liikumisvõrrandi koostamisel peab peale sundiva jõu arvestama ka neid jõude, mis mõjuvad süs.-is selle vaba võnkumise korral, s.o. kvaasielastset jõudu ja keskkonnatakistust. Funktsiooni stabiliseerunud sundvõnkumised: x=f 0/(02-2)2+422*cos(t- arctan2/02-2). Need kujutavad endast harm. võnkumisi, mille sagedus on võrdne sundiva jõu sagedusega. Sundvõnkumiste amplituud on võrdeline sundiva jõu amplituudiga. RESONANTS - sundvõnkumiste amplituudi sõltuvus sundiva jõu sagedusest tingib olukorra, kus sageduse teatud väärtuse juures antud süs. võnkeamplituud saavutab maksimumi. Võnkuv süs. osutub niisuguse sagedusega jõu suhtes eriti vastuvõtlikuks. Seda nähtust nim. resonantsiks, vastavat sagedust aga resonantsisageduseks. Resonantssageduse üksainus väärtus res=02-22. Resonants olukorrale vastav amplituud: ares=f0/202-2

Füüsika
1096 allalaadimist
thumbnail
31
doc

Füüsika eksam.

sirgjooneliselt. 10.Reaktiivliikumine. Reaktiivliikumine on selline liikumine, mida põhjustab kehast eemale paiskuv keha osa. Kui eemale lendava keha osa liikumissuund läbib keha massikeset, on reaktiivliikumine kulgemine. Reaktiivliikumist kasutatakse rakettide lennutamisel kosmosesse, aga seda kasutavad ka mõned loomad liikumiseks, näiteks seepia. Raketi korral on keha (raketi) osaks sellest suure kiirusega väljalendav kütuse põlemisprodukt ­ kuum gaas. See põhjustab raketi liikumise vastassuunas. Raketi kiiruse saab leida impulsi jäävuse seaduse abil. Süsteemiks, mille kohta me seda seadust rakendame on raketi kere ja selles olev kütus. Kui rakett pole veel startinud, siis on paigal nii raketi kere kui ka selle sees olev kütus. Järelikult süsteemi koguimpulss võrdne nulliga. Järelikult süsteemi impulss peab võrduma nulliga ka pärast starti. Kui eeldada, et kogu põlenud kütus paiskub raketist välja korraga, siis saame:

Füüsika
844 allalaadimist
thumbnail
5
docx

Füüsika I konspekt

· kera: · varras: · 24. Pöörleva keha kineetiline energia. Välisjõudude töö pöörlemisel. · Kineetiline energia: , ja välisjõudude töö keha pöörlemisel ümber liikumatu telje z nurga võrra: · . · · II. Mehaanilised võnkumised ja lained. · 1. Harmooniline ostsillaator, ta liikumise võrrand ja selle lahend. · Harmooniliseks ostsillaatoriks nim. keha, mille kaugus tasakaaluasendist muutub siinus- või koosinusfunktsiooni kohaselt: · , kus on amplituud, ­ võnkumiste faas, ­ algfaas, ja T ­ võnkeperiood. · 2. Harmoonilise ostsillaatori kiirus, kiirendus ja energia. · Harmoonilised võnkumised tekivad kvaasielastsusjõu mõjul, kusjuures elastuskoefitsent . · Harmoonilise ostsillaatori kiirus ja kiirendus muutuvad samuti harmooniliselt, koguenergia on aga ajas muutumatu. · Kiirus: , maksimaalne kiirus . · Kiirendus: , maksimaalne kiirendus . · Energia: , , . · 3. Füüsikaline ja matemaatiline pendel.

Füüsika
234 allalaadimist
thumbnail
5
docx

Füüsika eksamikordamine

Füüsika eksami kordamine 1)Liikumise kirjeldamine: Taustsüsteem: koordinaadistik + käik (on võimalik aja mõõtmine) Kohavektor Trajektoor: joon, mida mööda keha liigub Kiirus: asukoha muutus jagatud aja muutusega, kohavektori tuletis aja järgi Kiirendus: kiiruse muutus jagatud vastava ajaga, kiiruse tuletis aja järgi 2)Sirgjooneline ühtlaselt muutuv liikumine: Keha liigub sirgjoonelisel trajektooril, kusjuures tema kiirendus on nii suunalt kui suuruselt muutumatu ning samasihilise kiirusega. Realiseerub olukorras, kus keha liigub muutumatu jõu toimel (näiteks vabalangemine raskusjõu väljas.

Füüsika
487 allalaadimist
thumbnail
34
doc

Füüsika eksam inseneri erialadele

raskuskiirendust planeedi pinnal võib ligikaudselt arvutada sama valemi järgi). Gravitatsioonikonstandi eksperimentaalseks väärtuseks on saadud 6,674×10-11 N·m2·kg-2. Newtoni gravitatsiooniteooria põhilisteks rakendusvaldkondadeks on ballistika (mürskude, rakettide, kosmoselaevade liikumine gravitatsiooniväljas), planeetide jt. taevakehade liikumise analüüs jms. Newton tuletaski oma teooria lähtudes empiirilistest andmetest planeetide liikumise kohta, mis olid formuleeritud juba varem Kepleri seadustena. Loeng 6 · Jõumoment, inertsimoment, nende ühikud ja dimensioonid. jõumoment ­jõu võime põhjustada pöörlevat liikumist ümber punkti. Jõu momendi suurus arvutatakse jõu suuruse ja jõu õla korrutisena. Jõu õlaks on jõu kandesirge kaugus vaadeldavast punktist

Füüsika
379 allalaadimist
thumbnail
10
doc

Füüsika eksami konspekt

massijaotust omavate kehade korral (näiteks raskuskiirendust planeedi pinnal võib ligikaudselt arvutada sama valemi järgi). Gravitatsioonikonstandi eksperimentaalseks väärtuseks on saadud 6,674×10-11 N·m2·kg-2. Newtoni gravitatsiooniteooria põhilisteks rakendusvaldkondadeks on ballistika (mürskude, rakettide, kosmoselaevade liikumine gravitatsiooniväljas), planeetide jt. taevakehade liikumise analüüs jms. Newton tuletaski oma teooria lähtudes empiirilistest andmetest planeetide liikumise kohta, mis olid formuleeritud juba varem Kepleri seadustena. Loeng 6 - Jõumoment - jõu võime põhjustada pöörlevat liikumist ümber punkti. Jõu momendi suurus arvutatakse jõu suuruse ja jõu õla korrutisena. Jõu õlaks on jõu kandesirge kaugus vaadeldavast punktist. Momendi mõõtühik on Nm (njuutonmeeter). Momendi

Füüsika
274 allalaadimist
thumbnail
29
doc

Füüsika kokkuvõttev konspekt

aja mõõtmisviisist. ajavahemikes võrdsed nihked. Sellise liikumise puhul on hetkkiirus võrdne *Trajektoor on keha kui punktmassi liikumistee. Trajektoori kuju järgi eristatakse sirgjoonelist, ringjoonelist ja keskmise kiirusega. kõverjoonelist liikumist. Kõverjooneline liikumine taandub ringjoonelisele. Keha liikumise tegelik tee on trajektoor. Trajektoori mõistel on mõtet ainult Nihe on vektor, mis ühendab klassikalises füüsikas. masspunkti poolt Liikumise kirjeldamine peab toimuma ajas ajavahemiku ja ruumis.Ruumis määratakse keha asukoht jooksul läbitud alg- taustsüsteemi suhtes

Füüsika
405 allalaadimist
thumbnail
18
pdf

Füüsika 1 Eksamiküsimuste vastused

Näiteks ja . 15. Mis on taustsüsteem? Joonisel on kujutatud üks keha kahel erineval ajahetkel. Joonistage taustsüsteem, kohavektorid ja nihkevektor koos tähistusega. Taustsüsteemiks nimetatakse tingimisi liikumatuid kehi, mille suhtes trajektoor on otsustatud määrata keha asendit ruumis. Nihkevektor 16. Mis on hetkkiirus, keskmine kiirus? Kuidas arvutada teepikkust üldiselt? Hetkkiirus on kohavektori muutumine ajaühikus ehk kohavektori tuletis aja järgi. Igas trajektoori punktis on see trajektoori puutuja suunaline:

Füüsika
302 allalaadimist
thumbnail
52
pdf

Füüsika eksamiks kordamine

v dt  ds ds 0 v1   v 2 v2   as  2  a  s  v 22  v12 2 v1 20) On antud Galilei teisendused. Joonistage nendele teisendustele vastavad taustsüsteemid ja leidke seos kiiruste vahel. x  x' y  y 'v0  t z  z' t  t' 21) Kujutage joonisel, kus on kujutatud ringjooneline trajektoor järgmised suurused: kohavektor, joonkiiruse vektor, pöördenurk, pöördenurga vektor, nurkkiiruse vektor. 22) Andke nurkkiiruse ja nurkkiirenduse definitsioonvõrrandid. Milline on kiireneva pöördliikumise liikumisvõrrand. Kasutage kiireneva kulgliikumise liikumisvõrrandit eeskujuna.   d    Nurkkiirus: dt   d 

Füüsika
18 allalaadimist
thumbnail
24
pdf

Füüsika 1 eksam

muuta. Näide Oled kosmoselaevas, kaaluta olekus jäänud seintest eemale. Sellisel juhul ei ole mitte mingit võimalust jäsemete liigutamisega seinani jõuda. Kui aga heita taskust võetud keha endast eemale, hakkab süsteem sina-keha liikuma vastassuunaliselt ning mingil hetkel toimub põrge seinaga. 17. Impulsi jäävuse seadus Suletud süsteemi liikumishulk on jääv. r n r M v M = mi vi = const i =1 18. Hõõrdejõud Hõõrdejõud kirjeldab, kui suurt sundivat jõudu on vaja, et panna keha liikuma ning hoida liikumises. Hõõrdejõud on liikumapaneva jõuga vastassuunaline ning jaguneb seisuhõõrdejõuks, liugehõõrdejõuks ja veerehõõrdejõuks. Liugehõõrdejõu suurus on praktiliselt võrdne maksimaalse seisuhõõrdejõuga. Hõõrdetegur on hõõrdejõu ja pindu kokkusuruva normaaljõu suhe: Fh µ= Fn 19

Füüsika
193 allalaadimist
thumbnail
11
doc

Füüsika eksam

39. Sirgliikumise hetkkiirus ja kiirendus kiirus antud hetkel v=s/t kiirendus antud hetkel a=v/t Kiirendus näitab kuipalju kiirus muutub ajaühikus Kiirus näitab, kui palju muutub liikuva keha asukoht ruumis ajaühiku jooksul ehk kui suure teepikkuse läbib keha ajaühiku jooksul mööda oma trajektoori. 40. Ühtlaselt muutuv pöörlemise pöördenurga ja lõppkiiruse valem = t -nurkkiirus -pöördenurk = ot ± t2/2 Molekulaarkineetiline teooria. 41. Ideaalne gaas. Molekulaarkineetilise teooria põhivõrrand 1)gaasi molekulid on lõpmatu väikesed 2)põrked molekulide vahel abs. elastsed 3)nii hõre, et puuduvad molekulide vastastikmõjud. Võib Ep mitte arvestada. PV/T=const MKTPV Võrrandi tuletamisel vaadeldakse molekulide absoluutselt elastseid põrkeid vastu seina. MKTPV väidab, et gaasi rõhk p sõltub gaasimolekulide kontsentratsioonist n ja ühe molekuli keskmisest kineetilisest

Füüsika
393 allalaadimist
thumbnail
20
pdf

Füüsika eksam

Füüsika eksam 1. Liikumise kiirendamine. Taustsüsteem on mingi kehaga seotud ruumiliste ja ajaliste koordinaatide süsteem. Kohavektor on vektor, mille alguspunkt ühtib koordinaatide alguspunktiga. Trajektoor on keha või ainepunkti teekond liikumisel ruumis või tasandil. Kiirus on vektoriaalne suurus, mis võrdub nihke ja selle sooritamiseks kulunud ajagavahemiku suhtega(kiirusvektor on igas trajektoori punktis suunatud mööda trajektoori puutujat selles punktis)  Kiirendus on kiiruse muutus ajaühikus. Kiirendus näitab keha kiiruse muutumist ajaühikus (Kiirendusvektor lahutub

Füüsika
91 allalaadimist
thumbnail
18
doc

Füüsika riigieksami konspekt

s R [1] takistis. Ühiku eesliite ja vastava kümneastme vastastikune väljendamine, näiteks kilovatt (kW) on 103 W või 0,03 N = 3·10-2 N = 3 cN. 1. kursus MEHAANIKA Mehaaniline liikumine Ühtlane sirgliikumine (s = v·t) ­ keha läbib mistahes võrdsetes ajavahemikes võrdsed teeosad mööda sirgjoont. Ühtlaselt muutuv liikumine ­ keha kiirus muutub (suureneb või väheneb) mistahes võrdsetes ajavahemikes võrse suuruse võrra, kiirendus a on const ehk jääv, kas positiivne (kiirenev) või negatiivne (aeglustuv). Vaba langemine vaakumis on sobiv näide ühtlaselt kiirenevast liikumisest m a = g = 9,8 2 . Jäähokilitri vaba liikumine siledal jääl võiks olla näide ühtlaselt aeglustuvast s liikumisest (hõõrdumise tõttu, hõõrdetegur ). Taustkeha on keha, mille suhtes vaadeldakse kvalitatiivselt (ilma numbriliste väärtusteta) mingi teise keha liikumist. Taustsüsteem koosneb: 1. taustkehast 2

Füüsika
45 allalaadimist
thumbnail
18
doc

Füüsika riigieksami konspekt

s R [1] takistis. Ühiku eesliite ja vastava kümneastme vastastikune väljendamine, näiteks kilovatt (kW) on 103 W või 0,03 N = 3·10-2 N = 3 cN. 1. kursus MEHAANIKA Mehaaniline liikumine Ühtlane sirgliikumine (s = v·t) ­ keha läbib mistahes võrdsetes ajavahemikes võrdsed teeosad mööda sirgjoont. Ühtlaselt muutuv liikumine ­ keha kiirus muutub (suureneb või väheneb) mistahes võrdsetes ajavahemikes võrse suuruse võrra, kiirendus a on const ehk jääv, kas positiivne (kiirenev) või negatiivne (aeglustuv). Vaba langemine vaakumis on sobiv näide ühtlaselt kiirenevast liikumisest m a = g = 9,8 2 . Jäähokilitri vaba liikumine siledal jääl võiks olla näide ühtlaselt aeglustuvast s liikumisest (hõõrdumise tõttu, hõõrdetegur ). Taustkeha on keha, mille suhtes vaadeldakse kvalitatiivselt (ilma numbriliste väärtusteta) mingi teise keha liikumist. Taustsüsteem koosneb: 1. taustkehast 2

Füüsika
1329 allalaadimist
thumbnail
6
docx

Füüsika KT 2

null))  MATEMAATILINE PENDEL –nimetakse väikese te mõõtmetega keha mis on riputatud venimatu ja väikese massiga niidi otsa T=2*3.14*ruutjuur(l/g)  FÜÜSIKALINE PENDEL-tahket keha mis on kinnitatud raskuskeskmest kõrgema nig võib vabalt raskusjõu mõjul võnkuda T=2*3.14*ruutjuur(I/mga)  VEDRUPENDEL –T=2*3.14*ruutjuur(m/k)  SUMBUVADVÕNKUMISED-energia kadude puudumisel kestab võnkumine lõpmata kaua ja on harmooniline reaalses süssteemis pole aga mehaaniline energia jääv see töttu võnkumine sumbub x=A0e^- Btcos(wt+f0)  SUNDVÕNKUMISED-nim võnkumisi mida võnkumisvõimeline süsteemi sooriatab perioodiliselt muutuva jõu mõjul  RESONANTS-sundvõnkumiste amplituudi sõltuvus sundiva jõu sagedusest tingib olukorra kus sagedus teatud väärtuste juures antud süsteemi amplituud saaavutab maksimumi. Võnkuv süsteem osutub nii suguse

Füüsika
11 allalaadimist
thumbnail
50
docx

Füüsika eksamiks kordamine

⃗L=I ∙ ω Jõumoment: M =r ∙ F ∙ sinα ⃗ d (I ∙ ⃗ dL ω) d⃗ ω ⃗ M= = =I ∙ dt dt dt ⃗ M =I ∙ ⃗ε Kulgliikumises F=ma 27. Millised võnkumised on harmoonilised ja millised suurused iseloomustavad harmoonilisi võnkumisi? Seda nii sumbuva kui ka sumbumatu võnkumise korral. Harmooniline võnkumine on võnkumine, mida saab kirjeldada siinus- või koosinusfunktsiooniga. Harmoonilise võnkumise võrrand: x = A ∙ cos(ω 0t + ϕ0) või x = A ∙ sin(ω0t + ϕ0). A – amplituut (tasakaaluasendi ja maksimaalse hälbe vahe) ω0 – nurksagedus (täisvõngete arv ajaühikus) ϕ0 – algfaas (määrab ära võnkumise asendi ajahetkel 0) T – periood, aeg, mille jooksul tehakse üks täisvõnge ω0t + ϕ0 – faas (võnkumise asend suvalisel ajahetkel) f – sagedus, mitu täisvõnget tehakse ajaühikus

Füüsika
77 allalaadimist
thumbnail
9
doc

Füüsika I kordamiskonspekt

A dA Kui (delta)t-d on väikesed, võetakse vaatluse alla võimsus hetkeväärtus- W = lim t 0 t = . dt Juhul kui viimane avaldis ei ole const, annab esimene avaldis võimsuse keskmise väärtuse ajavahemikus (delta)t. Kui ajavahemikule dt vastab jõu rakenduspunkti nihe ds, siis dA=Fds. Fds Sellest saame võimsuse kujule W = . Kuid ds/dt on kiiruse vektor. Võimsus on võrdne dt jõuvektori ja jõu rakenduspunkti kiiruse vektori skalaarkorrutisega- W=Fv. Võimsuse ühik on vatt(W=J/s). Potentsiaalne jõuväli

Füüsika
422 allalaadimist
thumbnail
10
doc

Füüsika eksamiks

Galillei teisendus: keha koordinaate arvestades,et aeg külgeb mõlemas süsteemis ühtemoodi. x=x'+V0*t x-I süsteem y=y' x'-II süsteem z=z' t=t' Keha kiirus on esimeses süsteemis: V=V'+V0 Dünaamika võrrandid ei muutu üleminekul Ist inertsiaalsest taustsüsteemist teisesse,see tähendab,et nad on invariantsed koordinaatide teisenduste suhtes. 1.1.2.Ühtlane sirgliikumine Keha liikumise tegelik tee on trajektoor. Nihkvektoriks s¯ nimetame keha liikumise trajektoori alg-ja lõpppunkti ühendavat vektorit.Olgu nihe S¯ ajavahemikku t jooksul,siis kiirusvektor: V¯=lim S¯/t=dS¯/dt Kui kiirus ajas ei muutu,siis diferentsiaale ei kasutata ning vektorseosed kattuvad skalaarseostega,sest on tegemist sirgjoonelise liikumisega.Järelikult on ajaühikus läbitud teepikkus võrdne kiirusega ühtlasel sirgliikumisel: V=S/t Ja aja t jooksul läbitud teepikkus on siis vastavalt S=Vt.

Füüsika
798 allalaadimist
thumbnail
11
doc

Füüsika konspekt

Nurkkiirus: =2f Joonkiiruse ja nurkkiiruse seos: v=r Kesktõmbekiirendus on suunatud pöörlemiskeskpunkti poole. Tähis a , ühik 1 m/s². Kesktõmbekiirendus: a =v²/r ; a =²r Võnkumine Periood on aeg, mille jooksul keha sooritab ühe täisringi. Tähis T, ühik 1s. Valem: T=t/n=2/ Sagedus näitab ajaühikus tehtud täisringide arvu. Tähis f, ühik 1/s ehk 1Hz. Valem: f=1/T Hälve on võnkuva keha kaugus tasakaaluasendist.Harmoonilise võnkumise võrrandis on hälbe tähis x. Harmooniline võnkumine: x=x cost Võnkeamplituud on suurim kaugus tasakaaluasendist ehk maksimaalne hälve. Laine Ristlaine korral võnguvad osakesed risti laine levimissuunaga (nt vee pinnalained). Pikilaine korral võnguvad osakesed piki laine levimissuunda (nt helilained). Lainepikkus võrdub nt kahe järjestikuse laineharja vahekaugusega. Tähis . Laine levimiskiirus näitab kui kaugele mingi kindel lainepunkt (nt lainehari) levib ajaühiku jooksul. Lainepikkuse ja laine levimiskiiruse vaheline seos: v=/T=f

Füüsika
200 allalaadimist
thumbnail
5
doc

Füüsika 1. eksami Lühike konspekt

Liikumine on ühtlane sirgjooneline parajasti siis kui kiirusvektor ei muutu. Inertsiseaduse järgi säilitab keha või masspunkt oma ühtlase sirghoonelise liikumise, kui talle mõjuvate jõudude resultant on null. Mitteühtlaselt muutuv sirgliikumine ­ see on niisugune liikumine, kus ka kiirendus muutub. Ühtlaselt muutuv sirgliikumine Ühtlaselt muutuval liikumisel liigub keha jätkuvalt sirgjooneliselt, ent kiirendus on nullist erinev (a=const). Mitteühtlaselt liikumisel v ja a ei ole const. V=ds/dt ning a=dv/dt. Ühtlaselt muutuv sirgliikumine on sirgjooneline liikumine, kus kiirendus muutub võrdsetes ajavahemikes võrdsete suuruste võrra, st kiirendus on jääv Skalaarid ja vektorid - skalaarid on suurused (aeg, mass, inertsmom), mis on määratud üheainsa arvu poolt Mõnede suuruste määramisel on lisaks väärtusele vaja näidata ka suunda (jõud, kiirus, moment). Selliseid füüsikalisi suurusi nim vektoriteks

Füüsika
14 allalaadimist
thumbnail
8
doc

Füüsika konspekt

asukohta kirjeldav koordinaat x muutub ajas siinus (v cos) funktsiooni järgi. Harmooniliselt võngub nt ühtlaselt nurkkiirusega mööda ringjoont liikuva punkti m projektsioon P. 13. Matemaatiline pendel- kaalutu ja venimatu mass. 14. füüsikaline pendel- vb iga keha , kui see on nii kinnitatud, et ta saab võnkuda ning kinnituspunkt ei ühti raskuskeskmega. 15. harmooniliste võnkumiste liitmine- 16. võnkumiste sumbumine- sumb.võnkumisi kirjeldab sinfunkt.,kuid selle amplituud väheneb ajas eksponentsiaalselt. Võnkeamplituudi vähenemist kirjeldab sumbuvuse log dekrement , mis on arvuliselt võrdne kahe samapoolse üksteisele järgneva võnkeamplituudi suhte ln-iga. 17. lained elastses keskkonnas- 18. akustika- 19. 20. Torricelli seadus- määrab anuma avast väljavoolava vedeliku kiiruse. 21. sisehõõre vedelikus- (Fh) on võrdeline kiiruse gradiendi (dv/dx) ja vedelikukihi pindalaga S ning suunatud liikumisele vastu. 22

Füüsika
440 allalaadimist
thumbnail
83
doc

Füüsika eksami küsimuste vastused

Elektrolüütides kehtib Ohm'i seadus: 1836. a.,tehes elektrolüüsikatseid erinevate ainetega, avastas M. Faraday kaks lihtsat seadust: 1) Elektroodil eralduva aine mass on võrdeline elektrolüüti läbinud laenguga. 2) Võrdetegur sõltub ainest ja teda nimetatakse elektrokeemiliseks ekvivalendiks. Aine elektrokeemiline ekvivalent on võrdeline aatommassi ning pöördvõrdeline valentsiga. Mõlemad seadused saab kokku võtta ühte valemisse: Gaasid - Definitsiooni järgi koosneb gaas vabadest molekulidest; et need peavad olema elektriliselt neutraalsed, ei saa gaas elektrit juhtida. Et gaasilises keskkonnas tekiks vool, tuleb seal kõigepealt tekitada laengukandjaid. Voolu gaasides nimetatakse elektrilahenduseks (gaaslahenduseks). See lahendus võib olla kaht tüüpi: 1. Sõltuv lahendus, kui laengukandjaid (ioone, elektrone) tekitab mingi kõrvaline allikas (soojus, valgus, radioaktiivne kiirgus).

Füüsika
140 allalaadimist
thumbnail
12
doc

Füüsika kordamine 10.klass

SIRGJOONELISELT LIIGUVAD: kukkuv kivi, pliiatsi tervalik sirgjoont tõmmates, auto või rong sirgel teeosal jne. Sirgjoonelist liikumist kohtab looduses harva. Tavaliselt on sirgjooneline vaid mõni osa trajektoorist. KÕVERJOONELISELT LIIGUVAD: lendav lind, kaaslasele visatud pall, kurvis sõitev auto, liuglev paberileht jne. Trajektoori suhtelisus tähendab, et erinevate kehade suhtes võib liikuva keha trajektoor olla erinev. NIHE ­ Nihe on füüsikaline suurus, vektor (suunatud sirglõik), mis ühendab keha alg- ja lõppasukohta. Tähis s Ühik 1 m Nihe on suhteline suurus, st selle väärtus oleneb taustsüsteemi valikust. TEEPIKKUS ­ Teepikkus on trajektoori lõik, mis läbitakse kindla ajavahemiku jooksul. Teepikkuseks nimetatakse füüsikalist suurust, mis on võrdne trajektoori pikkusega, mille keha läbib mingi ajavahemiku jooksul.

Füüsika
1092 allalaadimist
thumbnail
1
doc

Füüsika I eksami "mikrokonspekt"

Siinuseliselt v 2.Jõumoment- Jõumoment on jõud mida rakendatakse pöördliikumises.Jõumoment on koosinuseliselt toimuvaid füüsikalisi suurusemuutusi ajas nim harm võnk.H v amplituudiks nim suurus, mis on jõu ja selle rakenduspunkti ning teljevahelise kauguse korrutis . M=FI M=I keha max hälvet tasakaaluasendist. Võnkuva punkti koguenergia = igal ajahetkel kineetilise Momendi vektor on aksiaalvektor. energia ja pottesnisaalse summaga. Harmoniline võnkumine on protsess, kus punktmass 3.Võnkumiste sumbumine- on ka kirjeldatavad siinusfunktsioonina, kuid selle amplituud liigub mööda sirget ning tema asukohta kirjeldav koordinaat(X) muutub ajas siinus(või väheneb ajas ekspotentsiaalselt. x=Asinst s = 02 - 2 kus on koosinus) funktsiooni järgi. Harmooniliselt võngubnäiteks ühtlaselt nurkkiirusega() mööda sumbuvustegur.Harmooniline võnkumine on protsess, kus punktmass liigub mööda sirget ning

Füüsika
324 allalaadimist
thumbnail
13
docx

Konspekt füüsika eksamiks!

Milli 10-3 M Mikro 10-6 µ Nano 10-9 N Piko 10-12 P 1 min = 60 s 1 h = 60 min = 3600 s 1 = rad (2 = 360 1 rad = ) 1kWh = 1000W * 3600 s = 3,6 * 106 J 760 mmHg = 1atm = 101k Pa 2. Mehaanika 2.1. Mehaaniline liikumine Ühtlane sirgjooneline liikumine ­ liikumine, mille trajektoor on sirge ning kus keha läbib mistahes võrdsetes ajavahemikes võrdsed teepikkused. Läbitud teepikkus = nihkega Keskmine kiirus = hetkkiirusega Teepikkuse ja kiiruse graafikud: Ühtlaselt muutuv sirgliikumine ­ liikumine, mille trajektoor on sirge ning kus kiiruse muutus mistahes võrdsetes ajavahemikes on ühesugune. (Kiirendus on muutumatu. Läbitud teepikkus on võrdne nihke arvväärtusega)

Füüsika
122 allalaadimist
thumbnail
4
doc

Füüsika eksami piletid.

Pilet 1.1 Liikumise liigid. Teepikkus, nihe, ühtlane liikumine, kiirus. Liikumist liigitatakse trajektoori kuju järgi sirgjoonelisteks ja kõverjoonelisteks. Kiiruse järgi liigitatakse ühtlaseks ja mitte ühtlaseks liikumiseks. Ühtlane liikumine on liikumine kus mistahes võrdsetes ajavahemikes läbitakse võrdsed teepikkused. V=s/t (m/s) Pilet 1.2 Ideaalne Gaas. Gaasi oleku üldvõrrand. Ideaalse gaasi all mõistetakse sellist gaasi kus molekulide vaheline mõju on niivõrd väike et seda võib mitte arvestada. Looduses olevad reaalsed gaasid on ideaalse gaasi mudelile lähedal siis kui gaas on hõrendatud. Gaasi iseloomustavad suurused on 1. rõhk 2. ruumala 3. temp. pV/T Pilet 1.3 Ül: läätse valemi rakendamine. 1/a+1/a=1/f S=k/a Pilet 2.1 Ühtlaselt muutuv liikumine, kiirendus. Ühtlaselt muutuv liikumine on selline liikumine kus kiirus

Füüsika
102 allalaadimist
thumbnail
14
pdf

FÜÜSIKA EKSAM

kus ainult alguses ja lõpus on võnkuv omdus sama suuruse ja muutumise suunaga. ● mehaaniline võnkumine- nt pendel.- keha asend muutub ning võnkuvaks suuruseks on keha asendit iseloomustav koordinaat(kaugus või nurk) ● elastne võnkumine- elastse keskkonna rõhk antud punktid muutub. See leiab aset nt heli levimisel õhus või veel tihendustena. 14. Võnkumisi iseloomustavad suurused (mõiste tähis, mõõtühik) hälve, amplituud, periood, sagedus ● Hälve- pidevalt muutuv suurus ja sõltuvalt sellest, kummal pool tasakaaluasendit keha momendil asub, loetakse kas pos. või negatiivseks. Tähis- x ja mõõtühik on m(meeter) ● ampituud- suurim kaugus tasakaaluasendist. tähis X 0 , mõõtühik m(meeter) ● periood- ühe täisvõnke kestus. Tähis T, mõõtühik s(sekund) ● sagedus- ajaühikus sooritatud täisvõngete arv. Tähis f, mõõühik Hz(herts) 15. Vaba- ja sundvõnkumised

Füüsika
17 allalaadimist
thumbnail
13
doc

Füüsika valemid mõisted

Energiaks nimetatakse keha võimet teha tööd. Liikumisest tingitud energia on kineetiline energia Ek = mv2/2, kus m ­ keha mass, v ­ keha kiirus. Kehade vastastikusest asendist tingitud energia on potentsiaalne energia. Raskusjõu korral Ep = mgh, kus m ­ keha mass, g ­ raskuskiirendus, h keha kõrgus maapinnast. Entroopia iseloomustab süsteemi korrastatust. Mida korrastatum on süsteem, seda väiksem on entroopia ja vastupidi. Entroopia S = k lnW, kus k on Boltzmanni koefitsient ja W süsteemi oleku termodünaamiline tõenäosus. Mida tõenäosem on olek, seda suurem on W. Näiteks W saavutab oma maksimaalse väärtuse, kui kahe gaasi molekulid on täielikult segunenud. Entroopiat kasutatakse ka termodünaamika II seaduse sõnastamisel: entroopia kasvab suletud süsteemis toimuvate soojuslike protsesside käigus. Fermat' printsiip: valgus levib teed mööda, mille läbimiseks kulunud aeg on minimaalne

Füüsika
50 allalaadimist


Sellel veebilehel kasutatakse küpsiseid. Kasutamist jätkates nõustute küpsiste ja veebilehe üldtingimustega Nõustun